JP2656839B2 - Vacuum heat treatment furnace - Google Patents

Vacuum heat treatment furnace

Info

Publication number
JP2656839B2
JP2656839B2 JP1326498A JP32649889A JP2656839B2 JP 2656839 B2 JP2656839 B2 JP 2656839B2 JP 1326498 A JP1326498 A JP 1326498A JP 32649889 A JP32649889 A JP 32649889A JP 2656839 B2 JP2656839 B2 JP 2656839B2
Authority
JP
Japan
Prior art keywords
processing chamber
gas
flow
flow path
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1326498A
Other languages
Japanese (ja)
Other versions
JPH03188214A (en
Inventor
保之 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO KOBERUKO TSUURU KK
Original Assignee
SHINKO KOBERUKO TSUURU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO KOBERUKO TSUURU KK filed Critical SHINKO KOBERUKO TSUURU KK
Priority to JP1326498A priority Critical patent/JP2656839B2/en
Publication of JPH03188214A publication Critical patent/JPH03188214A/en
Application granted granted Critical
Publication of JP2656839B2 publication Critical patent/JP2656839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Furnace Details (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高速度工具鋼や合金工具鋼等の高合金鋼から
なる製品の焼入処理等に用いられる真空熱処理炉に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to a vacuum heat treatment furnace used for quenching a product made of high alloy steel such as high speed tool steel or alloy tool steel.

〔従来の技術〕[Conventional technology]

周知のように、真空熱処理炉には、その加熱方式から
大別すると、内面側に発熱体を配した断熱層からなる処
理室を真空タンク内に設け、被処理品を直接的に加熱す
る内熱式のものと、炉内に配した真空処理室の外側に熱
源を設け、被処理品を間接的に加熱する外熱式のものと
がある。
As is well known, a vacuum heat treatment furnace can be roughly classified from its heating method by providing a processing chamber comprising a heat insulating layer in which a heating element is disposed on an inner surface side in a vacuum tank, and directly heating an article to be processed. There are a thermal type and an external heat type in which a heat source is provided outside the vacuum processing chamber disposed in the furnace to indirectly heat the article to be processed.

そして、これら真空熱処理炉における加熱後の被処理
品の冷却には、外部から処理室内に導入された冷媒ガス
を用いて冷却する構成が最も広く採用されている。
In order to cool an object to be processed after heating in these vacuum heat treatment furnaces, a configuration in which cooling is performed by using a refrigerant gas introduced into a processing chamber from the outside is most widely adopted.

一方、高速度鋼や合金工具鋼等のように1000℃を超え
る焼入温度が必要な高合金鋼からなる製品の焼入処理に
は、真空下や不活性ガス雰囲気下で加熱できて脱炭や酸
化による被処理品の特性の劣化の懸念がなく、かつ、10
00℃を超える高温が容易に得られる内熱式の真空熱処理
炉が最も一般的に用いられている。
On the other hand, for quenching of high alloy steel products that require a quenching temperature exceeding 1000 ° C, such as high-speed steel and alloy tool steel, decarburization can be achieved by heating under vacuum or an inert gas atmosphere. There is no concern about deterioration of the properties of the product due to oxidation or oxidation.
An internal heat type vacuum heat treatment furnace capable of easily obtaining a high temperature exceeding 00 ° C. is most commonly used.

そして、その焼入処理は、通常、被処理品を真空下で
所定の高温度に加熱した後、低温な不活性ガスを冷媒と
して処理室内に導入し、この冷媒ガスとの熱交換により
被処理品を急冷することでなされるが、この際、被処理
品に割れや歪みを生じさせることなく、所望の焼入硬度
を得るに十分な冷却速度をもって冷却して、その焼入処
理を確実なるものとするには、単に冷媒ガスを処理室内
に導入するだけでなく、この冷媒ガスを、被処理品の全
表面に均等に接触して急速に熱交換し得るように流動さ
せることが必要となる。
In the quenching process, usually, after a workpiece is heated to a predetermined high temperature under vacuum, a low-temperature inert gas is introduced as a refrigerant into the processing chamber, and the quenching is performed by heat exchange with the refrigerant gas. This is done by quenching the product, but at this time, without causing cracks or distortion in the workpiece, cooling at a cooling rate sufficient to obtain the desired quenching hardness, and the quenching process is ensured. In order to achieve this, it is necessary not only to introduce the refrigerant gas into the processing chamber but also to make the refrigerant gas flow so that it can uniformly contact the entire surface of the article to be processed and rapidly exchange heat. Become.

そこで、これら焼入処理に用いられる真空熱処理炉で
は、従来より、炉内に導入した冷媒ガスのガス流の制御
に種々の検討が加えられ、例えば、第5図に示すよう
に、真空タンク(51)内に、発熱体(53)を内包した断
熱層(52)からなる処理室(54)を配設すると共に、こ
の処理室(54)の上下部に上下ガス扉(55)(56)を開
閉可能に設ける一方、この処理室(54)の上部に冷却コ
イル(57)を配設して、加熱後の冷却時に、処理室(5
4)の上下ガス扉(55)(56)を開き、外部から導入さ
れた冷媒ガスを、炉内頂部に設けたフアン(58)によっ
て、処理室(54)内を上昇し、上部の冷却コイル(57)
で冷却された後、その外側を経て処理室(54)下部に還
流する強制循環流とすることで、処理室(54)内に冷媒
ガスの上昇流を形成して、加熱された被処理品の均等・
急速冷却を図る構成とされた真空熱処理炉や、第6図に
示すように、真空タンク(61)の内に、縦軸方向に整列
させて周設した管状の発熱体(63)を内包した断熱層
(62)からなる処理室(64)を設けると共に、この処理
室(64)の上下部に上下ガス流通口(65)(66)を開閉
可能に設ける一方、この処理室(64)の外側に熱交換器
(67)を周設し、かつ、管状の発熱体(63)に処理室
(64)の中心部に向けて開口する複数のガス噴射孔(6
8)を設けると共に、これら発熱体(63)を処理室(6
4)外側に連通する冷媒ガス分配装置(69)に連結させ
て、加熱後の冷却時に、処理室(64)の上下ガス扉(6
5)(66)を開き、外部から導入された冷媒ガスを、炉
内頂部に設けたガス循環手段(70)によって、分配装置
(69)を介して各発熱体(63)のガス噴射孔(68)か
ら、処理室(64)内の被処理品の外周面に向けて吹き付
けると共に、この冷媒ガスを処理室(64)内から外側の
熱交換器(67)に案内して強制的に循環・冷却させるこ
とで、加熱された被処理品の均等・急速冷却を図る構成
とされた真空熱処理炉(特開平1−142018号公報)等が
提案され、かつ実用に供されている。
Therefore, in the vacuum heat treatment furnace used for the quenching process, various studies have been conventionally made on the control of the gas flow of the refrigerant gas introduced into the furnace. For example, as shown in FIG. A processing chamber (54) comprising a heat insulating layer (52) containing a heating element (53) is provided in the processing chamber (51), and upper and lower gas doors (55) and (56) are provided above and below the processing chamber (54). The cooling coil (57) is disposed above the processing chamber (54) so as to be openable and closable.
4) The upper and lower gas doors (55) and (56) are opened, and the refrigerant gas introduced from the outside is raised in the processing chamber (54) by the fan (58) provided at the top of the furnace, and the upper cooling coil (57)
After being cooled in the processing chamber (54), a forced circulating flow is returned to the lower part of the processing chamber (54) through the outside thereof, thereby forming an upward flow of the refrigerant gas in the processing chamber (54) and heating the processing target. Equality of
As shown in FIG. 6, a vacuum heat treatment furnace configured to achieve rapid cooling, and a tubular heating element (63) provided in a vacuum tank (61), which is circumferentially arranged in a longitudinal direction, are included. A processing chamber (64) comprising a heat insulating layer (62) is provided, and upper and lower gas flow ports (65) and (66) are provided in the upper and lower portions of the processing chamber (64) so as to be openable and closable. A heat exchanger (67) is provided around the outside, and a plurality of gas injection holes (6) are opened in the tubular heating element (63) toward the center of the processing chamber (64).
8), and these heating elements (63)
4) By connecting to the refrigerant gas distribution device (69) communicating with the outside, the upper and lower gas doors (6
5) Open (66) and circulate the refrigerant gas introduced from the outside by gas circulation means (70) provided at the top of the furnace through the distributor (69) through the gas injection holes (63) of each heating element (63). 68), the refrigerant gas is sprayed toward the outer peripheral surface of the article in the processing chamber (64), and the refrigerant gas is guided from the processing chamber (64) to the outer heat exchanger (67) and forcedly circulated. A vacuum heat treatment furnace (Japanese Patent Laid-Open Publication No. 1-142018) and the like, which are configured to cool and evenly cool a heated article to be processed, has been proposed and put to practical use.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、上記従来の真空熱処理炉には、それぞれ以下
の問題点がある。
However, each of the above-mentioned conventional vacuum heat treatment furnaces has the following problems.

例えば、ブローチなどのような長尺な被処理品を、曲
がりの発生を防止するために吊下して焼入処理する場
合、上記従来の前者の真空熱処理炉では、処理室内を上
昇する冷媒ガスが、加熱された被処理品との接触・熱交
換により昇温して上方にいくほどその冷却能を低下させ
るため、すなわち処理室内の上下でその冷却能に差が生
じるため、被処理品が長尺であるほど、その上下で大き
な焼入硬度差が生じ易くなるという問題点がある。
For example, when a long workpiece to be processed such as a broach is suspended and quenched in order to prevent the occurrence of bending, in the former vacuum heat treatment furnace, the refrigerant gas rising in the processing chamber is used. However, as the temperature rises due to contact and heat exchange with the heated article to be processed and the temperature increases, the cooling capacity decreases as the temperature increases, that is, a difference occurs in the cooling capacity at the top and bottom of the processing chamber. There is a problem that as the length is longer, a larger difference in quenching hardness is more likely to occur between the upper and lower sides.

一方、上記従来の後者の真空熱処理炉では、低温な冷
媒ガスを、発熱体のガス噴射孔を介して外周側から加熱
された被処理品に向けて吹き付けるので、上記前者の場
合のように上下で冷却能に差を生じることがなく、被処
理品を単一に吊下して焼入処理する場合には、その全面
を均等に急速冷却し得るものの、小径で長尺な被処理品
を複数吊下して焼入処理する場合には、これらの内の外
側に位置して吊下されたものが早く、内側に位置して吊
下されたものが遅く冷却されるという不具合が生じる。
しかも、外側に位置した被処理品も、発熱体に対向する
面と反対側の面とで不均等に冷却されるので、その周方
向で焼入硬度に差が生じるに加え、曲がりが発生し易
い。また、外側の被処理品に衝突した冷媒ガスが乱流を
形成しながら内側の被処理品に接触するので、内側の被
処理品にも焼入硬度むらが生じ易く、複数の被処理品を
均等な硬度分布をもつものに焼入処理し難いという問題
点がある。
On the other hand, in the latter conventional vacuum heat treatment furnace, a low-temperature refrigerant gas is blown from the outer peripheral side toward the heated article to be processed through the gas injection holes of the heating element. When the quenching process is performed by suspending a single workpiece without causing a difference in cooling capacity, the entire surface can be rapidly and uniformly cooled. In the case where the quenching process is performed by suspending a plurality of hangers, there is a problem in that the hanged one positioned outside is cooled quickly, and the hanged one positioned inside is cooled slowly.
In addition, the article to be treated located on the outside is also cooled unevenly between the surface facing the heating element and the surface on the opposite side, so that in addition to the difference in quenching hardness in the circumferential direction, bending occurs. easy. In addition, since the refrigerant gas that collides with the outer processed object forms a turbulent flow and comes into contact with the inner processed object, quenching hardness unevenness is also likely to occur on the inner processed object, and a plurality of processed objects are required. One having a uniform hardness distribution has a problem that quenching is difficult.

また、これら従来の真空熱処理炉は、焼入時に導入し
た冷媒ガスを炉内で循環・冷却させる構成が採られ、そ
の炉内に冷媒ガスを循環させるためのフアンや冷却用の
熱交換器などが配設されているため、その内部構造が複
雑なものとなり、保守点検および分解整備に、煩雑な手
順と多くの工数を要するという欠点がある。
In addition, these conventional vacuum heat treatment furnaces are configured to circulate and cool the refrigerant gas introduced during quenching in the furnace, such as a fan for circulating the refrigerant gas in the furnace and a heat exchanger for cooling. Is disposed, the internal structure thereof is complicated, and there is a disadvantage that a complicated procedure and many man-hours are required for maintenance and inspection and disassembly and maintenance.

本発明は上記従来技術の問題点に鑑み、加熱後の冷却
時に導入する冷媒ガスの流れを、被処理品の形状やセッ
ト状態に最も適するものに設定ないしは容易に変更し
得、もって、加熱された被処理品を均等に急速冷却し得
て、その焼入処理を確実なものとして製品品質を高める
ことができ、しかも、内部構造が簡易でその保守点検・
整備が容易な真空熱処理炉の提供を目的とするものであ
る。
The present invention has been made in view of the above-mentioned problems of the related art, and it is possible to set or easily change the flow of the refrigerant gas introduced at the time of cooling after heating to the one most suitable for the shape and the set state of the article to be processed, and thus the heating is performed. The product can be cooled rapidly and evenly, the quenching process can be assured, and the product quality can be improved.
The purpose is to provide a vacuum heat treatment furnace that is easy to maintain.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するために、本発明は以下の構成とさ
れている。すなわち、本発明に係る真空熱処理炉は、真
空タンクと、該真空タンク内に配設され、上下部に開閉
可能なガス流通口を設けた断熱層からなる筒状の処理室
と、真空タンク内壁と処理室の断熱層外壁との間に配設
された流路筒と、流路筒と真空タンク内壁および流路筒
と処理室の断熱層外壁との間のそれぞれに設けられたガ
ス流通可能な間隙と、処理室の内周上に周設された発熱
体とを備えた真空熱処理炉であって、前記処理室の断熱
層を、その層内にガス流通間隙を設けた二重構成に形成
すると共に、該断熱層の内側壁に、層内のガス流通間隙
と処理室とを連通する複数の噴射ノズルを設け、一方、
前記処理室と流路筒との間の上下部のそれぞれに、前記
処理室と流路筒との間のガス流通可能な間隙と前記真空
タンク内壁と流路筒との間のガス流通可能な間隙を交互
に開閉し得るガス流路切替弁を設け、かつ、前記真空タ
ンクに、前記処理室と流路筒との間の間隙に連通させた
第一ガス供給管と、前記処理室の断熱層内のガス流通間
隙に連通させた第二ガス供給管と、前記真空タンク内壁
と流路筒との間の間隙に連通させたガス排出管とを設け
たものである。
In order to achieve the above object, the present invention is configured as follows. That is, the vacuum heat treatment furnace according to the present invention comprises: a vacuum tank; a cylindrical processing chamber including a heat insulating layer provided in the vacuum tank and provided with gas flow ports that can be opened and closed at upper and lower portions; And a flow path cylinder disposed between the flow path cylinder and the vacuum tank inner wall and between the flow path cylinder and the heat insulation layer outer wall of the processing chamber. And a heat treatment element provided around the inner periphery of the processing chamber, wherein the heat insulating layer of the processing chamber has a double configuration in which a gas flow gap is provided in the layer. While forming, on the inner side wall of the heat insulating layer, a plurality of injection nozzles that communicate the gas flow gap in the layer and the processing chamber are provided,
In each of the upper and lower portions between the processing chamber and the flow path cylinder, a gas permeable gap between the processing chamber and the flow path cylinder, and a gas flow between the vacuum tank inner wall and the flow path cylinder A first gas supply pipe provided with a gas flow path switching valve capable of alternately opening and closing the gap and communicating with the vacuum tank in a gap between the processing chamber and the flow tube; A second gas supply pipe is provided in communication with a gas flow gap in the layer, and a gas discharge pipe is provided in communication with a gap between the inner wall of the vacuum tank and the channel tube.

〔作用〕[Action]

上記構成を具備する本発明に係る真空熱処理炉におい
ては、加熱後の冷却時に、冷媒ガス供給源からの冷媒ガ
スを炉内に導入して加熱された被処理品を冷却するに際
し、この冷媒ガスを、第一ガス供給管を介して処理室と
流路筒との間の間隙に導入すると共に、上部のガス流路
切替弁を作動させて、処理室と流路筒との間の間隙の上
端部をガス流通可能とする一方、流路筒上端と真空タン
ク内壁との間の間隙のガス流通を閉塞させ、同時に下部
のガス流路切替弁を作動させて、処理室と流路筒との間
の間隙の下端部のガス流通を閉塞させる一方、流路筒上
端と真空タンク内壁との間の間隙をガス流通可能とし、
合わせて処理室の上下部のガス流通口を開くことで、炉
内に、第一ガス供給管を介して流入し、処理室と流路筒
との間の間隙を経て上方に導かれ、処理室の上部ガス流
通口から流入し、この処理室内の加熱された被処理品と
接触・熱交換しながら流下して、その下部ガス流通口か
ら流出し、流路筒下端と真空タンク内壁との間の間隙お
よび該流路筒と真空タンク内壁との間の間隙を経て、ガ
ス排出管から炉外に排出される冷媒ガス流を形成するこ
とができる。
In the vacuum heat treatment furnace according to the present invention having the above-described configuration, at the time of cooling after heating, when the refrigerant gas from the refrigerant gas supply source is introduced into the furnace to cool the heated workpiece, the refrigerant gas Is introduced into the gap between the processing chamber and the flow path cylinder via the first gas supply pipe, and the upper gas flow path switching valve is actuated to close the gap between the processing chamber and the flow path cylinder. While the upper end portion allows gas flow, the gas flow in the gap between the upper end of the flow path cylinder and the inner wall of the vacuum tank is closed, and at the same time, the lower gas flow path switching valve is operated, so that the processing chamber and the flow path cylinder While closing the gas flow at the lower end of the gap between, the gas flow through the gap between the upper end of the flow path cylinder and the inner wall of the vacuum tank,
In addition, by opening the gas flow openings at the upper and lower portions of the processing chamber, the gas flows into the furnace through the first gas supply pipe, and is guided upward through the gap between the processing chamber and the flow path tube, and the processing is performed. The gas flows in from the upper gas flow port of the chamber, flows down while contacting and exchanging heat with the heated article to be processed in the processing chamber, and flows out of the lower gas flow port. A coolant gas flow discharged from the gas discharge pipe to the outside of the furnace can be formed through the gap between the flow path cylinder and the inner wall of the vacuum tank.

また、上下部のガス流路切替弁それぞれを上記と逆に
作動させることで、この冷媒ガスを、処理室の下部ガス
流通口から流入させて上部ガス流通口から流出させ、こ
の処理室内に、加熱された被処理品と接触・熱交換しな
がら上昇する冷媒ガスの上昇流を形成することができ、
また、第一ガス供給管を介する冷媒ガスの導入を続けな
がら、上下部のガス流路切替弁それぞれを任意時点で逆
に作動させることで、処理室内における冷媒ガス流の方
向を切替え、この処理室内に、上下方向に交番する冷媒
ガス流を形成することができる。
Further, by operating the upper and lower gas flow switching valves in the opposite manner to the above, the refrigerant gas flows in from the lower gas flow port of the processing chamber and flows out of the upper gas flow port, and into the processing chamber, It is possible to form an ascending flow of refrigerant gas that rises while contacting and exchanging heat with the heated workpiece,
Further, while continuing to introduce the refrigerant gas through the first gas supply pipe, the direction of the refrigerant gas flow in the processing chamber is switched by operating the upper and lower gas flow path switching valves in reverse at any time. A refrigerant gas flow that alternates in the vertical direction can be formed in the room.

また、冷媒ガス供給源からの冷媒ガスを、第二ガス供
給管を介して処理室の断熱層内のガス流通間隙に導入す
ると共に、上下部のガス流路切替弁を作動させて、処理
室と流路筒との間の間隙の上下端部のガス流通を閉塞
し、合わせて処理室の上下部のガス流通口を開くこと
で、炉内に、第二ガス供給管を介して流入し、処理室の
断熱層内のガス流通間隙からその内側壁に設けられた複
数の噴射ノズルを介して該処理室内に噴射され、該処理
室内で加熱された被処理品に吹き付けられて接触・熱交
換しながら上下方向に分流して上下部ガス流通口から流
出し、流路筒上下端と真空タンク内壁との間の上下間隙
および該流路筒と真空タンク内壁との間の間隙を経て、
ガス排出管から炉外に排出される冷媒ガス流を形成する
ことができる。
In addition, the refrigerant gas from the refrigerant gas supply source is introduced into the gas flow gap in the heat insulating layer of the processing chamber through the second gas supply pipe, and the upper and lower gas flow path switching valves are operated to operate the processing chamber. By closing the gas flow at the upper and lower ends of the gap between the and the flow path cylinder, and by opening the gas flow ports at the upper and lower parts of the processing chamber, the gas flows into the furnace through the second gas supply pipe. The gas is injected into the processing chamber from a gas flow gap in the heat insulating layer of the processing chamber through a plurality of injection nozzles provided on an inner wall of the processing chamber, and is sprayed on the workpiece heated in the processing chamber to contact / heat. While being exchanged, it is divided in the vertical direction and flows out from the upper and lower gas flow ports, through the upper and lower gaps between the upper and lower ends of the flow path cylinder and the vacuum tank inner wall and the gap between the flow path cylinder and the vacuum tank inner wall,
A refrigerant gas stream discharged from the gas discharge pipe to the outside of the furnace can be formed.

本発明に係る真空処理炉においては、上述したよう
に、上下部のガス流路切替弁の切替作動により、処理室
内における冷媒ガス流れを、下降流、上昇流及び噴射流
の単独の流れ、あるいは下降流と上昇流など所望の時間
間隙で切替えて流す流れ等とすることができるので、加
熱された被処理品の形状、大きさ及び処理室内でのセッ
ト状態に対応した冷媒ガスの流れが得られ、加熱された
被処理品を均一かつ急速に冷却し得ると共に、奪った熱
を効率良く系外に排出してその冷却効果をより確実なも
のとすることができる。
In the vacuum processing furnace according to the present invention, as described above, the switching operation of the upper and lower gas flow path switching valves causes the refrigerant gas flow in the processing chamber to flow downward, a single flow of the upward flow and the injection flow, or Since the flow can be switched at a desired time interval such as a downward flow and an upward flow, the flow of the refrigerant gas corresponding to the shape and size of the heated workpiece and the set state in the processing chamber can be obtained. As a result, the heated article to be processed can be cooled uniformly and rapidly, and the heat taken out can be efficiently discharged to the outside of the system, so that the cooling effect can be further ensured.

なお、処理室の断熱層の内側壁に設けられる噴射ノズ
ルは、上下方向および内周方向に均等に配設され、その
先端は発熱体を越える処理室内側に臨ませることが、被
処理品の均等冷却と、冷媒体ガスの発熱体との衝突によ
る乱流形成の防止を図るに望ましい。
In addition, the injection nozzles provided on the inner wall of the heat insulating layer of the processing chamber are arranged evenly in the vertical direction and the inner circumferential direction, and the tip thereof faces the processing chamber side beyond the heating element, so that the processing object It is desirable to achieve uniform cooling and to prevent the formation of turbulence due to collision of the refrigerant gas with the heating element.

〔実施例〕〔Example〕

以下に、本発明の実施例を図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本実施例の真空熱処理炉の概要を示す正断面
図である。
FIG. 1 is a front sectional view showing the outline of the vacuum heat treatment furnace of the present embodiment.

第1図において、(1)は真空タンクであって、該真
空タンク(1)は、筒状胴部を有する縦型の鋼製圧力容
器であって、ここでは図示を省略した真空ポンプに連通
されている。
In FIG. 1, (1) is a vacuum tank, and the vacuum tank (1) is a vertical steel pressure vessel having a cylindrical body, and is connected to a vacuum pump not shown here. Have been.

(2)は断熱層であって、該断熱層(2)は、ガラス
繊維等の断熱材からなる筒状のもので、真空タンク
(1)内に間隙を隔てて配設され、その内周面上にヒー
タ(3)を周設し、その内に被処理品を収容する処理室
(4)を形成するものである。また、該断熱層(2)
は、筒状の内側断熱層(2a)と、該内側断熱層(2a)を
ガス流通可能な間隙を隔てて囲撓する筒状の外側断熱層
(2b)と、内外側断熱層(2a)(2b)の上下端部に配さ
れ、これらの間の間隙の上下端部を閉塞する環状の上下
断熱層(2c)(2d)とからなる。
(2) is a heat insulating layer, and the heat insulating layer (2) is a cylindrical member made of a heat insulating material such as glass fiber, and is disposed in the vacuum tank (1) with a gap therebetween. A heater (3) is provided on the surface, and a processing chamber (4) for accommodating a processing object is formed therein. The heat insulation layer (2)
Is a cylindrical inner heat insulating layer (2a), a cylindrical outer heat insulating layer (2b) that deflects the inner heat insulating layer (2a) with a gap through which gas can flow, and an inner and outer heat insulating layer (2a). (2b) annular upper and lower heat insulating layers (2c) and (2d) disposed at the upper and lower ends, and closing the upper and lower ends of the gap between them.

ここで、断熱層(2)の上下断熱層(2c)(2d)の内
孔は、処理室(2)内への上下ガス流通口(11)(12)
を形成し、これら上下ガス流通口(11)(12)には、上
下断熱蓋(5)(6)が嵌脱自由に配されてある。ま
た、上下断熱蓋(5)(6)は、真空タンク(1)の上
部と下部に設けられた上下シリンダ(7)(8)の出力
軸にそれぞれ連結されてあり、これら上下シリンダ
(7)(8)の作動にて開閉するものとされている。一
方、断熱層(2)の内周面上にヒータ(3)は、棒状の
グラファイトからなり、等間隔を隔てて縦方向に整列さ
せて周設してあり、ここでは図示を省略した外部の通電
および入力制御手段に接続されている。
Here, the inner holes of the upper and lower heat insulating layers (2c) and (2d) of the heat insulating layer (2) are provided with upper and lower gas flow ports (11) and (12) into the processing chamber (2).
The upper and lower heat-dissipating lids (5) and (6) are disposed freely in these upper and lower gas flow ports (11) and (12). The upper and lower heat insulating lids (5) and (6) are connected to the output shafts of upper and lower cylinders (7) and (8) provided at the upper and lower portions of the vacuum tank (1), respectively. It is opened and closed by the operation of (8). On the other hand, on the inner peripheral surface of the heat insulating layer (2), the heater (3) is made of rod-like graphite, and is circumferentially arranged at equal intervals in the vertical direction. It is connected to energization and input control means.

(9)はノズルであって、該ノズル(9)は、管状の
モリブデン材からなり、その基端部を断熱層(2)の内
側断熱層(2a)を貫通して該内側断熱層(2a)に支持さ
れ、先端部をヒータ(3)の間隙を経て該ヒータ(3)
を越える処理室(4)内に臨ませ、処理室(4)の上下
および周方向に等ピッチに複数配設されてある。
The nozzle (9) is made of a tubular molybdenum material, and its base end penetrates through the inner heat insulating layer (2a) of the heat insulating layer (2). ), And the front end of the heater (3) passes through the gap of the heater (3).
And a plurality of processing chambers (4) are arranged at equal pitches in the vertical and circumferential directions of the processing chamber (4).

(10)は流路筒であって、該流路筒(10)は、薄肉の
非磁性ステンレス鋼板からなる筒状のもので、断熱層
(2)を囲撓し、真空タンク(1)内壁および断熱層
(2)外壁との間それぞれにガス流通可能な間隙を隔て
て配設されている。
(10) is a flow path tube, and the flow path tube (10) is a cylindrical shape made of a thin nonmagnetic stainless steel plate, which surrounds the heat insulating layer (2) and has an inner wall of a vacuum tank (1). The heat-insulating layer (2) is disposed with a gap through which gas can flow between the outer wall and the outer wall.

(13)と(14)は上下部のガス流路切替弁であって、
これら上下部のガス流路切替弁(13)(14)は、磁性ス
テンレス鋼からなる環状のもので、断熱層(2)と流路
筒(10)との間の上下部の環状間隙それぞれに嵌脱自由
に配されてあり、真空タンク(1)の上下内壁部に設け
られた上下電磁リング(15)(16)への入電により作動
して、断熱層(2)と流路筒(10)との間の上下部の環
状間隙と、流路筒(10)の上下端と真空タンク(1)内
壁との間の間隙とにおけるガス流通を択一に閉塞するも
のとされている。
(13) and (14) are upper and lower gas flow path switching valves,
These upper and lower gas flow path switching valves (13) and (14) are annular ones made of magnetic stainless steel, and are provided in upper and lower annular gaps between the heat insulating layer (2) and the flow path cylinder (10). The heat insulating layer (2) and the flow tube (10) are arranged so that they can be freely inserted and removed, and are activated by inputting power to upper and lower electromagnetic rings (15) and (16) provided on the upper and lower inner walls of the vacuum tank (1). ) And the gap between the upper and lower ends of the flow tube (10) and the inner wall of the vacuum tank (1) are selectively closed.

(17)は第一ガス供給管であって、該第一ガス供給管
(17)は、断熱層(2)と流路筒(10)との間の間隙に
連通させて、真空タンク(1)胴部の上下方向の略中央
部に設けられてある。
(17) is a first gas supply pipe. The first gas supply pipe (17) communicates with a gap between the heat insulation layer (2) and the flow path tube (10) to form a vacuum tank (1). ) It is provided substantially at the center in the vertical direction of the trunk.

(18)は第二ガス供給管であって、該第二ガス供給管
(18)は、断熱層(2)の内外側断熱層(2a)(2b)間
の間隙に連通させて、真空タンク(1)胴部の、第一ガ
ス供給管(17)の配設位置と周方向に位置を変えた、上
下方向の略中央部に設けられている。
(18) is a second gas supply pipe. The second gas supply pipe (18) communicates with a gap between the inner and outer heat insulating layers (2a) and (2b) of the heat insulating layer (2) to form a vacuum tank. (1) It is provided at a substantially central portion in the up-down direction of the body, which is different from the position of the first gas supply pipe (17) in the circumferential direction.

また、これら第一ガス供給管(17)と第二ガス供給管
(18)とは、開閉弁(21)(22)を備えた分岐管(20)
を介して、ここでは図示を省略した冷媒ガスとしての窒
素ガス供給手段に連結されている。
The first gas supply pipe (17) and the second gas supply pipe (18) are connected to a branch pipe (20) having on-off valves (21) and (22).
Here, it is connected to a nitrogen gas supply means as a refrigerant gas not shown here.

(19)はガス排出管であって、該ガス排出管(19)
は、真空タンク(1)内壁と流路筒(10)との間の間隙
に連通させて、真空タンク(1)胴部の、反ガス供給管
(17)(18)側の上下方向の略中央部に設けられてあ
る。また、このガス排出管(19)は、開閉弁(24)を備
えた連結管(23)を介して、ここでは図示を省略した熱
交換器に連通されてある。なお、この熱交換器は前記の
窒素ガス供給手段に連通されている。
(19) is a gas exhaust pipe, and the gas exhaust pipe (19)
Is connected to the gap between the inner wall of the vacuum tank (1) and the flow path tube (10), and the vertical portion of the body of the vacuum tank (1) on the side opposite to the gas supply pipes (17) and (18). It is provided in the center. The gas exhaust pipe (19) is connected to a heat exchanger (not shown) via a connecting pipe (23) having an on-off valve (24). This heat exchanger is connected to the nitrogen gas supply means.

上記構成を具備する本実施例の真空熱処理炉では、処
理室(4)内で加熱された被処理品を冷媒ガスで急速冷
却するに際して、処理室(4)内に以下の各パタンの冷
媒ガス流を形成させることができる。
In the vacuum heat treatment furnace of the present embodiment having the above-described configuration, when the object to be processed heated in the processing chamber (4) is rapidly cooled with the refrigerant gas, the following patterns of refrigerant gas are stored in the processing chamber (4). A flow can be formed.

これを、その作動説明図である第2図乃至第4図を参
照して説明すると、その第1パタンは下降流の形成であ
って、これは、第2図に示すように、外部の供給手段か
らの冷媒ガスを、第一ガス供給管(17)を介して断熱層
(2)と流路筒(10)間の間隙に導入すると共に、上部
ガス流路切替弁(13)を作動させて、断熱層(2)と流
路筒(10)間の間隙の上端部を開く一方、流路筒(10)
上端と真空タンク(1)内壁間の間隙の閉塞し、同時に
下部ガス流路切替弁(14)を作動させて、断熱層(2)
と流路筒(10)間の間隙の下端部を閉塞する一方、流路
筒(10)下端と真空タンク(1)内壁間の間隙を開く、
合わせて上下断熱蓋(5)(6)を開くことで、この冷
媒ガスを、第2図中の矢印で示すように、第一ガス供給
管(17)から、断熱層(2)と流路筒(10)間の間隙を
経て、上ガス流通口(11)から処理室(4)内に流入さ
せ、この処理室(4)内で下降流を形成させて通し、そ
の下ガス流通口(12)から流路筒(10)と真空タンク
(1)内壁間の間隙を経て、ガス排出管(19)を介して
外部に排出させることで達成される。
This will be described with reference to FIGS. 2 to 4, which are explanatory diagrams of the operation. The first pattern is the formation of a downward flow, as shown in FIG. The refrigerant gas from the means is introduced into the gap between the heat insulating layer (2) and the channel tube (10) via the first gas supply pipe (17), and the upper gas channel switching valve (13) is operated. To open the upper end of the gap between the heat insulating layer (2) and the flow channel tube (10), while opening the flow channel tube (10).
By closing the gap between the upper end and the inner wall of the vacuum tank (1), and simultaneously operating the lower gas flow switching valve (14),
While closing the lower end of the gap between the flow path tube (10) and the lower end of the flow path tube (10) and the inner wall of the vacuum tank (1).
By opening the upper and lower heat-insulating lids (5) and (6) together, the refrigerant gas is supplied from the first gas supply pipe (17) to the heat-insulating layer (2) and the flow path as indicated by the arrow in FIG. The gas flows into the processing chamber (4) from the upper gas flow port (11) through the gap between the cylinders (10), forms a downward flow in the processing chamber (4), and passes through the lower gas flow port ( This is achieved by discharging from 12) to the outside via a gas discharge pipe (19) through a gap between the flow path tube (10) and the inner wall of the vacuum tank (1).

その第2パタンは上昇流の形成であって、これは、第
3図に示すように、外部の供給手段からの冷媒ガスを、
上記と同様に第一ガス供給管(17)を介して断熱層
(2)と流路筒(10)間の間隙に導入する一方、上下部
のガス流路切替弁(13)(14)それぞれを上記と逆に作
動させることで、この冷媒ガスを、第3図中の矢印で示
すように、第一ガス供給管(17)から、断熱層(2)と
流路筒(10)間の間隙を経て、下ガス流通口(12)から
処理室(4)内に流入させ、この処理室(4)内で上昇
流を形成させて通し、その上ガス流通口(13)から流路
筒(10)と真空タンク(1)内壁間の間隙を経て、ガス
排出管(19)を介して外部に排出させることで達成され
る。
The second pattern is the formation of an upward flow, which, as shown in FIG.
As described above, the gas is introduced into the gap between the heat insulating layer (2) and the flow path tube (10) via the first gas supply pipe (17), while the gas flow path switching valves (13) and (14) at the upper and lower portions are respectively provided. By operating the refrigerant gas in the reverse manner, the refrigerant gas is supplied from the first gas supply pipe (17) to the space between the heat insulating layer (2) and the flow path tube (10) as shown by the arrow in FIG. The gas flows into the processing chamber (4) from the lower gas flow port (12) through the gap, forms an ascending flow in the processing chamber (4), and flows through the upper gas flow port (13). This is achieved by discharging the gas to the outside through the gas discharge pipe (19) through the gap between the (10) and the inner wall of the vacuum tank (1).

その第3パタンは上下方向の交番流の形成であって、
これは、第一ガス供給管(17)を介する冷媒ガスの導入
を続けながら、上下部のガス流路切替弁(13)(14)そ
れぞれを適宜時点で逆に作動させることで、すなわち、
第1パタンと第2パタンの作動を交番させることで、処
理室(4)内における冷媒ガス流の方向を変更すること
で達成される。
The third pattern is the formation of an alternating flow in the vertical direction,
This is achieved by inverting the upper and lower gas flow switching valves (13) and (14) at appropriate times while continuing to introduce the refrigerant gas through the first gas supply pipe (17).
This is achieved by changing the direction of the refrigerant gas flow in the processing chamber (4) by alternating the operation of the first pattern and the operation of the second pattern.

なお、上に述べた第1〜第3パタンでは、第二ガス供
給管(18)のガス流通は閉塞されている。
In the first to third patterns described above, the gas flow of the second gas supply pipe (18) is closed.

その第4のパタンは、外周方向からの噴射流の形成で
あって、これは、第4図に示すように、外部の供給手段
からの冷媒ガスを、第二ガス供給管(18)を介して断熱
層(2)の内外側断熱層(2a)(2b)間の間隙に導入す
ると共に、上下部のガス流路切替弁(13)を作動させ
て、断熱層(2)と流路筒(10)間の間隙の上下端部を
閉鎖する一方、流路筒(10)の上下端と真空タンク
(1)内壁間の間隙を開き、合わせて上下断熱蓋(5)
(6)を開くことで、この冷媒ガスを、第4図中の矢印
で示すように、第一ガス供給管(17)から、断熱層
(2)の内外側断熱層(2a)(2b)間の間隙を経て、そ
の内側断熱層(2a)に周設されたノズル(9)を介して
処理室(4)内に向けて噴射させ、この処理室(4)内
で上下方向に分流にさせて通し、その上下ガス流通口
(11)(12)から流路筒(10)と真空タンク(1)内壁
間の間隙を経て、ガス排出管(19)を介して外部に排出
させることで達成される。なお、このパタンでは、第一
ガス供給管(17)のガス流通は閉塞されている。
The fourth pattern is the formation of a jet flow from the outer peripheral direction, which, as shown in FIG. 4, transfers refrigerant gas from an external supply means via a second gas supply pipe (18). Into the gap between the inner and outer heat-insulating layers (2a) and (2b) of the heat-insulating layer (2), and actuate the gas flow switching valves (13) at the upper and lower portions to thereby allow the heat-insulating layer (2) and the flow path cylinder While the upper and lower ends of the gap between (10) are closed, the gap between the upper and lower ends of the flow tube (10) and the inner wall of the vacuum tank (1) is opened, and the upper and lower heat insulating lids (5) are combined.
By opening (6), the refrigerant gas is supplied from the first gas supply pipe (17) to the inner and outer heat insulating layers (2a) and (2b) of the heat insulating layer (2) as shown by arrows in FIG. Through a gap between the nozzles, the fuel is injected toward the processing chamber (4) through a nozzle (9) provided around the inner heat-insulating layer (2a), and is divided vertically in the processing chamber (4). The gas is discharged from the upper and lower gas flow ports (11) and (12) to the outside via the gas discharge pipe (19) through the gap between the flow path cylinder (10) and the inner wall of the vacuum tank (1). Achieved. In this pattern, the gas flow of the first gas supply pipe (17) is closed.

次いで、本実施例の真空熱処理炉による具体的な熱処
理例を述べる。
Next, a specific heat treatment example using the vacuum heat treatment furnace of the present embodiment will be described.

まず、外径50mm、長さ1400mmの高速度工具鋼からなる
小径なブローチを、冶具に16本吊下して処理室内に装入
し、1200〜1220℃に加熱した後、前述の第3のパタンに
基づき、処理室内に20〜40秒ピッチで上下に方向を変更
させた窒素ガスの交番流を形成し、該交番流にて急速冷
却して焼入処理した。焼入処理後の各ブローチの表面硬
度および曲がりを計測したところ、これらは長手方向の
硬度分布が均一で、その曲がりも全長で0.3mm以下と非
常に良好な品質のものであった。
First, a small-diameter broach made of high-speed tool steel with an outer diameter of 50 mm and a length of 1400 mm was suspended in a jig, 16 pieces were inserted into the processing chamber, and heated to 1200 to 1220 ° C. Based on the pattern, an alternating flow of nitrogen gas whose direction was changed up and down at a pitch of 20 to 40 seconds was formed in the processing chamber, and the quench treatment was performed by rapid cooling with the alternating flow. When the surface hardness and bending of each broach after the quenching treatment were measured, they had uniform hardness distribution in the longitudinal direction, and the bending was very good quality with a total length of 0.3 mm or less.

次いで、外径100mm、長さ2000mmの高速度工具鋼から
なる大径なブローチを1本、処理室内の中央部に挿入・
吊下し、1200〜1220℃に加熱した後、前述の第4のパタ
ンに基づき、処理室内のブローチの外周面に冷媒ガスを
吹き付け、該噴射流にて急速冷却して焼入処理した。焼
入処理後のブローチの表面硬度および曲がりを計測した
ところ、その長手方向の硬度分布が均一で、その曲がり
も全長で0.4mm以下と非常に良好な品質のものであっ
た。
Next, insert one large-diameter broach made of high-speed tool steel with an outer diameter of 100 mm and a length of 2000 mm into the center of the processing chamber.
After suspending and heating to 1200 to 1220 ° C., based on the above-described fourth pattern, a refrigerant gas was blown onto the outer peripheral surface of the broach in the processing chamber, and the quenching treatment was performed by rapid cooling with the jet flow. When the surface hardness and bending of the broach after the quenching treatment were measured, the hardness distribution in the longitudinal direction was uniform, and the bending was very good quality with a total length of 0.4 mm or less.

このように、本実施例の真空熱処理炉においては、処
理室内における冷媒ガスの流れを、下降流、上昇流、上
下交番流および外周側からの噴射流と任意に設定および
変更することができるので、加熱された被処理品を冷却
するに際して、冷媒ガス流を、被処理品の形状およびセ
ット状態に対応して、被処理品を均等かつ急速に冷却し
得るものとすることができる。また、被処理品から奪っ
た熱は、ガス排出管からの冷媒ガスの排出にて系外に搬
出するので、従来の熱処理炉のように、炉内に冷媒ガス
の強制循環手段および冷却手段を設ける必要がなく、そ
の構成が簡易で保守点検・整備が容易となる。
As described above, in the vacuum heat treatment furnace of the present embodiment, the flow of the refrigerant gas in the processing chamber can be arbitrarily set and changed to the downward flow, the upward flow, the vertical alternating flow, and the injection flow from the outer peripheral side. In cooling the heated article to be processed, the refrigerant gas flow can uniformly and rapidly cool the article to be processed according to the shape and the set state of the article to be treated. Further, since the heat taken from the article to be processed is carried out of the system by discharging the refrigerant gas from the gas discharge pipe, the forced circulation means and the cooling means of the refrigerant gas are provided in the furnace as in a conventional heat treatment furnace. There is no need to provide them, the configuration is simple, and maintenance and inspection and maintenance are easy.

なお、本実施例の熱処理炉においては、上下部のガス
流路切替弁(13)(14)を環状とし、これを電磁リング
で作動させるものとしたが、これは一例であって、例え
ば、流路筒(10)上下端と真空タンク(1)との間に複
数の流通孔を設けると共に、断熱層(2)と流路筒(1
0)間の間隙の上下端にも複数の流通孔を設ける一方、
これらの間を回動してそのガス流通を択一的に開閉する
複数のバタフライ弁を設ける等の他の構成のものを採用
することができる。
In the heat treatment furnace of the present embodiment, the upper and lower gas flow path switching valves (13) and (14) are made to be annular, and these are operated by an electromagnetic ring. However, this is an example. A plurality of flow holes are provided between the upper and lower ends of the flow channel tube (10) and the vacuum tank (1), and the heat insulating layer (2) and the flow channel tube (1) are provided.
0) While a plurality of flow holes are provided at the upper and lower ends of the gap between
Other configurations such as providing a plurality of butterfly valves that rotate between them to selectively open and close the gas flow can be employed.

〔発明の効果〕〔The invention's effect〕

以上に述べたように、本発明に係る熱処理炉は、加熱
後の冷却時に処理室内に導入する冷媒ガスの流れを、被
処理品の形状やセット状態に最も適するものに設定ない
しは容易に変更し得、もって、加熱された被処理品を均
等に急速冷却し得て、その焼入処理を確実なものとして
製品品質を高めることができ、しかも、内部構造が簡易
で、その保守点検・整備が容易なものである。
As described above, the heat treatment furnace according to the present invention sets or easily changes the flow of the refrigerant gas introduced into the processing chamber at the time of cooling after heating to the one most suitable for the shape and set state of the article to be processed. Therefore, the heated workpiece can be cooled rapidly and evenly, and the quenching process can be assured and the product quality can be improved.In addition, the internal structure is simple and its maintenance and inspection and maintenance are easy. It's easy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例の真空熱処理炉の概要を示す正
断面図、 第2図乃至第4図は本発明の実施例の真空熱処理炉の作
動説明図、 第5図は従来の真空熱処理炉を示す正断面図、 第6図は従来の真空熱処理炉を示す正断面図である。 (1)……真空タンク、(2)……断熱層、(2a)……
内側断熱層、(2b)……外側断熱層、(3)……ヒー
タ、(4)……処理室、(5)……上断熱蓋、(6)…
…下断熱蓋、(7)……上シリンダ、(8)……下シリ
ンダ、(9)……ノズル、(10)……流路筒、(11)…
…上ガス流通口、(12)……下ガス流通口、(13)……
ガス流路切替弁、(14)……ガス流路切替弁、(15)…
…上電磁リング、(16)……下電磁リング、(17)……
第一ガス供給管、(18)……第二ガス供給管、(19)…
…ガス排出管。
FIG. 1 is a front sectional view showing an outline of a vacuum heat treatment furnace according to an embodiment of the present invention, FIGS. 2 to 4 are explanatory views of the operation of the vacuum heat treatment furnace according to the embodiment of the present invention, and FIG. FIG. 6 is a front sectional view showing a heat treatment furnace, and FIG. 6 is a front sectional view showing a conventional vacuum heat treatment furnace. (1) ... Vacuum tank, (2) ... Heat insulation layer, (2a) ...
Inner heat insulating layer, (2b) ... outer heat insulating layer, (3) ... heater, (4) ... processing chamber, (5) ... upper heat insulating lid, (6) ...
... Lower thermal insulation lid, (7) ... Upper cylinder, (8) ... Lower cylinder, (9) ... Nozzle, (10) ... Flow path cylinder, (11) ...
... Upper gas outlet, (12) ... Lower gas outlet, (13) ...
Gas flow switching valve, (14) ... Gas flow switching valve, (15) ...
… Upper electromagnetic ring, (16) …… Lower electromagnetic ring, (17)…
First gas supply pipe, (18) ... Second gas supply pipe, (19) ...
... gas exhaust pipe.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】真空タンクと、該真空タンク内に配設さ
れ、上下部に開閉可能なガス流通口を設けた断熱層から
なる筒状の処理室と、真空タンク内壁と処理室の断熱層
外壁との間に配設された流路筒と、流路筒と真空タンク
内壁および流路筒と処理室の断熱層外壁との間のそれぞ
れに設けられたガス流通可能な間隙と、処理室の内周上
に周設された発熱体とを備えた真空熱処理炉であって、
前記処理室の断熱層を、その層内にガス流通間隙を設け
た二重構成に形成すると共に、該断熱層の内側壁に、層
内のガス流通間隙と処理室とを連通する複数の噴射ノズ
ルを設け、一方、前記処理室と流路筒との間の上下部の
それぞれに、前記処理室と流路筒との間のガス流通可能
な間隙と前記真空タンク内壁と流路筒との間のガス流通
可能な間隙を交互に開閉し得るガス流路切替弁を設け、
かつ、前記真空タンクに、前記処理室と流路筒との間の
間隙に連通させた第一ガス供給管と、前記処理室の断熱
層内のガス流通間隙に連通させた第二ガス供給管と、前
記真空タンク内壁と流路筒との間の間隙に連通させたガ
ス排出管とを設けたことを特徴とする真空熱処理炉。
A cylindrical processing chamber comprising a vacuum tank, a heat insulating layer provided in the vacuum tank, and having a gas flow opening which can be opened and closed at upper and lower portions, and a heat insulating layer between the inner wall of the vacuum tank and the processing chamber. A flow path cylinder disposed between the processing chamber and a flow path cylinder disposed between the flow path cylinder and the vacuum tank inner wall and between the flow path cylinder and the heat insulating layer outer wall of the processing chamber; And a heating element provided on the inner periphery of the vacuum heat treatment furnace,
The heat insulating layer of the processing chamber is formed in a double configuration in which a gas flow gap is provided in the layer, and a plurality of jets communicating the gas flow gap in the layer and the processing chamber are formed on the inner wall of the heat insulating layer. A nozzle is provided, on the other hand, in each of the upper and lower portions between the processing chamber and the flow path cylinder, a gas permeable gap between the processing chamber and the flow path cylinder, the vacuum tank inner wall, and the flow path cylinder. Provide a gas flow path switching valve that can alternately open and close the gap through which gas can flow,
A first gas supply pipe communicating with a gap between the processing chamber and the flow path tube, and a second gas supply pipe communicating with a gas flow gap in a heat insulating layer of the processing chamber. And a gas exhaust pipe communicating with a gap between the inner wall of the vacuum tank and the flow channel tube.
JP1326498A 1989-12-15 1989-12-15 Vacuum heat treatment furnace Expired - Lifetime JP2656839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326498A JP2656839B2 (en) 1989-12-15 1989-12-15 Vacuum heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326498A JP2656839B2 (en) 1989-12-15 1989-12-15 Vacuum heat treatment furnace

Publications (2)

Publication Number Publication Date
JPH03188214A JPH03188214A (en) 1991-08-16
JP2656839B2 true JP2656839B2 (en) 1997-09-24

Family

ID=18188499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326498A Expired - Lifetime JP2656839B2 (en) 1989-12-15 1989-12-15 Vacuum heat treatment furnace

Country Status (1)

Country Link
JP (1) JP2656839B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5496963B2 (en) * 2011-07-22 2014-05-21 Ipsen株式会社 Vertical vacuum furnace for heat treatment of semi-finished metal products
CN114480800A (en) * 2022-01-11 2022-05-13 武汉理工大学 Vertical high-temperature reaction quenching furnace for phase diagram determination

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0232680Y2 (en) * 1986-05-20 1990-09-04
JPH0826392B2 (en) * 1987-03-09 1996-03-13 大同特殊鋼株式会社 Vacuum heat treatment furnace
DE3736502C1 (en) * 1987-10-28 1988-06-09 Degussa Vacuum furnace for the heat treatment of metallic workpieces

Also Published As

Publication number Publication date
JPH03188214A (en) 1991-08-16

Similar Documents

Publication Publication Date Title
JP5615019B2 (en) Hot isostatic press
JP6723751B2 (en) Multi-chamber furnace for vacuum carburizing and hardening of gears, shafts, rings and similar workpieces
KR960012876B1 (en) Heat treating apparatus with cooling fluid nozzles
US7625204B2 (en) Gas cooling type vacuum heat treating furnace and cooling gas direction switching device therefor
RU2000127741A (en) A method of cooling a molded product and a device for cooling a molded product
JP5394292B2 (en) Vertical heat treatment equipment and pressure sensing system / temperature sensor combination
US2009078A (en) Method of and apparatus for cooling heated articles
JP2656839B2 (en) Vacuum heat treatment furnace
US5121903A (en) Quenching arrangement for a furnace
US4730811A (en) Heat treatment apparatus with a fluidized-bed furnace
WO2023001062A1 (en) Heating furnace
JP2002313796A (en) Substrate heat treatment system
KR100307996B1 (en) The vacuum furnace for quenching of the metallic tools
US2254891A (en) Heat-treating furnace
JPH07263369A (en) Heat treatment device
JPH04124586A (en) Cooling device for continuous furnace
US4596610A (en) Hardening metal parts
CZ282179B6 (en) Vacuum furnace for heat treatment of metallic workpieces
KR200242384Y1 (en) bright annealing furnace of stainless wire
KR200354760Y1 (en) A heat treatment equipment using H.F
CN219260107U (en) Annealing furnace with uniform heating
US6627856B2 (en) Moveable heat exchanger
KR20240001586A (en) Heat treatment and cooling vacuum furnace
JPH07331325A (en) Heating treatment of quenching
JP4779303B2 (en) Gas cooling furnace

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080530

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090530

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100530

Year of fee payment: 13