JPH03242490A - Molding method for oil sump groove on edge of aluminum alloy rotor - Google Patents

Molding method for oil sump groove on edge of aluminum alloy rotor

Info

Publication number
JPH03242490A
JPH03242490A JP3398190A JP3398190A JPH03242490A JP H03242490 A JPH03242490 A JP H03242490A JP 3398190 A JP3398190 A JP 3398190A JP 3398190 A JP3398190 A JP 3398190A JP H03242490 A JPH03242490 A JP H03242490A
Authority
JP
Japan
Prior art keywords
rotor
oil sump
aluminum alloy
sump groove
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3398190A
Other languages
Japanese (ja)
Other versions
JP2910123B2 (en
Inventor
Tetsuya Hayashi
哲也 林
Toshio Fujiwara
敏男 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3398190A priority Critical patent/JP2910123B2/en
Publication of JPH03242490A publication Critical patent/JPH03242490A/en
Priority to US07/969,516 priority patent/US5265457A/en
Application granted granted Critical
Publication of JP2910123B2 publication Critical patent/JP2910123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To economically manufacture an aluminum alloy rotor by forming an oil sump groove on a rotor edge in slidable contact with a side plate in a pressure stamping process at a warm temperature. CONSTITUTION:A recessed oil sump groove A is molded on a rotor edge in slidable contact with a side plate, using a pressure stamping process at a warm temperature. In this case, an aluminum alloy comprises 12 to 30wt.% of Si, 0.5 to 5wt.% of Cu, 0.2 to 2wt.% of Mg, 1 to 10wt.% of a transition element and aluminum as a rest. Pressure stamping is applied when a rotor temperature is within 150 to 450 deg.C. As aforementioned, the oil sump groove A on the edge of the aluminum alloy rotor is made in the form of a recess in the pressure stamping process. According to the aforesaid construction, the oil sump groove A can be molded more easily, less expensively and yet with a good material yield, using simple press facilities.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベーンロータリータイプのコンプレッサーの
アルミニウム製ローターの改良に関し、特に軽量なアル
ミニウム合金製ローターの焼き付き防止用油溜り溝の成
形方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an improvement of an aluminum rotor for a vane rotary type compressor, and particularly to a method for forming oil sump grooves for preventing seizure in a lightweight aluminum alloy rotor. It is.

〔従来の技術〕[Conventional technology]

カーエアコン等に用いられるコンプレッサーのローター
は、第1図に示す様にベーンがスライドする複数のベー
ン溝を有し、回転するシャフトと一体となっている。ロ
ーターは、シリンダブロックの両側に固定されたサイド
プレートの内壁面と摺動しながら回転する。ローターベ
ーン、シリンダブロック、両サイドプレートの5つの部
品で仕切られた圧縮室に吸入された冷却ガスは、圧縮後
、吐出される。圧縮室は気密性を必要とするため、各部
品間のクリアランスは極めて小さく設計されている上、
特にローターとサイドプレートとは、圧縮力を受けなが
ら摺動する為、焼き付きが発生しやすい。
The rotor of a compressor used in a car air conditioner or the like has a plurality of vane grooves in which vanes slide, as shown in FIG. 1, and is integrated with a rotating shaft. The rotor rotates while sliding on the inner wall surfaces of side plates fixed to both sides of the cylinder block. Cooling gas is drawn into a compression chamber partitioned by five parts: a rotor vane, a cylinder block, and both side plates, and is then discharged after being compressed. The compression chamber requires airtightness, so the clearance between each part is designed to be extremely small.
In particular, the rotor and side plates slide while being subjected to compressive force, making them susceptible to seizure.

従来、ローターは鋼材や鉄系の焼結合金が、サイドプレ
ートは片状黒鉛鋳鉄や鉄系焼結合金が用いられていた。
Conventionally, rotors have been made of steel or iron-based sintered alloys, and side plates have been made of flake graphite cast iron or iron-based sintered alloys.

鉄系材料の組合せでは、材料の耐摩耗性が比較的良好で
ある上、片状黒鉛鋳鉄や焼結合金は保油性に優れるため
、焼き付きの問題はさほど深刻ではなかったが、場合に
よっては、ローターの片端面或いは両側面に油溜り溝を
設けて焼き付きを防いでいた。
In combinations of iron-based materials, the wear resistance of the materials is relatively good, and flake graphite cast iron and sintered alloys have excellent oil retention, so the problem of seizure was not as serious, but in some cases, Oil sump grooves were provided on one or both sides of the rotor to prevent seizure.

近年、コンプレッサーの軽量化のニーズが高まり鉄系材
料のアルミ化が検討されてきた。急冷凝固粉末を原料と
した粉末アルミ合金や連鋳技術の進歩による高強度アル
ミ材の開発により、従来アルミ材では使用できなかった
ローターのアルミ化が可能となった。サイドプレートに
関しても、A390材等のAI−高Si材の採用により
アルミ化が可能となった。これら合金は、耐摩耗性性・
耐焼き付き性を向上させ、クリアランス精度を高レベル
に保つためにSi等の合金成分を多量に含んでいるにも
かかわらず、ローターとサイドプレート間の耐焼き付き
性は十分でなく、特に摺動面にて油が切れた場合に容易
に焼き付きが発生する為、ローター端面の油溜り溝が必
須である。
In recent years, the need for lighter compressors has increased, and the use of aluminum instead of iron-based materials has been considered. With the development of powdered aluminum alloys made from rapidly solidified powder and high-strength aluminum materials made possible by advances in continuous casting technology, it has become possible to use aluminum for rotors, which was previously not possible with aluminum materials. The side plates can also be made of aluminum by using AI-high Si materials such as A390 material. These alloys are wear resistant and
Despite containing a large amount of alloy components such as Si to improve seizure resistance and maintain a high level of clearance accuracy, the seizure resistance between the rotor and side plate is insufficient, especially on the sliding surface. Seizure easily occurs when the oil runs out, so an oil sump groove on the end face of the rotor is essential.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、アルミ合金製ローターの場合は製法上の
制約より、従来の鉄系焼結ローターの様に粉末成形時に
油溜り溝を成形することが出来ないため、油溜り溝の加
工工程を新たに付加しなくてはならない。加工方法とし
ては、エンドミル加工や放電加工が考えられるが、設備
が高級な上、加工も高価につくという問題点がある。ま
た、エンドミル加工では溝形状付与の自由度も小さい。
However, in the case of aluminum alloy rotors, due to constraints in the manufacturing process, it is not possible to form oil sump grooves during powder molding as with conventional iron-based sintered rotors, so a new process for forming the oil sump grooves has been added. I have to. Possible machining methods include end mill machining and electrical discharge machining, but these have the problems of high-grade equipment and expensive machining. Furthermore, in end milling, the degree of freedom in forming the groove shape is small.

本発明は上記のような問題点を解決することを目的とす
るもので、ローター端面に油溜り溝を有するベーンロー
タリータイプのコンプレッサー用のアルミニウム合金製
ローターを経済的に製造することを目的とする。
The present invention aims to solve the above-mentioned problems, and aims to economically manufacture an aluminum alloy rotor for a vane rotary type compressor having an oil sump groove on the end face of the rotor. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、アルミニウム合金製ローターの油溜り溝を、
簡単にかつ安価に成形する方法として、サイドプレート
と摺動するローター端面の油溜り溝を温間で凹状の溝部
を加圧刻印することにより成形することを特徴とする方
法を提供するものである。
The present invention provides an oil sump groove in an aluminum alloy rotor.
The present invention provides a simple and inexpensive method of forming an oil reservoir groove on the end face of a rotor that slides on a side plate by warmly stamping a concave groove under pressure. .

本発明の好ましい実施態様においては、上記ローターの
材料となるアルミニウム合金は、コンプレッサーを構成
する他の部品とのクリアランスを高精度に安定させるた
めに低熱膨張であることが必要であり、かつ耐摩耗性、
高剛性であることが必要であるためSiを12〜30重
量%含有することが望ましく、さらに必要に応じて、高
強度化、高硬度化を図るために時効硬化元素であるCu
を0.5〜50重量%およびMgを0.5〜50重量%
含んでいることが望ましい。
In a preferred embodiment of the present invention, the aluminum alloy used as the material for the rotor needs to have low thermal expansion in order to stabilize the clearance with other parts constituting the compressor with high precision, and is resistant to wear. sex,
Since it is necessary to have high rigidity, it is desirable to contain 12 to 30% by weight of Si, and if necessary, Cu, which is an age hardening element, is added to increase the strength and hardness.
0.5-50% by weight and Mg 0.5-50% by weight
It is desirable that it be included.

また、必要に応じて耐熱性、耐摩耗性或いは機械的性質
を改善するために、Pe 、 Ni 、 Mn等の遷移
元素を1.0〜10,0wt%含有させている。
Furthermore, in order to improve heat resistance, wear resistance, or mechanical properties as required, transition elements such as Pe, Ni, and Mn are contained in an amount of 1.0 to 10.0 wt%.

上記の加圧刻印は、ローター自身を軟化させるために通
常は150〜450℃に加熱し、その際に用いる油溜り
溝を成形するための金型は、その突起部先端形状Rが0
.1〜2.011mの範囲にあることが好ましく、また
その突起部側面の接線角が刻印方向に対して30〜75
°であることが好ましい。油溜り溝の深さは一般に2.
0 mm以下とする。
The above pressure stamp is usually heated to 150 to 450 degrees Celsius in order to soften the rotor itself, and the mold used to form the oil reservoir groove at that time has a protrusion tip shape R of 0.
.. It is preferably in the range of 1 to 2.011 m, and the tangential angle of the side surface of the protrusion is 30 to 75 m with respect to the marking direction.
Preferably. The depth of the oil sump groove is generally 2.
0 mm or less.

第2図(^)および第3図(A)は夫々第1図に示され
るような油溜り溝を加圧刻印するのに用いられる金型の
例を示す断面図であり第2図(B)および第3図(B)
は夫々上記金型により得られる油溜り溝の形状を示す概
念図である。こ\で第2図(^)には金型突起部の先端
形状を表わす曲率半径Rと突起部側面の接線角θが示さ
れている。
Figures 2 (^) and 3 (A) are cross-sectional views showing examples of molds used for pressure stamping oil sump grooves as shown in Figure 1, and Figure 2 (B). ) and Figure 3 (B)
2A and 2B are conceptual diagrams showing the shapes of oil sump grooves obtained by the above-mentioned molds, respectively. FIG. 2 (^) shows the radius of curvature R representing the shape of the tip of the mold protrusion and the tangent angle θ of the side surface of the protrusion.

〔作用〕[Effect]

以下、この発明に適合するローターの材質であるアルミ
ニウム合金の上記組成範囲について説明する。アルミニ
ウム合金は粉末焼結合金か連鋳合金の何れでもよい。
The above composition range of the aluminum alloy, which is the material of the rotor suitable for the present invention, will be explained below. The aluminum alloy may be either a powder sintered alloy or a continuously cast alloy.

主要な添加元素であるSiは、含有量を増加させること
により、膨張係数を下げ、耐摩耗性、剛性を向上するの
に有効な元素である。12wt%未満では熱膨張係数が
高く、耐摩耗性も十分でなく、30wt%を越えて含有
させると材料の延性が劣化しローターの切り欠き靭性値
が低下するため、Si含有量は12.0wt%以上30
.0 wt%以下が良い。また、12wt%未満では材
料の変形能が大きいため、本発明の特徴の一つである温
間の刻印成形の必要はなく、30wt%を越えて含有さ
せると材料の延性が低下するため、刻印成形により割れ
が発生し易くなる。この観点からもSi含有量は12.
0wt%以上30.0wt%以下であることが望ましい
Si, which is a main additive element, is an element that is effective in lowering the expansion coefficient and improving wear resistance and rigidity by increasing the content. If the Si content is less than 12 wt%, the coefficient of thermal expansion will be high and the wear resistance will not be sufficient. If the content exceeds 30 wt%, the ductility of the material will deteriorate and the notch toughness value of the rotor will decrease. Therefore, the Si content is 12.0 wt%. % or more 30
.. 0 wt% or less is preferable. In addition, if the content is less than 12 wt%, the deformability of the material is large, so there is no need for warm stamping, which is one of the features of the present invention, and if the content exceeds 30 wt%, the ductility of the material decreases, so the stamping Cracks are more likely to occur due to molding. From this point of view, the Si content is 12.
It is desirable that the content is 0 wt% or more and 30.0 wt% or less.

CuおよびMgは、合金の高強度化、高硬度化を図るた
めの時効硬化型元素である。Cu含有量が0.5wt%
未満、Mg含有量が0.2wt%未満では、十分な強度
、硬度が得られない。Cu含有量が0.5wt%を越え
る場合またはMg含有量が0.2wt%を越える場合は
粗大な析出物が生成されかえって強度が劣化する上、熱
安定性が低下する。よって、Cu含有量を0.5〜5.
0wt%及びMg含有量を0.2〜2.0wt%とする
ことが望ましい。
Cu and Mg are age hardening elements for increasing the strength and hardness of the alloy. Cu content is 0.5wt%
If the Mg content is less than 0.2 wt%, sufficient strength and hardness cannot be obtained. When the Cu content exceeds 0.5 wt% or when the Mg content exceeds 0.2 wt%, coarse precipitates are formed, which not only deteriorates the strength but also reduces thermal stability. Therefore, the Cu content is set to 0.5 to 5.
It is desirable that the Mg content is 0.2 to 2.0 wt%.

必要に応じて耐熱性、耐摩耗性或いは機械的性質を改善
するために、Re 、 Ni 、 Mn等の遷移元素を
含有させているが、含有量が1.0wt%未満ではその
効果が小さく、10.0 wt%を越えると材料の靭性
を低下させ、材質の信頼性を欠く上、変形能が低下し刻
印成形による亀裂が発生し易くなるため、これら遷移元
素の含有量を1.0〜10.0 wt%とすることが良
い。
Transition elements such as Re, Ni, and Mn are included to improve heat resistance, wear resistance, or mechanical properties as necessary, but if the content is less than 1.0 wt%, the effect is small. If it exceeds 10.0 wt%, the toughness of the material decreases, the material becomes unreliable, deformability decreases, and cracks are more likely to occur due to stamping. Therefore, the content of these transition elements should be set at 1.0 to It is preferable to set it to 10.0 wt%.

上記組成を有するローターに油溜り溝を刻印成形する場
合、材料の延性を低下させるSiあるいは遷移元素等を
多量に含有しているため、冷間での刻印成形では、割れ
や亀裂を生じてしまう。
When stamping oil reservoir grooves on a rotor with the above composition, cold stamping may result in cracks and cracks as the material contains a large amount of Si or transition elements that reduce the ductility. .

そこで、材料を加熱して軟化させた状態で刻印成形する
必要がある。加熱温度は、材料の組成や所要の油溜り溝
正常によって異なるが、刻印成形時にローター自身が1
50〜450℃に加熱されていることが望ましい。15
0℃未満であると割れや亀裂を生じる他、変形抵抗が大
きく高いプレス力を必要とする。450℃を越えると材
料が焼鈍されたり、Si晶等の析出物や晶出物が必要以
上に粗大化したりして材質が劣化する他、周辺設備の仕
様が高級になる。よって、加圧刻印のローター自身の加
熱温度は150〜450℃であることが望ましい。
Therefore, it is necessary to heat and soften the material before stamping it. The heating temperature varies depending on the composition of the material and the required oil sump groove, but when the rotor itself is 1.
It is desirable that the temperature is 50 to 450°C. 15
If the temperature is less than 0°C, cracks and cracks will occur, and the deformation resistance will be large, requiring a high pressing force. If the temperature exceeds 450° C., the material may be annealed, precipitates such as Si crystals may become coarser than necessary, and the quality of the material may deteriorate, and the specifications of peripheral equipment may become higher-grade. Therefore, it is desirable that the heating temperature of the rotor itself for pressure stamping is 150 to 450°C.

次に、金型の突起部形状の範囲限定について説明する。Next, limiting the range of the shape of the protrusion of the mold will be explained.

前述のように、ローター材料は延性を低下させるSiあ
るいは遷移元素等を多量に含有しているため、温間刻印
成形においても割れや亀裂を生じ易い。特に、突起部先
端Rが0.1 mm未満であると割れや亀裂を生じ易く
なる。一方、先端部Rが2.0 mmを越えると、油溜
り溝の深さを十分に確保しようとした場合に大きな加圧
力を必要とし、加圧方向と垂直方向への変形量が大きく
なり、ローターのベーン溝周辺に変形を与え、ベーン溝
幅を狭めたり、寸法精度を悪化させたりする。よって、
金型の突起部の先端形状Rが0、1〜2.0 mmであ
ることが良い。
As mentioned above, since the rotor material contains a large amount of Si or transition elements that reduce ductility, cracks and cracks are likely to occur even during warm stamp forming. In particular, if the tip R of the protrusion is less than 0.1 mm, cracks and cracks are likely to occur. On the other hand, if the tip R exceeds 2.0 mm, a large pressing force will be required to ensure a sufficient depth of the oil reservoir groove, and the amount of deformation in the direction perpendicular to the pressing direction will increase. It deforms the area around the vane groove of the rotor, narrowing the vane groove width and worsening dimensional accuracy. Therefore,
It is preferable that the tip shape R of the protrusion of the mold is 0.1 to 2.0 mm.

金型の突起部側面の接線角は、30°未満であると、ロ
ーター端面側への盛り上がりが大きくなり、先端部とロ
ーター材の食い付きが起こる。75°を越えると先端部
R形状が大きい場合と同様な問題が発生する為、金型の
突起部の接線角は刻印方向に対して30°〜75°であ
ることが望ましい。
If the tangential angle of the side surface of the protrusion of the mold is less than 30°, the protrusion toward the end surface of the rotor becomes large, causing the tip and the rotor material to bite. If the angle exceeds 75°, the same problem as when the tip radius shape is large will occur, so it is desirable that the tangential angle of the protrusion of the mold is 30° to 75° with respect to the marking direction.

また、刻印成形によって得られる溝深さが2、0 mr
nを越えると割れや亀裂が発生し易くなることや、塑性
変形により材料が端面やベーン溝周辺へ移動し寸法精度
が得られなくなることから、通常は油溜り溝深さは2.
0 mmが限度である。
In addition, the groove depth obtained by stamping molding is 2.0 mr.
Normally, the oil sump groove depth should be set to 2.0 mm, because if it exceeds n, cracks and cracks are likely to occur, and the material will move to the end face or around the vane groove due to plastic deformation, making it impossible to obtain dimensional accuracy.
0 mm is the limit.

〔発明の効果] 以上説明した様に本発明によれば、コンプレッサーのア
ルミニウム合金製ローター端面の油溜り溝を、温間にて
凹状の溝部を加圧刻印することにより、簡単なプレス設
備を用い簡易な作業にて安価に且つ材料歩留まり良く成
形できるに至った。
[Effects of the Invention] As explained above, according to the present invention, the oil sump groove on the end face of the aluminum alloy rotor of the compressor is stamped with a warm concave groove using simple press equipment. It has become possible to mold with simple operations at low cost and with a high material yield.

〔実施例〕〔Example〕

ローター材として15種類の粉末焼結アルミニウム合金
と2種類の連鋳アルミニウム合金を用意し、刻印成形条
件を変えて実験を行った結果を表1に示した。すなわち
、サンプルNα1〜21は粉末焼結合金であり、サンプ
ルN(122〜29は連鋳合金である。
Table 1 shows the results of experiments conducted using 15 types of powder sintered aluminum alloys and 2 types of continuously cast aluminum alloys as rotor materials, and varying the stamping forming conditions. That is, samples Nα1 to 21 are powder sintered alloys, and samples N (122 to 29 are continuously cast alloys).

【図面の簡単な説明】[Brief explanation of drawings]

第1図はベーンロータリータイプのコンプレッサー用ロ
ーターを示す概念図、第2図(^)′J3よび第3図(
^)は夫々第1図に示されるような油溜り溝を加圧刻印
するために用いられる金型の例を示す断面図であり第2
図(B)および第3図(B)は夫々上記金型により得ら
れる油溜り溝の形状を示す概念図である。
Figure 1 is a conceptual diagram showing a vane rotary type compressor rotor, Figure 2 (^)'J3 and Figure 3 (
^) is a sectional view showing an example of a mold used for pressure stamping an oil sump groove as shown in Fig. 1, and Fig. 2
FIG. 3(B) and FIG. 3(B) are conceptual diagrams showing the shape of the oil sump groove obtained by the above mold, respectively.

Claims (3)

【特許請求の範囲】[Claims] (1)サイドプレートと摺動するローター端面に凹状の
油溜り溝を温間で加圧刻印することにより成形すること
を特徴とするベーンロータリータイプのコンプレッサー
用のアルミニウム合金製ローター端面の油溜り溝の成形
方法。
(1) An oil sump groove on the end face of an aluminum alloy rotor for a vane rotary type compressor, which is characterized by forming a concave oil sump groove on the end face of the rotor that slides on the side plate by warm pressure stamping. molding method.
(2)アルミニウム合金が、 Si:12〜30重量% Cu:0.5〜5重量% Mg:0.2〜2重量% 遷移元素:1〜10重量% Al:残部 からなる請求項(1)に記載の方法。(2) Aluminum alloy is Si: 12-30% by weight Cu: 0.5-5% by weight Mg: 0.2-2% by weight Transition element: 1-10% by weight Al: remainder The method according to claim (1), comprising: (3)加圧刻印をローター温度150〜450℃の範囲
で行なう請求項(1)に記載の方法。
(3) The method according to claim (1), wherein the pressure stamping is performed at a rotor temperature in the range of 150 to 450°C.
JP3398190A 1990-02-16 1990-02-16 Method of forming oil sump groove on the end face of aluminum alloy rotor Expired - Fee Related JP2910123B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3398190A JP2910123B2 (en) 1990-02-16 1990-02-16 Method of forming oil sump groove on the end face of aluminum alloy rotor
US07/969,516 US5265457A (en) 1990-02-16 1992-10-30 Method of forming an oil groove on the end surface of a rotor of an aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3398190A JP2910123B2 (en) 1990-02-16 1990-02-16 Method of forming oil sump groove on the end face of aluminum alloy rotor

Publications (2)

Publication Number Publication Date
JPH03242490A true JPH03242490A (en) 1991-10-29
JP2910123B2 JP2910123B2 (en) 1999-06-23

Family

ID=12401666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3398190A Expired - Fee Related JP2910123B2 (en) 1990-02-16 1990-02-16 Method of forming oil sump groove on the end face of aluminum alloy rotor

Country Status (1)

Country Link
JP (1) JP2910123B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310326A (en) * 1992-09-14 1994-05-10 Mainstream Engineering Corporation Rotary compressor with improved bore configuration and lubrication system
JP2006265630A (en) * 2005-03-24 2006-10-05 Asahi Tec Corp Production method for metal product and the metal product
JP2021116797A (en) * 2020-01-29 2021-08-10 株式会社富士通ゼネラル Rotary compressor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102086870A (en) * 2009-12-03 2011-06-08 耐力压缩机(北京)有限公司 Slip sheet for handpiece of air compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310326A (en) * 1992-09-14 1994-05-10 Mainstream Engineering Corporation Rotary compressor with improved bore configuration and lubrication system
JP2006265630A (en) * 2005-03-24 2006-10-05 Asahi Tec Corp Production method for metal product and the metal product
JP2021116797A (en) * 2020-01-29 2021-08-10 株式会社富士通ゼネラル Rotary compressor

Also Published As

Publication number Publication date
JP2910123B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
US4696866A (en) Fiber reinforced metal composite material
JPH04293705A (en) Production of disk rotor of aluminum-based composite material
US5976214A (en) Slide member of sintered aluminum alloy and method of manufacturing the same
JPH07101035B2 (en) Al alloy rotary gear pump and manufacturing method thereof
JP6367235B2 (en) Rotor blade type pump blade manufacturing method, rotor blade pump blade, and rotor blade pump
JP2005036693A (en) Method of manufacturing refrigerant compressor
JPH03242490A (en) Molding method for oil sump groove on edge of aluminum alloy rotor
US4125399A (en) Apex seals for rotary piston engines
US5265457A (en) Method of forming an oil groove on the end surface of a rotor of an aluminum alloy
WO2004031429A1 (en) High-precision sintered cam lobe material
US4545825A (en) Apex seals for high power rotary piston engines
JP2577004B2 (en) Vane
JPH02136586A (en) Vane type compressor
US8708030B2 (en) Mold
JP2509052B2 (en) Nitrogen compound aluminum sintered alloy and method for producing the same
JPH0551708A (en) Wear resistant material for compressor and compressor using the same
JP2001221182A (en) Vane for compressor
JPH02130289A (en) Vane type compressor
JP2000283060A (en) Gear rotor, gear rotor set, and manufacture thereof
JPS6329900Y2 (en)
JPH06128666A (en) Powdery composite material for scroll
JP4188970B2 (en) Cam lobe material, camshaft using the same, and method of manufacturing cam lobe material
JPH04136492A (en) Scroll for scroll compressor
JPS6245008B2 (en)
JPH04128584A (en) Scroll member for scroll compressor and manufacture thereof

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees