JPH03243715A - Heat treatment and heat treating device for small parts - Google Patents

Heat treatment and heat treating device for small parts

Info

Publication number
JPH03243715A
JPH03243715A JP4048290A JP4048290A JPH03243715A JP H03243715 A JPH03243715 A JP H03243715A JP 4048290 A JP4048290 A JP 4048290A JP 4048290 A JP4048290 A JP 4048290A JP H03243715 A JPH03243715 A JP H03243715A
Authority
JP
Japan
Prior art keywords
small parts
cylindrical bucket
gas flow
gas
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4048290A
Other languages
Japanese (ja)
Other versions
JP2870091B2 (en
Inventor
Masayoshi Okumura
奥村 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4048290A priority Critical patent/JP2870091B2/en
Publication of JPH03243715A publication Critical patent/JPH03243715A/en
Application granted granted Critical
Publication of JP2870091B2 publication Critical patent/JP2870091B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

PURPOSE:To rapidly and uniformly execute a heat treatment by generating the force convection of gaseous flow in the small parts loaded into a cylindrical bucket and simultaneously transfering heat to plural pieces of the small parts. CONSTITUTION:The many small parts 11, such as castings and forgings, are loaded into the cylindrical bucket 10. Gas supply openings 12 are installed to face each other on the outer peripheral side of the cylindrical bucket 10 and the gaseous flow of a high-temp. heating gas, combustion gas or reducing gas, neutral gas, cooling gas or the like is blown in arrow direction from the outer peripheral side of the cylindrical bucket 10 toward the central side and the force convection thereof is generated in the cylindrical bucket 10 to simultaneously transfer heat to the many small parts 11. The small parts are heated, soaked and cooled while the temp. differences between the inside and outside, the top and bottom and the right and left of the cylindrical bucket 1 are kept min.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) 本発明は、型打鍛造品などの鍛造品や精密鋳造品などの
鋳造品のごとき小物部品に対して加熱。 灼熱、冷却などの熱処理を行うのに利用される小物部品
の熱処理力法および熱処理装置に関するものである。 (従来の技術) 従来、鍛造品や鋳造品のごとき小物部品に対して複数個
の小物部品を同時に熱処理するに際しては、これら複数
個の小物部品を筒状バケット内に装入して、例えば、第
9図に示すような構造を有する加熱炉を用いて行ってい
た。 この第9図に示す加熱炉1は、炉体2の下部側に設けた
炉床3の上に、複数の小物部品4を装入した筒状バケッ
ト5を載置し、この筒状バケット5の上方に加熱用のラ
ジアントチューブ6を設けていると共に筒状バケット5
の下方にも加熱用のラジアントチューブ7を設け、上方
のラジアントチューブ6の上方には撹拌層8を設けた構
造をなすものであり、ラジアントチューブ6.7によっ
て筒状バケット5内に装入した小物部品4を加熱するに
際して撹拌Jii8を回しながら矢印A方向に高温のガ
ス流が形成されるようにしていた。 (発明が解決しようとする課題) しかしながら、このような第9図に示した加熱炉を用い
た従来の小物部品4の熱処理方法では、ラジアントチュ
ーブ6.7によって加熱されかつ撹拌M8によって撹拌
された高温のガス流が第9図の矢印A方向に形成される
ようにして、筒状バケット5内に装入した複数個の小物
部品4を加熱するようにしているが、筒状バケット5内
に装入した小物部品4の間には熱伝導度の低い気体(例
えば、0 、05〜0 、 l k c a fL /
 m 11h r・℃程度のもの)が存在することによ
って平均の熱伝導度が大幅に低下し、筒状バケット5の
上端部分と内部とで大きな温度差が生じやすいと共に、
複数個の小物部品4の全体を均一に加熱するためには筒
状バケット5の内部にある小物部品4の昇温を基準とす
る必要があるためかなりの時間を要し、筒状バケット5
の内部にある小物部品4の昇温遅れによってスーテイン
グが発生した場合には小物部品4の表面が浸炭されてし
まうなどの課題を有していた。 (発明の目的) 本発明は、このような従来の課題にかんがみてなされた
もので、筒状バケット内に装入した複数個の小物部品に
対して加熱、均熱、冷却などの熱処理を行うに際し、前
記筒状バケ−/ )内に装入した複数個の小物部品に対
する熱処理をご〈短時間のうちにしかも均一に行うこと
が可能である小物部品の熱処理方法および熱処理装置を
提供することを目的としている。
(Field of Industrial Application) The present invention is applicable to heating small parts such as forged products such as die forgings and cast products such as precision castings. The present invention relates to a heat treatment method and a heat treatment apparatus for small parts, which are used to perform heat treatments such as burning and cooling. (Prior Art) Conventionally, when heat-treating a plurality of small parts such as forged products or cast products at the same time, the plurality of small parts are charged into a cylindrical bucket and, for example, A heating furnace having a structure as shown in FIG. 9 was used. This heating furnace 1 shown in FIG. A heating radiant tube 6 is provided above the cylindrical bucket 5.
It has a structure in which a heating radiant tube 7 is also provided below, and a stirring layer 8 is provided above the upper radiant tube 6. When heating the small parts 4, a high temperature gas flow was formed in the direction of arrow A while rotating the stirrer Jii8. (Problem to be Solved by the Invention) However, in the conventional heat treatment method for small parts 4 using the heating furnace shown in FIG. A high temperature gas flow is formed in the direction of arrow A in FIG. 9 to heat the plurality of small parts 4 charged into the cylindrical bucket 5. A gas with low thermal conductivity (for example, 0, 05 to 0, l k c a f L /
The average thermal conductivity decreases significantly due to the presence of temperatures of the order of m 11 h r・℃, and a large temperature difference tends to occur between the upper end portion and the inside of the cylindrical bucket 5.
In order to uniformly heat the entire plurality of small parts 4, it is necessary to use the temperature rise of the small parts 4 inside the cylindrical bucket 5 as a reference, so it takes a considerable amount of time.
If sooting occurs due to a delay in temperature rise of the small parts 4 inside the small parts 4, the surface of the small parts 4 may become carburized. (Object of the Invention) The present invention has been made in view of such conventional problems, and is a method for performing heat treatment such as heating, soaking, and cooling on a plurality of small parts charged in a cylindrical bucket. To provide a heat treatment method and a heat treatment apparatus for small parts, which are capable of uniformly heat-treating a plurality of small parts charged in the cylindrical bucket (2) in a short time. It is an object.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) 本発明に係わる小物部品の熱処理方法は、加熱部、均熱
部、冷却部などの熱処理部をそなえた熱処理炉を用いて
鍛造品や鋳造品などの小物部品の熱処理を複数個同時に
行うに際し、前記小物部品の複数個を筒状バケット内に
装入して、高温の加熱ガス、燃焼ガスないしは還元ガス
、中性ガス。 冷却ガスなどのガス流を前記筒状/ヘケット内に装入し
た複数個の小物部品の内部で強制対流させて前記複数個
の小物部品に同時に伝熱することにより前記複数個の小
物部品の前記筒状/ヘケー、ト・内における上下間およ
び左右間ないしは筒状バケットの外周側と中心側との間
の温度差を最小に保ちながら加熱・均熱・冷却する構成
としたことを特徴としており、一実施態様においては強
制対流させる筒状バケット内のガス流は、鍛造品や鋳造
品などの小物部品の平均径基準のレイノルズ数で500
−1500であるようにする構成としたことを特徴とし
ており、また、本発明に係わる小物部品の熱処理装置は
、加熱部、均熱部、冷却部などの熱処理部をそなえた熱
処理装置において、高温の加熱ガス、燃焼ガスないしは
還元ガス、中性ガス、冷却ガスなどのガス流を鍛造品や
鋳造品などの小物部品の複数個を装入した筒状バケット
の内部で強制対流させて前記複数個の小物部品に同時に
伝熱するガス流形成手段を備えた構成としたことを特徴
としており、一実施態様において前記ガス流形成手段は
、ガス流を筒状ハケ−2トに送給して当該ガス流を筒状
/ヘケットの内部で強制対流させて複数個の小物部品に
同時に伝熱するガス流球給機構を備えている構成とし、
他の実施態様において前記ガス流形成手段は、ガス流を
筒状バケットから吸引して当該ガス流を筒状バケットの
内部で強制対流させて複数個の小物部品に同時に伝熱す
るガス流吸引機構を備えた構成としたことを特徴として
おり、これら小物部品の熱処理方法および熱処理装置の
構成を前述した従来の課題を解決するための手段とした
ものである。 第1図は本発明の一実施態様を示すものであって、第1
図(a)(b)に示す筒状バケット10や第1図(c)
Cd)に示す環状型をなす筒状バケット10の中には鍛
造品や鋳造品などの小物部品11が多数装入してあり、
図示しない炉床部分に設置した筒状バケット10の外周
側にガス流送給機構であるガス吹出口12.12を対向
して設置することにより筒状バケット10の外周側から
中心側に向けて矢印A方向にガス流を筒状バケット10
の内部で強制対流させて多数個の小物部品11に同時に
伝熱する構成とした場合を示すものであり、この際、筒
状バケット10の片端側もしくは両端側にガス流吸引機
構であるガス吸引口を設けるようにすることもできる。 882図は本発明の他の実施態様を示すものであって、
St造品や鋳造品などの小物部品11を多数個装入した
582図(a)に示す筒状バケット10や第2図(b)
に示す環状型をなす筒状バケット10を回転機構の回転
台13上に載置してこの筒状バケット10を回転可能に
すると共に、筒状バケット10の外周側にガス流送給機
構であるガス吹出口12.12を対向して設置すること
により、回転する筒状バケット10の外周側から中心側
に向けて矢印入方向にガス流を筒状バケット10の内部
で強制対流させて多数個の小物部品に同時に伝熱する構
成とした場合を示すものであり、この際、筒状1<ケラ
)10の上端側にガス流吸引機構であるガス吸引口を設
けるようにすることもできる。 第3図は本発明のさらに他の実施態様を示すものであっ
て、鍛造品や鋳造品などの小物部品11を多数個装入し
た第3図(a)に示す筒状バケット10や、第3図(b
)に示す上側的1/3の部分のみを窮状ないしは有孔状
にしてガスの通過を可能にした筒状バケット10や、第
3図(C)に示す環状型をなす筒状バケット10の片端
(上端)をガス流形成手段である閉塞板(蓋)14によ
って閉塞し且つ他端(下端)に設けたガス流送給機構で
あるガス吹田口12よりガス流を矢印A方向に送給して
筒状バケット10の下端側ないしは中心側から外周側に
向けてガス流を筒状バケット10の内部で強制対流させ
て多数個の小物部品11に同時に伝熱する構成とした場
合を示すものであり、この際、筒状バケット10の外周
側にガス流吸引機構であるガス吸引口を設けるようにす
ることができ、このガス吸引口が例えば対向設置される
場合には筒状バケット10を水平方向に回転させる構成
とすることもできる。 ff14図は本発明のさらに他の実施態様を示すもので
あって、 tna品や鋳造品などの小物部品11を多数
装入した筒状バケット10の片(Ill(上端)を閉塞
板CM)14によって閉塞し且つ他端よりガス流送給機
構であるノズル15を装入して前記ノズル15よりガス
流を矢印A対向に送給して筒状バケット10の中心側か
ら外周側に向けてガス流を筒状バケット10の内部で強
制対流させて多数個の小物部品11に同時に伝熱する構
成とした場合を示すものであり、この際、筒状バケット
10の外周側にガス流吸引機構であるガス吸引口を設け
るようにすることもでき、このガス吸引口が例えば対向
設置される場合には筒状バケット10を水平方向に回転
させる構成とすることもできる。 第5図は本発明のさらに他の実施態様を示すものであっ
て、#9遺品や鋳造品などの小物部品11を多数個装入
した第5図(a)に示す筒状バケット10や、85図(
b)に示すように下側的l/3の部分を窮状ないしは有
孔状にしてガスの通過を可能にした筒状バケット10や
、第5図(C)に示す環状型をなす筒状バケット10の
片端(下端)を閉塞板(蓋)16によって閉塞し且つ他
端(上fi)に設けたガス流送給機構であるガス吹出口
12よりガス流を矢印A方向に送給して筒状/−ケ−2
110の上端側ないしは中心側から外周側に向けてガス
流を筒状バケット10の内部で強制対流させて多数個の
小物部品11に同時に伝熱する構成とした場合を示すも
のであり、この際、筒状バケット10の外周側にガス流
吸引機構であるガス吸引口を設けるようにすることがで
き、このガス吸引口が例えば対向設置される場合には筒
状バケット10を水平方向に回転させる構成とすること
もできる。 第6図は本発明のさらに他の実施態様を示すものであっ
て、鍛造品や鋳造品などの小物部品11を多数個装入し
た第6図(a)に示す筒状バケット10や第6図(b)
に示す環状型をなす筒状バケット10の両側にガス流送
給機構であるガス吹出口12.12を設け、前記ガス吹
田口12゜12からガス流を矢印A方向に送給して筒状
バケット10の上下端側ないしは内周側から外周側に向
けてガス流を筒状バケット10の内部で強制対流させて
多数個の小物部品を同時に伝熱する構成とした場合を示
すものであり、この際、筒状バケット10の外周側にガ
ス流吸引機構であるガス吸引口を設けるようにすること
もでき、このガス吸引口が例えば対向設置される場合に
は筒状バケット10を水平方向に回転させる構成とする
こともできる。 (発明の作用) 本発明に係わる小物部品の熱処理方法および熱処理装置
は、上述した構成を有していることから、鍛造品や鋳造
品などの小物部品の間に熱伝導度の低い気体(例えば、
0.05〜0.1k c a l / m・hr◆℃程
度のもの)が存在するときでも、各小物部品のすき間部
分へのガス流の送給や各小物部品のすき間部分からのガ
ス流の吸引によって、各小物部品のすき間部分でガス流
を強制対流させて伝熱することにより、筒状バケットの
内外および上下左右間における各小物部品の温度差が最
小に保たれながら加熱・均熱e冷却されるようになり、
複数個の小物部品に対する熱処理が短時間のうちにそし
て均一に行われるようになる。 そして、加熱時間に加熱速度の制限を加えないならば通
常の熱処理温度(例えば、約800℃)まで従来に比べ
てかなり短時間のうちに力I熱されるようになり、均熱
性は例えば±5℃以内にコントロールが容易に遠戚され
ることにより、均熱および徐冷を含めて任意の熱処理曲
線にできると共にこの熱処理曲線が精度の高いものにな
り、加熱過程における均熱性の改善によって小物部品の
表面における脱炭および浸炭の防止がはかられるように
なる。 そして、加熱に際して、例えば、還元性ガス中で加熱す
るとき、各小物部品の表向での脱炭や浸炭を防止するに
際しては各々の温度に見合ったガスバランス(CO/ 
CO2)で加熱されるが、筒状/<ケラトの内外や上下
ないしは左右間における温度差が著しく大きいと筒状バ
ケット内部が低温であるために一酸化炭素ガスの分解反
応(2CO→C+C02)が発生する。そして、この分
解反応で発生するCが小物部品の表面に付着していわゆ
るスーティ/グを生しさせたり#51炭を生じさせたり
すると小物部品の品質を低下させる原因となることもあ
るが、本発明では前述したように筒状バケットの内部で
強制対流させて複数個の小物部品に同時に伝熱するよう
にしているので、筒状バケットの内外での温度差が小さ
いものとなり、−酸化炭素ガスの分解反応は阻止される
ようになって、小物部品の品質のばらつきや品質の低下
の防止がはかられるようになる。 そして、強制対流させる際のガス流速は、tI9造品や
鋳造品などの小物部品の比熱や大きさや装入量などによ
って変化するが、急速に加熱冷却する際の温度差をでき
るだけ小さくするために、小物部品の平均径基準のレイ
ノルズ数で500〜1500を満足するようにしておけ
ばよく、これによって昇温過程において最小の温度差で
の急速加熱を可能とし、均熱・徐冷過程においては例え
ば±5℃の均熱性が確保されるようになる。そして、こ
のときの総括熱伝達係数は常温から800℃までの平均
値で2.5kcai/m2* h r *℃程度となる
。 (実施例) この実施例では、第7図に示す構造の熱処理装置を用い
、小物部品としてはS CM440を素材とする型打鍛
造品を選んで、この小物部品に対して焼もどしを行う場
合を例にとって実施した。 この熱処理装置21は、炉体22の内部に、小物部品2
3を多数個装入した筒状バケット24がt置しであると
共に筒状バケット24の上端に閉塞板(蓋)25が設置
されており、炉体22の下部には前記筒状/ヘケット2
4の中心部分に網状部を介して連通ずる燃焼ガス送給管
26が設けであると共に、炉体22の上部には燃焼ガス
流出口27が設けてあり、前記燃焼ガス送給管26に接
続したガス送給管28より送給されたガスとエアー供給
管29より送給されたエアーとの燃焼により発生した高
温の燃焼ガス(550℃)は燃焼ガス送給管26を通っ
たのち筒状バケット24の中心部分に矢印A方向に入り
、筒状バケット24の上端には閉塞板25が設置されて
いることから筒状バケット24の中心部分に入った高温
の燃焼ガスは筒状バケット24の中心側から外周側に向
けて筒状バケット24の内部で強制対流することとなり
、この強制対流による伝熱によって多数個の小物部品2
3を同時に加熱したのちの燃焼ガスは燃料ガス流出口2
7より流出する。 このとき、小物部品23のすき間部分での燃焼ガスの対
流速度(ガス流速)は4m/sec程度であると推定さ
れ、第7図に示す符号1−12に示す合計12箇所にお
ける昇温速度を調べたところ、第8図に示す結果であっ
た。 第8図に示すように、熱風温度が550℃である場合に
おいて、符号1,4,7.10で示す筒状バケット中心
側における小物部品23の昇温速度と、符号3,6,9
.12で示す筒状バケット外周側における小物部品23
の昇温速度は、燃焼ガスが筒状バケット24の中心側か
ら外周側に向けて流れる関係上若干の差はあるとしても
、はぼ同レベルのもの−であって、時間60分後におい
ては筒状バケット24の中心側および外周側における各
小物部品23の温度が同じになっており、均熱性が著し
く良好になることが認められ、昇温速度は従来の例えば
第9図に示す加熱炉1を用いた場合に比較して2〜3倍
程度に高めることが可能であった。 また、同じく第8図に示すよう番ご、約60分カn熱し
た後の冷却に際しても、筒状・バケット24の中、、側
と外周側とにおける各小物部品でさほど大差のない降温
速度が得られ、筒状バケット24の中心側と外周側とに
おける小物部品の組織や特性などのばらつきを茗しく小
さなものにすることが可能であった。
(Means for Solving the Problems) A method for heat treating small parts according to the present invention uses a heat treatment furnace equipped with heat treatment parts such as a heating section, a soaking section, and a cooling section to produce small parts such as forged products and cast products. When performing heat treatment on a plurality of small parts at the same time, a plurality of the small parts are charged into a cylindrical bucket and treated with high-temperature heating gas, combustion gas or reducing gas, and neutral gas. By forcing a gas flow such as a cooling gas inside the plurality of small parts charged into the cylindrical/heket to simultaneously transfer heat to the plurality of small parts, the temperature of the plurality of small parts is reduced. It is characterized by a structure that heats, soaks, and cools while keeping the temperature difference between the top and bottom, between the left and right sides, or between the outer circumference and the center of the cylindrical bucket to a minimum. In one embodiment, the gas flow in the cylindrical bucket subjected to forced convection has a Reynolds number of 500 based on the average diameter of small parts such as forged products and cast products.
-1500, and the heat treatment apparatus for small parts according to the present invention is a heat treatment apparatus equipped with heat treatment sections such as a heating section, a soaking section, and a cooling section. A gas flow such as heating gas, combustion gas or reducing gas, neutral gas, cooling gas, etc. is forced to flow inside a cylindrical bucket containing a plurality of small parts such as forgings and castings, and the plurality of small parts are charged. In one embodiment, the gas flow forming means feeds the gas flow to the cylindrical brush 2 to transfer heat to the small parts of the brush. It is equipped with a gas flow ball supply mechanism that causes forced convection of the gas flow inside the cylindrical/heket and simultaneously transfers heat to multiple small parts,
In another embodiment, the gas flow forming means is a gas flow suction mechanism that sucks a gas flow from a cylindrical bucket, causes forced convection of the gas flow inside the cylindrical bucket, and simultaneously transfers heat to a plurality of small parts. The heat treatment method for small parts and the structure of the heat treatment apparatus are a means for solving the above-mentioned conventional problems. FIG. 1 shows one embodiment of the present invention.
The cylindrical bucket 10 shown in Figures (a) and (b) and Figure 1 (c)
A large number of small parts 11 such as forged products and cast products are charged into the annular-shaped cylindrical bucket 10 shown in Cd).
Gas outlets 12 and 12, which are gas flow feeding mechanisms, are installed opposite to each other on the outer circumferential side of the cylindrical bucket 10 installed in the hearth part (not shown), so that gas flow from the outer circumferential side of the cylindrical bucket 10 toward the center side is achieved. Gas flow in the direction of arrow A through the cylindrical bucket 10
This figure shows a configuration in which heat is transferred simultaneously to a large number of small parts 11 by forced convection inside the bucket. It is also possible to provide a mouth. Figure 882 shows another embodiment of the invention,
The cylindrical bucket 10 shown in Fig. 582 (a) and Fig. 2 (b) into which a large number of small parts 11 such as St products and cast products are charged.
A cylindrical bucket 10 having an annular shape as shown in FIG. By installing the gas outlet ports 12, 12 facing each other, a gas flow is forced to flow inside the rotating cylindrical bucket 10 in the direction of the arrow from the outer circumferential side toward the center of the rotating cylindrical bucket 10, resulting in a large number of gas outlets. This shows a configuration in which heat is transferred to small parts at the same time. In this case, a gas suction port, which is a gas flow suction mechanism, may be provided on the upper end side of the cylindrical 1<kera) 10. FIG. 3 shows still another embodiment of the present invention, including the cylindrical bucket 10 shown in FIG. Figure 3 (b
), only the upper 1/3 of the bucket 10 is made narrow or perforated to allow gas to pass through, or one end of the annular-shaped cylindrical bucket 10 shown in FIG. 3(C). (upper end) is closed by a closing plate (lid) 14 which is a gas flow forming means, and a gas flow is sent in the direction of arrow A from a gas suita port 12 which is a gas flow feeding mechanism provided at the other end (lower end). This figure shows a configuration in which a gas flow is forced into convection inside the cylindrical bucket 10 from the lower end side or the center side toward the outer circumferential side of the cylindrical bucket 10, and heat is transferred to a large number of small parts 11 at the same time. In this case, a gas suction port, which is a gas flow suction mechanism, can be provided on the outer circumferential side of the cylindrical bucket 10. If the gas suction port is installed facing each other, for example, the cylindrical bucket 10 can be placed horizontally. It can also be configured to rotate in the direction. FIG. A nozzle 15, which is a gas flow feeding mechanism, is inserted from the other end, and a gas flow is sent from the nozzle 15 in the direction opposite to the arrow A, so that the gas flows from the center side of the cylindrical bucket 10 toward the outer circumferential side. This figure shows a configuration in which the flow is forced to convect inside the cylindrical bucket 10 and heat is transferred to a large number of small parts 11 at the same time. It is also possible to provide a certain gas suction port, and when the gas suction ports are installed facing each other, for example, the cylindrical bucket 10 can be configured to be rotated in the horizontal direction. FIG. 5 shows yet another embodiment of the present invention, including a cylindrical bucket 10 shown in FIG. Figure 85 (
A cylindrical bucket 10 in which the lower 1/3 portion is made narrow or perforated to allow gas to pass through, as shown in b), or a cylindrical bucket having an annular shape as shown in FIG. 5(C). One end (lower end) of the tube is closed by a closing plate (lid) 16, and a gas flow is sent in the direction of arrow A from the gas outlet 12, which is a gas flow feeding mechanism provided at the other end (upper fi). Condition/-K-2
This figure shows a configuration in which a gas flow is forced to convect inside the cylindrical bucket 10 from the upper end side or the center side toward the outer circumferential side of the bucket 110 and heat is transferred to a large number of small parts 11 at the same time. A gas suction port, which is a gas flow suction mechanism, can be provided on the outer circumferential side of the cylindrical bucket 10, and when the gas suction ports are installed facing each other, for example, the cylindrical bucket 10 is rotated in a horizontal direction. It can also be configured. FIG. 6 shows still another embodiment of the present invention, in which the cylindrical bucket 10 shown in FIG. Figure (b)
A gas outlet 12.12, which is a gas flow feeding mechanism, is provided on both sides of the annular-shaped cylindrical bucket 10 shown in FIG. This shows a configuration in which heat is transferred to a large number of small parts at the same time by forcing gas flow inside the cylindrical bucket 10 from the upper and lower ends or from the inner circumferential side to the outer circumferential side of the bucket 10, At this time, a gas suction port, which is a gas flow suction mechanism, may be provided on the outer circumferential side of the cylindrical bucket 10. If the gas suction port is installed facing each other, for example, the cylindrical bucket 10 may be moved horizontally. It can also be configured to rotate. (Function of the Invention) Since the heat treatment method and heat treatment apparatus for small parts according to the present invention have the above-described configuration, gases with low thermal conductivity (e.g. ,
0.05 to 0.1k cal / m・hr By suctioning the small parts, the gas flow is forced to convect in the gaps between each small part and heat is transferred, thereby heating and uniformly heating the small parts while keeping the temperature difference between the inside and outside of the cylindrical bucket and between the top, bottom, right and left sides to a minimum. eIt will now be cooled,
Heat treatment of a plurality of small parts can be uniformly performed in a short time. If no restriction is placed on the heating rate, the temperature can be heated up to the normal heat treatment temperature (for example, about 800°C) in a much shorter time than before, and the thermal uniformity is, for example, ±5. By easily controlling the temperature within ℃, it is possible to create any heat treatment curve including soaking and slow cooling, and this heat treatment curve becomes highly accurate. Decarburization and carburization on the surface of the steel are prevented. When heating, for example, when heating in a reducing gas, the gas balance (CO/
However, if the temperature difference between the inside and outside of the cylindrical bucket, the top and bottom, or between the left and right sides is extremely large, the decomposition reaction of carbon monoxide gas (2CO→C+C02) will occur due to the low temperature inside the cylindrical bucket. Occur. If the carbon generated in this decomposition reaction adheres to the surface of small parts and causes so-called sootie/g or #51 charcoal, it may cause a decline in the quality of small parts. In the present invention, as mentioned above, forced convection is carried out inside the cylindrical bucket to simultaneously transfer heat to a plurality of small parts, so the temperature difference between the inside and outside of the cylindrical bucket is small. The decomposition reaction of the gas is inhibited, and variations in quality and deterioration of the quality of small parts can be prevented. The gas flow rate during forced convection varies depending on the specific heat, size, and amount of small parts such as tI9 manufactured products and cast products, but in order to minimize the temperature difference during rapid heating and cooling. , the Reynolds number based on the average diameter of small parts should satisfy a value of 500 to 1500. This enables rapid heating with the minimum temperature difference during the temperature rising process, and For example, thermal uniformity of ±5° C. can be ensured. The overall heat transfer coefficient at this time is approximately 2.5 kcai/m2*hr*°C as an average value from room temperature to 800°C. (Example) In this example, a heat treatment apparatus having the structure shown in Fig. 7 is used, a die forged product made of S CM440 is selected as a small part, and the small part is tempered. was carried out as an example. This heat treatment apparatus 21 has small parts 2 inside a furnace body 22.
A cylindrical bucket 24 into which a large number of the cylindrical/heket 2.
A combustion gas feed pipe 26 is provided in the center of the furnace body 22 and communicates with the furnace body 22 through a mesh portion, and a combustion gas outlet 27 is provided in the upper part of the furnace body 22 and is connected to the combustion gas feed pipe 26. The high-temperature combustion gas (550°C) generated by combustion of the gas supplied from the gas supply pipe 28 and the air supplied from the air supply pipe 29 passes through the combustion gas supply pipe 26 and then into a cylindrical shape. The high-temperature combustion gas enters the center of the bucket 24 in the direction of arrow A, and since a closing plate 25 is installed at the upper end of the cylindrical bucket 24, the high-temperature combustion gas that enters the center of the cylindrical bucket 24 flows through the cylindrical bucket 24. Forced convection occurs inside the cylindrical bucket 24 from the center side toward the outer circumferential side, and heat transfer due to this forced convection causes a large number of small parts 2
The combustion gas after heating 3 at the same time flows into the fuel gas outlet 2.
It flows out from 7. At this time, the convection velocity (gas flow velocity) of the combustion gas in the gap between the small parts 23 is estimated to be about 4 m/sec, and the temperature increase rate at a total of 12 locations indicated by reference numerals 1-12 in FIG. Upon investigation, the results were shown in Figure 8. As shown in FIG. 8, when the hot air temperature is 550°C, the temperature increase rate of the small parts 23 on the center side of the cylindrical bucket indicated by symbols 1, 4, 7, and 10, and the numbers 3, 6, 9
.. Small parts 23 on the outer peripheral side of the cylindrical bucket indicated by 12
Although there is a slight difference in the rate of temperature increase due to the fact that the combustion gas flows from the center side to the outer circumferential side of the cylindrical bucket 24, the rate of temperature rise is almost the same, and after 60 minutes, The temperature of each small part 23 on the center side and the outer circumferential side of the cylindrical bucket 24 is the same, and it is recognized that the heat uniformity is significantly improved, and the temperature increase rate is lower than that of the conventional heating furnace shown in FIG. 9, for example. It was possible to increase this by about 2 to 3 times compared to the case where No. 1 was used. Also, as shown in FIG. 8, even when cooling after heating for about 60 minutes, there is no significant difference in the temperature drop rate between the small parts in the inner and outer sides of the cylindrical bucket 24 and the outer circumferential side. was obtained, and it was possible to make variations in the structure, characteristics, etc. of the small parts between the center side and the outer peripheral side of the cylindrical bucket 24 smooth and small.

【発明の効果】【Effect of the invention】

本発明に係わる小物部品の熱処理方法は、加熱部、均熱
・部、冷却部などの熱処理部をそなえた熱処理炉を用い
て鍛造品や鋳造品などの小物部品の熱処理を複数個同時
に行うに際し、前記小物部品の複数個を筒状バケット内
に装入して、高温の加熱ガス、燃焼ガスないしは還元ガ
ス、中性ガス。 ン全却ガスなどのガス流を前記筒状バケット内に装入し
た複数個の小物部品の内部で強制対流させて前記複数個
の小物部品に同時に伝熱することにより前記複数個の小
物部品の前記筒状バケット内における上下間、および左
右間の温度差を最小に保ちながら加熱・均熱◆冷却する
構成とし、また1本発明に係わる小物部品の熱処理装置
では、Jff熱部、均熱部、冷却部などの熱処理部をそ
なえた熱処理装置において、高温の加熱ガス、燃焼ガス
ないしは還元ガス、中性ガス、冷却ガスなどのガス流を
fn造品や鋳造品などの小物部品の複数個を装入した筒
状バケットの内部で強制対流させて前記複数個の小物部
品に同時に伝熱するガス流形成手段を備えた構成とした
から、鍛造品や鋳造品などの複数個の小物部品に対して
加熱、均熱、冷却などの熱処理を同時に行うに際し、前
記複数個の小物部品に対する熱処理をご〈短時間のうち
にしかも均一に行うことが可能であり、筒状バケットの
内外ないしは上下左右における各小物部品の組織や特性
のばらつきをなくすことができるようになるという著し
く潰れた効果がもたらされる。
The heat treatment method for small parts according to the present invention is suitable for simultaneously heat treating a plurality of small parts such as forged products and cast products using a heat treatment furnace equipped with heat treatment parts such as a heating section, a soaking section, and a cooling section. , A plurality of the small parts are charged into a cylindrical bucket, and high temperature heating gas, combustion gas or reducing gas, and neutral gas are supplied. The plurality of small parts are heated by forced convection of a gas flow, such as a completely burnt gas, inside the plurality of small parts charged in the cylindrical bucket, and simultaneously transfers heat to the plurality of small parts. The apparatus for heat treatment of small parts according to the present invention has a structure in which heating and soaking and cooling are performed while minimizing the temperature difference between the top and bottom and between the left and right sides in the cylindrical bucket. In a heat treatment equipment equipped with a heat treatment section such as a cooling section, a gas flow of high temperature heating gas, combustion gas or reducing gas, neutral gas, cooling gas, etc. is used to treat multiple small parts such as molded products or cast products. Since the structure is equipped with a gas flow forming means that causes forced convection inside the charged cylindrical bucket and simultaneously transfers heat to the plurality of small parts, it is possible to transfer heat to the plurality of small parts such as forged products and cast products. When performing heat treatment such as heating, soaking, and cooling at the same time, it is possible to perform heat treatment on the plurality of small parts uniformly in a short period of time, and it is possible to perform heat treatment on the plurality of small parts uniformly in a short time. This brings about the remarkable effect of eliminating variations in the structure and properties of each small part.

【図面の簡単な説明】 第1図(a) 〜(d) 、882図(a) (b)、
第3図(a、) 〜(C)、第4図、$5図(a)〜(
C)、86図(a)(b)は本発明の各実施態様を示す
説明図、第7図は本発明の実施例で用いた熱処理装置の
構成を示す説明図、第8図は本発明の実施例で調べた筒
状バケットの各部位における小物部品の昇温速度を例示
するグラフ、第9図は従来の加熱炉の構成を示す説明図
である。 10・・・筒状バケット、 11・・・小物部品、 12・・・ガス吹出口(ガス流形成手段のガス流送給機
構)、 13・・・回転台(回転機構)、 14・・・閉塞板(ガス流形成手段)。 15・・・ノズル(ガス流形成手段のガス流送給機構)
、 16・・・閉塞板(ガス流形成手段)。 21・・・熱処理装置。 23・・・小物部品、 24・・・筒状バケット、 25・・・閉塞板、 26・・・燃焼ガス送給管。 27・・・燃焼ガス流出口。
[Brief explanation of the drawings] Figures 1 (a) to (d), Figures 882 (a) (b),
Figure 3 (a,) ~ (C), Figure 4, $5 Figure (a) ~ (
C), 86(a) and (b) are explanatory diagrams showing each embodiment of the present invention, FIG. 7 is an explanatory diagram showing the configuration of the heat treatment apparatus used in the embodiment of the present invention, and FIG. 8 is an explanatory diagram showing the configuration of the heat treatment apparatus used in the embodiment of the present invention. FIG. 9 is a graph illustrating the temperature increase rate of small parts in each part of the cylindrical bucket investigated in the example of FIG. 9, and is an explanatory diagram showing the configuration of a conventional heating furnace. DESCRIPTION OF SYMBOLS 10... Cylindrical bucket, 11... Small parts, 12... Gas outlet (gas flow feeding mechanism of gas flow forming means), 13... Rotating table (rotating mechanism), 14... Closure plate (gas flow forming means). 15... Nozzle (gas flow feeding mechanism of gas flow forming means)
, 16... Closure plate (gas flow forming means). 21... Heat treatment device. 23... Small parts, 24... Cylindrical bucket, 25... Closure plate, 26... Combustion gas feed pipe. 27... Combustion gas outlet.

Claims (10)

【特許請求の範囲】[Claims] (1)加熱部、均熱部、冷却部などの熱処理部をそなえ
た熱処理炉を用いて鍛造品や鋳造品などの小物部品の熱
処理を複数個同時に行うに際し、前記小物部品の複数個
を筒状バケット内に装入して、高温の加熱ガス、燃焼ガ
スないしは還元ガス、中性ガス、冷却ガスなどのガス流
を前記筒状バケット内に装入した複数個の小物部品の内
部で強制対流させて前記複数個の小物部品に同時に伝熱
することにより前記複数個の小物部品の前記筒状バケッ
ト内における上下間および左右間の温度差を最小に保ち
ながら加熱・均熱・冷却することを特徴とする小物部品
の熱処理方法。
(1) When heat treating multiple small parts such as forged products and cast products at the same time using a heat treatment furnace equipped with heat treatment parts such as a heating section, a soaking section, and a cooling section, a plurality of the small parts are A gas flow such as high-temperature heating gas, combustion gas or reducing gas, neutral gas, cooling gas, etc. is forced into the inside of the plurality of small parts charged into the cylindrical bucket. By simultaneously transferring heat to the plurality of small parts, the plurality of small parts can be heated, soaked, and cooled while minimizing temperature differences between the upper and lower sides and between the left and right sides in the cylindrical bucket. Characteristic heat treatment method for small parts.
(2)強制対流させる筒状バケット内のガス流は、鍛造
品や鋳造品などの小物部品の平均径基準のレイノルズ数
で500〜1500である請求項第(1)項に記載の小
物部品の熱処理方法。
(2) The gas flow in the cylindrical bucket subjected to forced convection has a Reynolds number of 500 to 1500 based on the average diameter of the small parts such as forged or cast products. Heat treatment method.
(3)固定設置した筒状バケットの外周側から中心側に
向けてガス流を筒状バケットの内部で強制対流させて複
数個の小物部品に同時に伝熱する請求項第(1)項また
は第(2)項に記載の小物部品の熱処理方法。
(3) Claim 1 or 2, wherein heat is transferred to a plurality of small parts at the same time by forcing a gas flow inside the fixedly installed cylindrical bucket from the outer periphery side toward the center side. The method for heat treatment of small parts described in (2).
(4)回転する筒状バケットの外周側から中心側に向け
てガス流を筒状バケットの内部で強制対流させて複数個
の小物部品に同時に伝熱する請求項第(1)項または第
(2)項に記載の小物部品の熱処理方法。
(4) The gas flow is forced to convect inside the rotating cylindrical bucket from the outer periphery toward the center to simultaneously transfer heat to a plurality of small parts. 2) The method for heat treatment of small parts as described in section 2).
(5)筒状バケットの片端を閉塞し且つ他端よりガス流
を送給して筒状バケットの中心側から外周側に向けてガ
ス流を筒状バケットの内部で強制対流させて複数個の小
物部品に同時に伝熱する請求項第(1)項または第(2
)項に記載の小物部品の熱処理方法。
(5) Closing one end of the cylindrical bucket and supplying a gas flow from the other end to force convection inside the cylindrical bucket from the center side of the cylindrical bucket toward the outer circumferential side of the cylindrical bucket. Claim (1) or (2) in which heat is transferred to small parts at the same time.
) Heat treatment method for small parts described in section 2.
(6)筒状バケットの片端を閉塞し且つ他端よりノズル
を装入して前記ノズルよりガス流を送給して筒状バケッ
トの中心側から外周側に向けてガス流を筒状バケットの
内部で強制対流させて複数個の小物部品に同時に伝熱す
る請求項第(1)項または第(2)項に記載の小物部品
の熱処理方法。
(6) Close one end of the cylindrical bucket, insert a nozzle from the other end, and feed a gas flow from the nozzle to direct the gas flow from the center of the cylindrical bucket to the outer circumference of the cylindrical bucket. The method for heat treatment of small parts according to claim 1 or 2, wherein heat is transferred to a plurality of small parts simultaneously by internal forced convection.
(7)筒状バケットの対向する両側からガス流を送給し
て筒状バケットの中心側から外周側に向けてガス流を筒
状バケットの内部で強制対流させて複数個の小物部品に
同時に伝熱する請求項第(1)項または第(2)項に記
載の小物部品の熱処理方法。
(7) A gas flow is supplied from opposite sides of the cylindrical bucket, and the gas flow is forced to convect inside the cylindrical bucket from the center side toward the outer periphery to reach multiple small parts at the same time. The method for heat treatment of small parts according to claim 1 or 2, wherein heat is transferred.
(8)加熱部、均熱部、冷却部などの熱処理部をそなえ
た熱処理装置において、高温の加熱ガス、燃焼ガスない
しは還元ガス、中性ガス、冷却ガスなどのガス流を鍛造
品や鋳造品などの小物部品の複数個を装入した筒状バケ
ットの内部で強制対流させて前記複数個の小物部品に同
時に伝熱するガス流形成手段を備えたことを特徴とする
小物部品の熱処理装置。
(8) In a heat treatment equipment equipped with heat treatment sections such as a heating section, a soaking section, and a cooling section, a gas flow of high temperature heating gas, combustion gas or reducing gas, neutral gas, cooling gas, etc. is applied to forged or cast products. A heat treatment apparatus for small parts, comprising a gas flow forming means for simultaneously transferring heat to the plurality of small parts by forcing convection inside a cylindrical bucket into which a plurality of small parts are charged.
(9)ガス流形成手段は、ガス流を筒状バケットに送給
して当該ガス流を筒状バケットの内部で強制対流させて
複数個の小物部品に同時に伝熱するガス流送給機構を備
えている請求項第(8)項に記載の小物部品の熱処理装
置。
(9) The gas flow forming means includes a gas flow feeding mechanism that feeds a gas flow to a cylindrical bucket, causes the gas flow to undergo forced convection inside the cylindrical bucket, and simultaneously transfers heat to a plurality of small parts. A heat treatment apparatus for small parts according to claim (8).
(10)ガス流形成手段は、ガス流を筒状バケットから
吸引して当該ガス流を筒状バケットの内部で強制対流さ
せて複数個の小物部品に同時に伝熱するガス流吸引機構
を備えている請求項第(8)項または第(9)項に記載
の小物部品の熱処理装置。
(10) The gas flow forming means includes a gas flow suction mechanism that sucks the gas flow from the cylindrical bucket, causes forced convection of the gas flow inside the cylindrical bucket, and simultaneously transfers heat to the plurality of small parts. A heat treatment apparatus for small parts according to claim 8 or 9.
JP4048290A 1990-02-21 1990-02-21 Heat treatment method and heat treatment apparatus for small parts Expired - Lifetime JP2870091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4048290A JP2870091B2 (en) 1990-02-21 1990-02-21 Heat treatment method and heat treatment apparatus for small parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4048290A JP2870091B2 (en) 1990-02-21 1990-02-21 Heat treatment method and heat treatment apparatus for small parts

Publications (2)

Publication Number Publication Date
JPH03243715A true JPH03243715A (en) 1991-10-30
JP2870091B2 JP2870091B2 (en) 1999-03-10

Family

ID=12581826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048290A Expired - Lifetime JP2870091B2 (en) 1990-02-21 1990-02-21 Heat treatment method and heat treatment apparatus for small parts

Country Status (1)

Country Link
JP (1) JP2870091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287085A (en) * 2008-05-29 2009-12-10 Ihi Corp Apparatus and method for heat-treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287085A (en) * 2008-05-29 2009-12-10 Ihi Corp Apparatus and method for heat-treatment

Also Published As

Publication number Publication date
JP2870091B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US4547228A (en) Surface treatment of metals
US3109877A (en) Apparatus for modifying the composition of strip metal
US1808152A (en) Continuous annealing apparatus
US4730811A (en) Heat treatment apparatus with a fluidized-bed furnace
US2275106A (en) Circulation of heat treatment atmospheres
JPH03243715A (en) Heat treatment and heat treating device for small parts
US5133813A (en) Gas-carburizing process and apparatus
US9540721B2 (en) Method of carburizing
US3542349A (en) Radiation-type heating furnace with atmosphere regulation
US2432239A (en) Annealing furnace
JPH055171A (en) Heat treatment apparatus
GB2153855A (en) Stainless steel case hardening process
JPH03243724A (en) Heat treatment and heat treating device for wire coil
US2254891A (en) Heat-treating furnace
JP2656839B2 (en) Vacuum heat treatment furnace
JP3547700B2 (en) Continuous vacuum carburizing furnace
JPS59140371A (en) Metal working material curing method
JPS59143018A (en) Heat treatment of steel material
US1065697A (en) Annealing process, &amp;c.
JPS63266019A (en) Method of non-oxidizing induction heat treatment for metal material
JPS6345358A (en) Gas carburizing method
JP3103905B2 (en) Furnace pressure adjustment method of batch type atmosphere furnace
JPH0524430B2 (en)
JPH06100425B2 (en) Fluidized bed furnace
JPH01259127A (en) Heat treatment furnace