JPH03243724A - Heat treatment and heat treating device for wire coil - Google Patents

Heat treatment and heat treating device for wire coil

Info

Publication number
JPH03243724A
JPH03243724A JP4048190A JP4048190A JPH03243724A JP H03243724 A JPH03243724 A JP H03243724A JP 4048190 A JP4048190 A JP 4048190A JP 4048190 A JP4048190 A JP 4048190A JP H03243724 A JPH03243724 A JP H03243724A
Authority
JP
Japan
Prior art keywords
wire coil
coil
gas flow
wire
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4048190A
Other languages
Japanese (ja)
Other versions
JP2913727B2 (en
Inventor
Masayoshi Okumura
奥村 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4048190A priority Critical patent/JP2913727B2/en
Publication of JPH03243724A publication Critical patent/JPH03243724A/en
Application granted granted Critical
Publication of JP2913727B2 publication Critical patent/JP2913727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

PURPOSE:To uniformly execute the heat treatment of a wire coil in a short period of time with a heat treating furnace by generating the force convection of gaseous flow in the wire coil and maintaining the temp. differences between the inside and outside and the top and bottom of the wire coil at min. differences. CONSTITUTION:The wire coil wound to an annular shape is heat treated in the heat treating furnace having at least any of a heating section, soaking section and cooling section. The force convection of a high-temp. heating gas, combustion gas, reducing gas, neutral gas, cooling gas, etc., is generated in the inside of the wire coil at this time. The velocity of flow of the gas of this force convection is preferably maintained at >=1.5m/sec. The above-mentioned force convection is executed by passing the gaseous flow from the outside diameter side to the inside diameter side or from the inside diameter side to the outside diameter side. Heat is transferred to the above-mentioned wire coil by this force convection, by which the wire coil is heated, soaked and cooled while the temp. differences between the inside and outside and the top and bottom thereof are kept at the min. differences. The wire coil is uniformly heat treated in a short period of time in this way.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) 本発明は、リング状に巻かれた線材コイルに対して加熱
、均熱、冷却などの熱処理を行うのに利用される線材コ
イルの熱処理方法および熱処理装置に関するものである
。 (従来の技術) 従来、リング状に巻かれた線材コイルに対して熱処理を
行うに際しては、例えば、第9図に示すような構造を有
する加熱炉を用いて行っていた。 この!$9図に示す710熱炉1は、炉体2の下部側に
設けた炉床3の上に、線材コイル4をそのコイル軸方向
が上下の向きとなるように載置し、線材コイル4の上方
に加熱用のラジアントチューブ5を設けていると共に縁
材コイル4の下方にも力I熱用のラジアントチューブ6
を設け、上方のラジアントチューブ5の上方には攪拌[
7を設けた構造をなすものであり、ラジアントチューブ
5,6によって線材コイル4を加熱するに際して攪拌扇
7を回しながら矢印A方向に高温のガス流が形成される
ようにしていた。 (発明が解決しようとする課題) しかしながら、このような第9図に示した加熱炉を用い
た従来の線材コイル4の熱処理方法では、ラジアントチ
ューブ5.6によって加熱されかつ撹拌!a7によって
撹拌された高温のガス流が第9図の矢印A方向に形成さ
れて、線材コイル4の内径111表層部分および外径側
表層部分の加熱は比較的迅速になされるものの、線材コ
イル4の内部には熱伝導度の低い気体(例えば、0.0
5〜0 、 l kcaJL/me h r ・”0程
度のもの)が存在することによって平均の熱伝導度が大
幅に低下し、線材コイル4の表層部分と内部とで大きな
温度差が生じやすいと共に、線材コイルの全体を均一に
加熱するためには線材コイルの内部における昇温を基準
とする必要があるためかなりの時間を要し、m材コイル
の内部での昇温遅れによってスーティングが発生した場
合には線材コイルの表面が浸炭されたり、線材コイルの
保管時や運搬時等において荷崩れを生じたりすることも
ありうるなどの課題を有していた。 (発明の目的) 本発明は、このような従来の課題にかんがみてなされた
もので、線材コイルに対して加熱、均熱、冷却などの熱
処理を行うに際し、前記線材コイルに対する熱処理をご
く短時間のうちにしかも均一に行うことが可能である線
材コイルの熱処理力法および熱処理装置を提供すること
を目的としている。
(Industrial Application Field) The present invention relates to a wire coil heat treatment method and a heat treatment apparatus that are used to perform heat treatments such as heating, soaking, and cooling on a wire coil wound in a ring shape. . (Prior Art) Conventionally, when heat-treating a wire coil wound into a ring shape, a heating furnace having a structure as shown in FIG. 9, for example, has been used. this! The 710 thermal furnace 1 shown in Figure 9 has a wire coil 4 placed on a hearth 3 provided on the lower side of a furnace body 2 with the coil axis facing up and down. A radiant tube 5 for heating is provided above, and a radiant tube 6 for heating is provided below the edge material coil 4.
is provided above the upper radiant tube 5.
7, and when the wire coil 4 is heated by the radiant tubes 5 and 6, a high temperature gas flow is formed in the direction of the arrow A while rotating the stirring fan 7. (Problems to be Solved by the Invention) However, in the conventional heat treatment method for the wire rod coil 4 using the heating furnace shown in FIG. 9, the wire rod 4 is heated and stirred by the radiant tube 5.6! A high temperature gas flow stirred by a7 is formed in the direction of arrow A in FIG. There is a gas with low thermal conductivity (for example, 0.0
5 to 0, lkcaJL/mehr・"0), the average thermal conductivity decreases significantly, and a large temperature difference tends to occur between the surface layer and the inside of the wire coil 4. In order to uniformly heat the entire wire coil, it is necessary to use the temperature increase inside the wire coil as a reference, so it takes a considerable amount of time, and sooting occurs due to the delay in temperature rise inside the m-material coil. In this case, the surface of the wire coil may be carburized, and the wire coil may collapse during storage or transportation. (Objective of the Invention) The present invention , was made in view of such conventional problems, and when heat treatment such as heating, soaking, cooling, etc. is performed on the wire rod coil, it is possible to heat the wire rod coil in a very short time and uniformly. The purpose of the present invention is to provide a heat treatment method and a heat treatment apparatus for wire coils that enable the following.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) 本発明に係わる線材コイルの熱処理方法は、加熱部、均
熱部、冷却部の少なくともいずれかをそなえた熱処理炉
を用いて線材コイルの熱処理を行うに際し、高温の加熱
ガス、燃焼ガスないしは還元ガス、中性ガス、冷却ガス
などのガス流を線材コイルの内部で強制対流させて前記
線材コイルに伝熱することにより線材コイルの内外およ
び上下間の温度差を最小に保ちながら加熱・均熱・冷却
する構成としたことを特徴としており、一実施態様にお
いては強制対流させる線材コイル内のガス流速が1.5
m/sec以上であるようにする構成としたことを特徴
としており、また、本発明に係わる線材コイルの熱処理
装置は、加熱部、均熱部、冷却部の少なくともいずれか
をそなえた熱処理装置において、高温の加熱ガス、燃焼
ガスないしは還元ガス、中性ガス、冷却ガスなどのガス
流を線材コイルの内部で強制対流させて前記線材コイル
に伝熱するガス流形成手段を備えた構成としたことを特
徴としており、一実施態様において前記ガス流形成手段
は、ガス流を線材コイルに送給して当該ガス流を線材コ
イルの内部で強制対流させて前記線材コイルに伝熱する
ガス流送給機構を備えている構成とし、他の実施態様に
おいて前記ガス流形成手段は、ガス流を線材コイルから
吸引して当該ガス流を線材コイルの内部で強制対流させ
て前記線材コイルに伝熱するガス流吸引機構を備えた構
成としたことを特徴としており、これら線材コイルの熱
処理方法および熱処理装置の構成を前述した従来の課題
を解決するための手段としたものである。 第1図は本発明の一実施態様を示すものであって、図示
しない炉床部分に設置した線材コイル10の外径側にガ
ス流送給機構であるガス吹出口11.11を対向して設
置することにより線材コイル10の外径側から内径側に
向けて矢印A方向にガス流を線材コイル10の内部で強
制対流させて前記線材コイル10に伝熱する構成とした
場合を示すものであり、この際、コイル軸方向の片端側
もしくは両端側にガス流吸引機構であるガス吸引口を設
けるようにすることもできる。 f52図は本発明の他の実施態様を示すものであって、
線材コイル10を回転機構の回転台12上に載置してこ
の線材コイル10を回転可能にすると共に、縁材コイル
10の外径側にガス流送給機構であるガス吹出口11.
11を対向して設置することにより、コイル軸を中心に
して回転する線材コイル10の外径側から内径側に向け
て矢印A方向にガス流を線材コイル1oの内部で強制対
流させて前記線材コイル10に伝熱する構成とした場合
を示すものであり、この際、コイル軸方向の上fi側に
ガス流吸引機構であるガス吸引口を設けるようにするこ
ともできる。 第3図は本発明のさらに他の実施態様を示すものであっ
て、線材コイル10のコイル軸方向の片端(上端)をガ
ス流形成手段である閉塞板CM)13によって閉塞し且
つ他端(下端)に設けたガス流送給機構であるガス吹田
口11よりガス流を矢印入方向に送給して線材コイル1
0の内径側から外径側に向けてガス流を線材コイル10
の内部で強制対流させて前記縁材コイル10に伝熱する
構成とした場合を示すものであり、この際、線材コイル
10の外径側にガス流吸引機構であるガス吸引口を設け
るようにすることができ、このガス吸引口が例えば対向
設置される場合には線材コイル10をそのコイル軸を中
心にして回転させる構成とすることもできる。 第4図は本発明のさらに他の実施態様を示すものであっ
て、線材コイル10のコイル軸方向の片fi(上端)を
閉塞板(蓋)13によって閉塞し且つ他端よりガス流送
給機構であるノズル14を装入して前記ノズル14より
ガス流を矢印A方向に送給して線材コイル10の内径側
から外径側に向けてガス流を線材コイル10の内部で強
制対流させて前記線材コイル10に伝熱する構成とした
場合を示すものであり、この際、線材コイル10の外径
側にガス流吸引機構であるガス吸引口を設けるようにす
ることもでき、このガス吸引口が例えば対向設置される
場合には線材コイル10をそのコイル軸を中心にして回
転させる構成とすることもできる。 第5図は本発明のさらに他の実施態様を示すものであっ
て、線材コイル10のコイル軸方向の片端(下端〕を閉
塞板(蓋)15によって閉塞し且つ他端(上端)に設け
たガス流送給機構であるガス吹田口11よりガス流を矢
印A方向に送給して線材コイル10の内径側から外径側
に向けてガス流を線材コイル10の内部で強制対流させ
て前記線材コイル10に伝熱する構成とした場合を示す
ものであり、この際、線材コイル10の外径側にガス流
吸引機構であるガス吸引口を設けるようにすることがで
き、このガス吸引口が例えば対向設置される場合には線
材コイル10をそのコイル軸を中心にして回転させる構
成とすることもできる。 第6図は本発明のさらに他の実施悪様を示すものであっ
て、線材コイル10のコイル軸力向の両側にガス流迭給
機構であるガス吹出口11.11を設け、前記ガス吹出
口11.11からガス流を矢印A対向に送給して線材コ
イル10の内径側から外径側に向けてガス流を線材コイ
ル10の内部で強制対流させて前記線材コイル10に伝
熱する構成とした場合を示すものであり、この際、線材
コイル10の外径側にガス流吸引機構であるガス吸引口
を設けるようにすることもでき、このガス吸引口が例え
ば対向設置される場合には線材コイル10をそのコイル
軸を中心にして回転させる構成とすることもできる。 (発明の作用) 本発明に係わる線材コイルの熱処理方法および熱処理装
置は、上述した構成を有していることから、線材コイル
の内部に熱伝導度の低い気体(例えば、0.05〜0.
1kcaJl/mehr*’c程度のもの)が存在する
ときでも、線材コイルの内部へのガス流の送給や線材コ
イルの内部からのガス流の吸引によって、線材コイルの
内部でガス流を強制対流させて前記線材コイルに伝熱す
ることにより、線材コイルの内外および上下間の温度差
が最小に保たれながら加熱・均熱・冷却されるようにな
り、線材コイルに対する熱処理が短時間のうちにそして
均一に行われるようになる。 そして、加熱時間に加熱速度の制限を加えないならば通
常の熱処理温度(例えば、約800℃)まで従来に比べ
てかなり短時間のうちに加熱されるようになり、均熱性
は例えば±5℃以内にコントロールが容易に達成される
ことにより、灼熱および徐冷を含めて熱処理曲線が精度
の高いものになり、加熱過程における均熱性の改善によ
って線材コイルの内部における脱炭および浸炭ならびに
荷崩れの防止がはかられるようになる。 そして、710熱に際して、例えば、還元性ガス中で加
熱するとき、線材コイルの表面での脱皮や浸炭を防止す
るに際しては各々の温度に見合ったガスバランス(CO
/ CO2)で加熱されるが、線材コイルの内外や上下
における温度差が著しく大きいとコイル内部が低温であ
るために一酸化炭素ガスの分解反応(2CO−C+CO
2)が発生する。そして、この分解反応で発生するCが
線材コイルの表面に付着していわゆるスーテイングを生
じさせたり投炭を生じさせたりすると線材コイルの品j
[を低下させたり表層における潤滑性が増大して荷崩れ
の原因となることもあるが、本発明では前述したように
線材コイルの内部で強制対流させて伝熱するようにして
いるので、線材コイルの内外での温度差が小さいものと
なり、−酸化炭素ガスの分解反応は阻止されるようにな
って、線材コイルの品質低下や荷崩れの防止がはかられ
るようになる。 そして、強制対流させる際のガス流速は、線材コイルの
線径、充填率(加熱前の充填率、加熱によってコイルが
沈むことにより高充填率になる。)などによって変化す
るが、急速に加熱冷却する際のコイル内外での温度差を
できるだけ小さくするために、線材コイルの内部におけ
るガス流速として1.5m/sec以上とすることがと
くに望ましく、このときの総括熱伝達係数は常温から8
00℃までの平均値で2.5kcaJL/m2ehr・
℃程度となる。 (実施例) この実施例では、第7図に示す構造の熱処理装置を用い
、線材コイルとしては鋼種がCr−5USで線径が5.
5mm、コイル単重が1tonであるものを用いた。 この熱処理装置21は、炉体22の内部に線材コイル2
3がそのコイル軸方向が上下方向となる向きに載置され
ると共に線材コイル23の上端に閉塞板(蓋)24が設
置されており、炉体22の下部には前記線材コイル23
の内径側にt’lk↑る燃焼ガス送給管25が設けであ
ると共に、炉体22の上部には燃焼ガス流出口26が設
けてあり、前記燃焼ガス送給管25に接続したガス送給
管27より送給されたガスとエアー供給管28より送給
されたエアーとの燃焼により発生した高温の燃焼ガス(
610℃)は燃焼ガス送給管25を通ったのち線材コイ
ル23の内径側に矢印A方向に入り、線材コイル23の
上端には閉塞板24が設置されていることから線材コイ
ル23の内径側に入った高温の燃焼ガスは線材コイル2
3の内径側から外径側に向けて線材コイル23の内部で
強制対流することとなり、この強制対流による伝熱によ
って線材コイル23を加熱したのちの燃焼ガスは燃焼ガ
ス流出口26より流出する。 このとき、線材コイル23内での燃焼ガスの対流速度(
ガス流速)は4m/see程度であると推定され、第7
図に示す符号1−12に示す合計12箇所における昇温
速度を調べたところ、第8図に示す結果であった。 第8図に示すように、熱風温度が610℃である場合に
おいて、符号1,4,7.10で示すコイル内径側の昇
温速度と、符号3,6,9.12で示すコイル外径側の
昇温速度は、燃焼ガスが線材コイル23の内径側から外
径側に向けて流れる関係上若干の差はあるとしても、は
ぼ同レベルのものであって、時間60分後においては線
材コイル23の内径側および外径側の温度が同じになっ
ており、均熱性が著しく良好になることが認められ、昇
温速度は従来の例えば第9図に示す加熱炉1を用いた場
合に比較して3〜4倍程度に高めることが可能であった
。 また、同じく第8図に示すように、約60分加熱した後
の冷却に際しても、線材コイル23の内径側と外径側と
でさほど大差のない降温速度が得られ、線材コイル23
の内径側と外径側とにおける組織や特性などのばらつき
を著しく小さなものにすることが可能であった。
(Means for Solving the Problems) The wire coil heat treatment method according to the present invention includes a method for heat treating a wire coil using a heat treatment furnace equipped with at least one of a heating section, a soaking section, and a cooling section. A gas flow such as heating gas, combustion gas or reducing gas, neutral gas, cooling gas, etc. is forced to convect inside the wire coil and heat is transferred to the wire coil, thereby reducing the temperature difference between the inside and outside of the wire coil and between the top and bottom. It is characterized by a configuration in which heating, soaking, and cooling are performed while keeping the gas flow rate to a minimum of 1.5.
m/sec or more, and the wire coil heat treatment apparatus according to the present invention is a heat treatment apparatus equipped with at least one of a heating section, a soaking section, and a cooling section. and a gas flow forming means for forcing a gas flow such as high-temperature heating gas, combustion gas or reducing gas, neutral gas, cooling gas, etc. inside the wire coil to transfer heat to the wire coil. In one embodiment, the gas flow forming means supplies a gas flow to a wire coil and causes the gas flow to undergo forced convection inside the wire coil to transfer heat to the wire coil. In another embodiment, the gas flow forming means sucks a gas flow from the wire coil and causes forced convection of the gas flow inside the wire coil to transfer heat to the wire coil. It is characterized by having a structure equipped with a flow suction mechanism, and the heat treatment method for wire rod coils and the structure of the heat treatment apparatus are a means for solving the above-mentioned conventional problems. FIG. 1 shows one embodiment of the present invention, in which a gas outlet 11, 11, which is a gas flow feeding mechanism, is opposed to the outer diameter side of a wire coil 10 installed in a hearth part (not shown). This figure shows a configuration in which a gas flow is forcedly convected inside the wire coil 10 in the direction of arrow A from the outer diameter side of the wire coil 10 toward the inner diameter side, thereby transferring heat to the wire coil 10. In this case, a gas suction port serving as a gas flow suction mechanism may be provided at one or both ends in the axial direction of the coil. Figure f52 shows another embodiment of the present invention,
The wire coil 10 is placed on a rotary table 12 of a rotating mechanism to make the wire coil 10 rotatable, and a gas outlet 11, which is a gas flow supply mechanism, is provided on the outer diameter side of the edge coil 10.
11 facing each other, a gas flow is forced to convect inside the wire coil 1o in the direction of arrow A from the outer diameter side to the inner diameter side of the wire coil 10 rotating around the coil axis. This shows a configuration in which heat is transferred to the coil 10. In this case, a gas suction port, which is a gas flow suction mechanism, may be provided on the upper fi side in the axial direction of the coil. FIG. 3 shows still another embodiment of the present invention, in which one end (upper end) of the wire coil 10 in the coil axial direction is closed by a closing plate CM) 13, which is a gas flow forming means, and the other end ( A gas flow is fed in the direction of the arrow from the gas suita port 11, which is a gas flow feeding mechanism provided at the lower end), to the wire coil 1.
The gas flow is directed from the inner diameter side to the outer diameter side of the wire coil 10.
This shows a configuration in which heat is transferred to the edge material coil 10 by forced convection inside the wire coil 10, and in this case, a gas suction port, which is a gas flow suction mechanism, is provided on the outer diameter side of the wire coil 10. If the gas suction ports are installed facing each other, for example, the wire coil 10 may be configured to rotate around its coil axis. FIG. 4 shows still another embodiment of the present invention, in which one end fi (upper end) of the wire coil 10 in the coil axial direction is closed by a closing plate (lid) 13, and a gas flow is supplied from the other end. A nozzle 14, which is a mechanism, is inserted, and a gas flow is sent from the nozzle 14 in the direction of arrow A, so that the gas flow is forced to convect inside the wire coil 10 from the inner diameter side to the outer diameter side. In this case, a gas suction port serving as a gas flow suction mechanism may be provided on the outer diameter side of the wire coil 10, and this gas For example, when the suction ports are installed facing each other, the wire coil 10 may be configured to rotate around its coil axis. FIG. 5 shows still another embodiment of the present invention, in which one end (lower end) of the wire coil 10 in the coil axial direction is closed by a closing plate (lid) 15, and the other end (upper end) is provided. A gas flow is fed in the direction of arrow A from the gas suita port 11, which is a gas flow feeding mechanism, and the gas flow is forced to convect inside the wire coil 10 from the inner diameter side to the outer diameter side of the wire coil 10. This shows a case in which heat is transferred to the wire coil 10. In this case, a gas suction port, which is a gas flow suction mechanism, can be provided on the outer diameter side of the wire coil 10, and this gas suction port For example, when the wire rods are installed facing each other, the wire rod coil 10 can be configured to rotate around the coil axis. Gas outlets 11.11, which are gas flow feeding mechanisms, are provided on both sides of the coil 10 in the direction of the coil axial force, and the gas flow is fed from the gas outlets 11.11 in the opposite direction of arrow A to adjust the inner diameter of the wire coil 10. This shows a configuration in which heat is transferred to the wire coil 10 by forced convection of a gas flow inside the wire coil 10 from the side toward the outer diameter side. A gas suction port serving as a gas flow suction mechanism may be provided, and if the gas suction ports are installed facing each other, the wire coil 10 may be configured to rotate around its coil axis. (Function of the invention) Since the wire coil heat treatment method and heat treatment apparatus according to the present invention have the above-described configuration, a gas with low thermal conductivity (for example, 0.05 to 0.0 ..
1 kcaJl/mehr*'c), the gas flow can be forced into convection inside the wire coil by supplying the gas flow to the inside of the wire coil or sucking the gas flow from inside the wire coil. By allowing heat to be transferred to the wire coil, the temperature difference between the inside and outside of the wire coil and between the top and bottom is kept to a minimum while heating, soaking, and cooling are carried out, and the heat treatment of the wire coil can be completed in a short time. And it will be done evenly. If the heating time is not limited to the heating rate, it will be possible to reach the normal heat treatment temperature (for example, about 800°C) in a much shorter time than before, and the thermal uniformity will be, for example, ±5°C. The heat treatment curves, including scorching and slow cooling, can be easily achieved within the range of 100 to 100%, resulting in highly accurate heat treatment curves, including scorching and slow cooling, and improved heat uniformity during the heating process, which reduces decarburization and carburization inside the wire coil and prevents load collapse. Prevention can now be taken. When heating 710, for example, when heating in a reducing gas, the gas balance (CO
/ CO2), but if the temperature difference between the inside and outside of the wire coil or between the top and bottom is extremely large, the decomposition reaction of carbon monoxide gas (2CO-C+CO
2) occurs. If the C generated in this decomposition reaction adheres to the surface of the wire coil and causes so-called sooting or coal casting, the quality of the wire coil may deteriorate.
However, in the present invention, heat is transferred by forced convection inside the wire coil as described above, so the wire rod The temperature difference between the inside and outside of the coil becomes small, and the decomposition reaction of -carbon oxide gas is inhibited, thereby preventing deterioration in the quality of the wire coil and collapse of the load. The gas flow rate during forced convection varies depending on the wire diameter of the wire coil, the filling rate (the filling rate before heating, and the coil sinking due to heating, resulting in a high filling rate), but it is possible to rapidly heat and cool the wire. In order to minimize the temperature difference between the inside and outside of the coil, it is particularly desirable to set the gas flow velocity inside the wire coil to 1.5 m/sec or more, and the overall heat transfer coefficient at this time is 8 m/sec or more from room temperature.
Average value up to 00℃ is 2.5kcaJL/m2ehr・
It will be about ℃. (Example) In this example, a heat treatment apparatus having the structure shown in FIG. 7 was used, and the wire coil was made of Cr-5US steel and had a wire diameter of 5.5mm.
A coil having a diameter of 5 mm and a coil unit weight of 1 ton was used. This heat treatment apparatus 21 includes a wire coil 2 inside a furnace body 22.
3 is placed with the coil axis direction being in the vertical direction, and a closing plate (lid) 24 is installed at the upper end of the wire rod coil 23, and the wire rod coil 23 is placed at the bottom of the furnace body 22.
A combustion gas supply pipe 25 is provided on the inner diameter side of the combustion gas supply pipe 25, and a combustion gas outlet 26 is provided at the upper part of the furnace body 22, and a combustion gas supply pipe 25 connected to the combustion gas supply pipe 25 is provided at the upper part of the furnace body 22. High-temperature combustion gas (
610°C) passes through the combustion gas feed pipe 25 and enters the inner diameter side of the wire rod coil 23 in the direction of arrow A, and since the closing plate 24 is installed at the upper end of the wire rod coil 23, it enters the inner diameter side of the wire rod coil 23. The high temperature combustion gas that entered the wire coil 2
Forced convection occurs inside the wire coil 23 from the inner diameter side to the outer diameter side of the wire coil 23, and the combustion gas after heating the wire coil 23 by heat transfer due to this forced convection flows out from the combustion gas outlet 26. At this time, the convection velocity of the combustion gas within the wire coil 23 (
The gas flow velocity) is estimated to be about 4 m/see, and the
When the temperature increase rate at a total of 12 locations indicated by reference numerals 1-12 in the figure was investigated, the results were shown in FIG. 8. As shown in Fig. 8, when the hot air temperature is 610°C, the temperature increase rate on the inner diameter side of the coil is indicated by symbols 1, 4, and 7.10, and the coil outer diameter is indicated by symbols 3, 6, and 9.12. Although there is a slight difference in the rate of temperature increase on both sides due to the fact that the combustion gas flows from the inner diameter side to the outer diameter side of the wire coil 23, they are at almost the same level, and after 60 minutes, The temperature on the inner diameter side and the outer diameter side of the wire rod coil 23 is the same, and it is recognized that the heat uniformity is significantly improved, and the temperature increase rate is lower than that of the conventional heating furnace 1 shown in FIG. 9, for example. It was possible to increase it by about 3 to 4 times compared to . Further, as shown in FIG. 8, even when cooling after heating for about 60 minutes, the temperature decreasing rate is not much different between the inner diameter side and the outer diameter side of the wire coil 23, and the wire coil 23
It was possible to significantly reduce variations in structure, properties, etc. between the inner diameter side and the outer diameter side.

【発明の効果】【Effect of the invention】

本発明に係わる縁材コイルの熱処理方法は、加熱部、均
熱部、冷却部の少なくともいずれかをそなえた熱処理炉
を用いて線材コイルの熱処理を行うに際し、高温の加熱
ガス、燃焼ガスないしは還元ガス、中性ガス、冷却ガス
などのガス流を線材コイルの内部で強制対流させて前記
線材コイルに伝熱することにより線材コイルの内外およ
び上下間の温度差を最小に保ちながら加熱・均熱・冷却
する構成とし、また、本発明に係わる線材コイルの熱処
理装置では、加熱部、均熱部、冷却部の少なくともいず
れかをそなえた熱処理装置において、高温の加熱ガス、
燃焼ガスないしは還元ガス、中性ガス、冷却ガスなどの
ガス流を線材コイルの内部で強制対流させて前記線材コ
イルに伝熱するガス流形成手段を備えた構成としたから
、線材コイルに対して加熱、均熱、冷却などの熱処理を
行うに際し、前記線材コイルに対する熱処理をごく短時
間のうちにしかも均一に行うことが可能であり、線材コ
イルの内外ないしは上下での組織や特性のばらつきをな
くすことができるようになるという著しく優れた効果が
もたらされる。
The heat treatment method for edge material coils according to the present invention includes heat treatment of wire rod coils using a heat treatment furnace equipped with at least one of a heating section, a soaking section, and a cooling section. Heat is transferred to the wire coil through forced convection of a gas flow such as gas, neutral gas, cooling gas, etc. inside the wire coil, thereby heating and soaking while minimizing the temperature difference between the inside and outside of the wire coil and between the top and bottom. - In the wire rod coil heat treatment apparatus according to the present invention, the heat treatment apparatus includes at least one of a heating section, a soaking section, and a cooling section.
Since the structure is equipped with a gas flow forming means that causes a gas flow such as combustion gas, reducing gas, neutral gas, cooling gas, etc. to undergo forced convection inside the wire coil to transfer heat to the wire coil, When performing heat treatment such as heating, soaking, and cooling, it is possible to uniformly heat the wire coil in a very short time, and eliminate variations in structure and characteristics between the inside and outside of the wire coil, or between the top and bottom. This has the remarkable effect of making it possible to

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第6図は本発明の各実施態様を示す説明図
、587図は本発明の実施例で用いた熱処理amの構成
を示す説明図、第8図は本発明の実施例で調べた線材コ
イルの各部位における昇ffl速度を例示するグラフ、
第9図は従来の加熱炉の構成を示す説明図である。 10・・・線材コイル、 11・・・ガス吹出口(ガス流形成手段のガス流送給機
構ン 、 12・・・回転台(回転機構)、 13・・・閉塞板(ガス流形成手段)、14・・・ノズ
ル(ガス流形成手段のガス流送給機構)、 5・・・閉塞板(ガス流形成手段) 1・・・熱処理装置、 3・・・線材コイル、 4・・・閉塞板、 5・・・燃焼ガス送給管、 6・・・燃焼ガス流出口。
FIGS. 1 to 6 are explanatory diagrams showing each embodiment of the present invention, FIG. A graph illustrating the rising ffl speed at each part of the wire rod coil,
FIG. 9 is an explanatory diagram showing the configuration of a conventional heating furnace. DESCRIPTION OF SYMBOLS 10... Wire coil, 11... Gas outlet (gas flow feeding mechanism of gas flow forming means), 12... Rotating table (rotating mechanism), 13... Closure plate (gas flow forming means) , 14... Nozzle (gas flow feeding mechanism of gas flow forming means), 5... Closure plate (gas flow forming means) 1... Heat treatment device, 3... Wire rod coil, 4... Closure Plate, 5... Combustion gas feed pipe, 6... Combustion gas outlet.

Claims (10)

【特許請求の範囲】[Claims] (1)加熱部、均熱部、冷却部の少なくともいずれかを
そなえた熱処理炉を用いて線材コイルの熱処理を行うに
際し、高温の加熱ガス、燃焼ガスないしは還元ガス、中
性ガス、冷却ガスなどのガス流を線材コイルの内部で強
制対流させて前記線材コイルに伝熱することにより線材
コイルの内外および上下間の温度差を最小に保ちながら
加熱・均熱・冷却することを特徴とする線材コイルの熱
処理方法。
(1) When heat treating a wire rod coil using a heat treatment furnace equipped with at least one of a heating section, a soaking section, and a cooling section, high-temperature heating gas, combustion gas or reducing gas, neutral gas, cooling gas, etc. A wire rod characterized in that the wire rod is heated, soaked, and cooled while minimizing the temperature difference between the inside and outside and between the upper and lower sides of the wire rod coil by forcing a gas flow inside the wire rod coil to conduct heat to the wire rod coil. Coil heat treatment method.
(2)強制対流させる線材コイル内のガス流速が1.5
m/sec以上である請求項第(1)項に記載の線材コ
イルの熱処理方法。
(2) The gas flow rate in the wire coil for forced convection is 1.5
The method for heat treating a wire coil according to claim 1, wherein the heat treatment rate is at least m/sec.
(3)線材コイルの外径側から内径側に 向けてガス流を線材コイルの内部で強制対 流させて前記線材コイルに伝熱する請求項第(1)項ま
たは第(2)項に記載の線材コイルの熱処理方法。
(3) The method according to claim 1 or 2, wherein heat is transferred to the wire coil by forcing a gas flow inside the wire coil from the outer diameter side to the inner diameter side of the wire coil. Heat treatment method for wire coils.
(4)コイル軸を中心にして回転する線材コイルの外径
側から内径側に向けてガス流を線材コイルの内部で強制
対流させて前記線材コイルに伝熱する請求項第(1)項
または第(2)項に記載の線材コイルの熱処理方法。
(4) Heat is transferred to the wire coil by forcing a gas flow inside the wire coil from the outer diameter side to the inner diameter side of the wire coil rotating around the coil axis, or The method for heat treating a wire coil according to item (2).
(5)線材コイルのコイル軸方向の片端を閉塞し且つ他
端よりガス流を送給して線材コイルの内径側から外径側
に向けてガス流を線材コイルの内部で強制対流させて前
記線材コイルに伝熱する請求項第(1)項または第(2
)項に記載の線材コイルの熱処理方法。
(5) Closing one end of the wire coil in the coil axial direction and supplying a gas flow from the other end to force convection inside the wire coil from the inner diameter side to the outer diameter side of the wire coil. Claim (1) or (2) in which heat is transferred to the wire coil
) The method for heat treatment of a wire coil described in item 1.
(6)線材コイルのコイル軸方向の片端を閉塞し且つ他
端よりノズルを装入して前記ノズルよりガス流を送給し
て線材コイルの内径側から外径側に向けてガス流を線材
コイルの内部で強制対流させて前記線材コイルに伝熱す
る請求項第(1)項または第(2)項に記載の線材コイ
ルの熱処理方法。
(6) Close one end of the wire coil in the coil axial direction, insert a nozzle from the other end, and send a gas flow from the nozzle to direct the gas flow from the inner diameter side to the outer diameter side of the wire rod coil. The method for heat treatment of a wire coil according to claim 1 or 2, wherein heat is transferred to the wire coil by forced convection inside the coil.
(7)線材コイルのコイル軸方向の両側からガス流を送
給して線材コイルの内径側から外径側に向けてガス流を
線材コイルの内部で強制対流させて前記線材コイルに伝
熱する請求項第(1)項または第(2)項に記載の線材
コイルの熱処理方法。
(7) A gas flow is sent from both sides of the wire coil in the coil axial direction, and the gas flow is forced to convect inside the wire coil from the inner diameter side to the outer diameter side, thereby transferring heat to the wire coil. A method of heat treating a wire coil according to claim (1) or (2).
(8)加熱部、均熱部、冷却部の少なくともいずれかを
そなえた熱処理装置において、高温の加熱ガス、燃焼ガ
スないしは還元ガス、中性ガス、冷却ガスなどのガス流
を線材コイルの内部で強制対流させて前記線材コイルに
伝熱するガス流形成手段を備えたことを特徴とする線材
コイルの熱処理装置。
(8) In a heat treatment device equipped with at least one of a heating section, a soaking section, and a cooling section, a gas flow of high temperature heating gas, combustion gas or reducing gas, neutral gas, cooling gas, etc. is carried out inside the wire coil. A heat treatment apparatus for a wire coil, comprising a gas flow forming means for transferring heat to the wire coil through forced convection.
(9)ガス流形成手段は、ガス流を線材コイルに送給し
て当該ガス流を線材コイルの内部で強制対流させて前記
線材コイルに伝熱するガス流送給機構を備えている請求
項第(8)項に記載の線材コイルの熱処理装置。
(9) The gas flow forming means includes a gas flow feeding mechanism that feeds the gas flow to the wire coil and causes forced convection of the gas flow inside the wire coil to transfer heat to the wire coil. The wire coil heat treatment apparatus according to item (8).
(10)ガス流形成手段は、ガス流を線材コイルから吸
引して当該ガス流を線材コイルの内部で強制対流させて
前記線材コイルに伝熱するガス流吸引機構を備えている
請求項第(8)項または第(9)項に記載の線材コイル
の熱処理装置。
(10) The gas flow forming means includes a gas flow suction mechanism that sucks the gas flow from the wire coil and causes forced convection of the gas flow inside the wire coil to transfer heat to the wire coil. The wire coil heat treatment apparatus according to item 8) or item (9).
JP4048190A 1990-02-21 1990-02-21 Heat treatment method and heat treatment device for wire coil Expired - Lifetime JP2913727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4048190A JP2913727B2 (en) 1990-02-21 1990-02-21 Heat treatment method and heat treatment device for wire coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4048190A JP2913727B2 (en) 1990-02-21 1990-02-21 Heat treatment method and heat treatment device for wire coil

Publications (2)

Publication Number Publication Date
JPH03243724A true JPH03243724A (en) 1991-10-30
JP2913727B2 JP2913727B2 (en) 1999-06-28

Family

ID=12581802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4048190A Expired - Lifetime JP2913727B2 (en) 1990-02-21 1990-02-21 Heat treatment method and heat treatment device for wire coil

Country Status (1)

Country Link
JP (1) JP2913727B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016372A (en) * 2018-07-24 2020-01-30 大同特殊鋼株式会社 Continuous type atmosphere heat treatment furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020016372A (en) * 2018-07-24 2020-01-30 大同特殊鋼株式会社 Continuous type atmosphere heat treatment furnace

Also Published As

Publication number Publication date
JP2913727B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
JP4458107B2 (en) Vacuum carburizing method and vacuum carburizing apparatus
US1938306A (en) Annealing furnace
US3109877A (en) Apparatus for modifying the composition of strip metal
CN102297583A (en) Steam oxidation well furnace
CN202177295U (en) Steam oxidizing pit furnace
JPH03243724A (en) Heat treatment and heat treating device for wire coil
US2965368A (en) Wire treating apparatus
US2199472A (en) Method and apparatus for annealing strip
JP4934828B2 (en) Nitriding furnace and nitriding method
JPH1081913A (en) Isothermal quenching apparatus by gas cooling
US2602653A (en) Bright strip annealing apparatus
JP2870091B2 (en) Heat treatment method and heat treatment apparatus for small parts
JP7307589B2 (en) heat treatment furnace
JP2640398B2 (en) Cooling control method of steel pipe in roller hearth heat treatment furnace
US1957932A (en) Method of and furnace for heat treatment
JP4340849B2 (en) Cooling method and cooling chamber in tunnel-type continuous furnace
KR20180069321A (en) Aparatus for heat treating and rolling device having the same
JPS6320287B2 (en)
JPH024780Y2 (en)
JP2001263957A (en) Vacuum furnace
JPH0437880Y2 (en)
JPS63266019A (en) Method of non-oxidizing induction heat treatment for metal material
JPS63100124A (en) Heat treatment device
JPS61253322A (en) Induction heating and annealing device for iron core of electrical apparatus
JPS61517A (en) Vacuum heat-treating apparatus using fluidized-bed cooling device