JP2910123B2 - Method of forming oil sump groove on the end face of aluminum alloy rotor - Google Patents
Method of forming oil sump groove on the end face of aluminum alloy rotorInfo
- Publication number
- JP2910123B2 JP2910123B2 JP3398190A JP3398190A JP2910123B2 JP 2910123 B2 JP2910123 B2 JP 2910123B2 JP 3398190 A JP3398190 A JP 3398190A JP 3398190 A JP3398190 A JP 3398190A JP 2910123 B2 JP2910123 B2 JP 2910123B2
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- weight
- oil sump
- aluminum alloy
- face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Applications Or Details Of Rotary Compressors (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ベーンロータリータイプのコンプレッサー
のアルミニウム製ローターの改良に関し、特に軽量なア
ルミニウム合金製ローターの焼き付き防止用油溜り溝の
成形方法に関するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an aluminum rotor of a vane rotary type compressor, and more particularly to a method of forming a seizure preventing oil reservoir groove of a lightweight aluminum alloy rotor. It is.
カーエアコン等に用いられるコンプレッサーのロータ
ーは、第1図に示す様にベーンがスライドする複数のベ
ーン溝を有し、回転するシャフトと一体となっている。
ローターは、シリンダブロックの両側に固定されたサイ
ドプレートの内壁面と摺動しながら回転する。ロータ
ー、ベーン、シリンダブロック、両サイドプレートの5
つの部品で仕切られた圧縮室に吸入された冷却ガスは、
圧縮後、吐出される。圧縮室は気密性を必要とするた
め、各部品間のクリアランスは極めて小さく設計されて
いる上、特にローターとサイドプレートとは、圧縮力を
受けながら摺動する為、焼き付きが発生しやすい。A rotor of a compressor used for a car air conditioner or the like has a plurality of vane grooves in which vanes slide as shown in FIG. 1 and is integrated with a rotating shaft.
The rotor rotates while sliding on inner wall surfaces of side plates fixed to both sides of the cylinder block. 5 of rotor, vane, cylinder block, both side plates
The cooling gas sucked into the compression chamber divided by two parts
After compression, it is discharged. Since the compression chamber requires airtightness, the clearance between the components is designed to be extremely small. In addition, since the rotor and the side plate slide while receiving a compressive force, seizure easily occurs.
従来、ローターは鋼材や鉄系の焼結合金が、サイドプ
レートは片状黒鉛鋳鉄や鉄系焼結合金が用いられてい
た。鉄系材料の組合せでは、材料の耐摩耗性が比較的良
好である上、片状黒鉛鋳鉄や焼結合金は保油性に優れる
ため、焼き付きの問題はさほど深刻ではなかったが、場
合によっては、ローターの片端面或いは両側面に油溜り
溝を設けて焼き付きを防いでいた。Conventionally, a rotor is made of steel or an iron-based sintered alloy, and a side plate is made of flaky graphite cast iron or an iron-based sintered alloy. In the combination of iron-based materials, the wear resistance of the material is relatively good, and flaky graphite cast iron and sintered alloy are excellent in oil retention, so the problem of seizure was not so serious, but in some cases, An oil sump groove was provided on one end or both sides of the rotor to prevent seizure.
近年、コンプレッサーの軽量化のニーズが高まり鉄系
材料のアルミ化が検討されてきた。急冷凝固粉末を原料
とした粉末アルミ合金や連鋳技術の進歩による高強度ア
ルミ材の開発により、従来アルミ材では使用できなかっ
たローターのアルミ化が可能となった。サイドプレート
に関しても、A390材等のAl−高Si材の採用によりアルミ
化が可能となった。これら合金は、耐摩耗性・耐焼き付
き性を向上させ、クリアランス精度を高レベルに保つた
めにSi等の合金成分を多量に含んでいるにもかかわら
ず、ローターとサイドプレート間の耐焼き付き性は十分
でなく、特に摺動面にて油が切れた場合に容易に焼き付
きが発生する為、ローター端面の油溜り溝が必須であ
る。In recent years, the need for lighter compressors has increased, and aluminum-based iron-based materials have been studied. With the development of powdered aluminum alloys made from rapidly solidified powders and high-strength aluminum materials with advances in continuous casting technology, it has become possible to convert rotors to aluminum, which could not be used with conventional aluminum materials. As for the side plate, aluminum can be used by adopting Al-high Si material such as A390 material. Although these alloys contain a large amount of alloy components such as Si to improve wear resistance and seizure resistance and maintain a high level of clearance accuracy, the seizure resistance between the rotor and the side plate is high. It is not sufficient, and especially when oil runs out on the sliding surface, seizure easily occurs. Therefore, an oil sump groove on the rotor end face is essential.
しかしながら、アルミ合金製ローターの場合は製法上
の制約より、従来の鉄系焼結ローターの様に粉末成形時
に油溜り溝を成形することが出来ないため、油溜り溝の
加工工程を新たに付加しなくてはならない。加工方法と
しては、エンドミル加工や放電加工が考えられるが、設
備が高級な上、加工も高価につくという問題点がある。
また、エンドミル加工では溝形状付与の自由度も小さ
い。However, in the case of aluminum alloy rotors, oil sump grooves cannot be formed at the time of powder molding unlike conventional iron-based sintered rotors due to restrictions on the manufacturing method, so a new oil sump groove processing step was added. I have to do it. As a machining method, end mill machining or electric discharge machining can be considered, but there is a problem that the equipment is expensive and machining is expensive.
In addition, in the end milling, the degree of freedom in providing the groove shape is small.
本発明は上記のような問題点を解決することを目的と
するもので、ローター端面に油溜り溝を有するベーンロ
ータリータイプのコンプレッサー用のアルミニウム合金
製ローターを経済的に製造することを目的とする。An object of the present invention is to solve the above problems, and an object of the present invention is to economically manufacture a rotor made of an aluminum alloy for a vane rotary type compressor having an oil sump groove on a rotor end face. .
本発明は、アルミニウム合金製ローターの油溜り溝
を、簡単にかつ安価に成形する方法として、サイドプレ
ートと摺動するローター端面の油溜り溝を、突起部先端
形状Rが0.1〜2.0mmの範囲にありかつ突起部側面の接線
角が刻印方向に対して30〜75゜である金型を用いて、温
間で凹状の溝部を加圧刻印することにより成形すること
を特徴とする方法を提供するものである。The present invention provides a method for easily and inexpensively forming an oil sump groove of an aluminum alloy rotor by forming an oil sump groove on an end face of a rotor that slides with a side plate in a range of 0.1 to 2.0 mm. Using a metal mold having a tangent angle of 30 to 75 ° with respect to the engraving direction on the side surface of the protrusion, and press-marking the concave groove portion at a warm temperature to provide a method. Is what you do.
本発明の好ましい実施態様においては、上記ローター
の材料となるアルミニウム合金は、コンプレッサーを構
成する他の部品とのクリアランスを高精度に安定させる
ために低熱膨張であることが必要であり、かつ耐摩耗
性、高剛性であることが必要であるためSiを12〜30重量
%含有することが望ましく、さらに必要に応じて、高強
度化、高硬度化を図るために時効硬化元素であるCuを0.
5〜5.0重量%およびMgを0.2〜2.0重量%含んでいること
が望ましい。また、必要に応じて耐熱性、耐摩耗性或い
は機械的性質を改善するために、Fe,Ni,Mn等の遷移元素
を1.0〜10.0重量%含有させている。In a preferred embodiment of the present invention, the aluminum alloy used as the material of the rotor needs to have low thermal expansion in order to stabilize the clearance with other components constituting the compressor with high precision, and it is necessary to have abrasion resistance. It is necessary to contain Si in an amount of 12 to 30% by weight because it is necessary to have high stiffness and high stiffness. .
It is desirable to contain 5 to 5.0% by weight and 0.2 to 2.0% by weight of Mg. Further, in order to improve heat resistance, wear resistance or mechanical properties as needed, 1.0 to 10.0% by weight of a transition element such as Fe, Ni, Mn is contained.
上記の加圧刻印は、ローター自身を軟化させるために
通常は150〜450℃に加熱し、油溜り溝の深さは一般に2.
0mm以下とする。The above pressure stamping is usually heated to 150-450 ° C to soften the rotor itself, and the depth of the oil sump groove is generally 2.
0 mm or less.
第2図(A)および第3図(A)は夫々第1図に示さ
れるような油溜り溝を加圧刻印するのに用いられる金型
の例を示す断面図であり第2図(B)および第3図
(B)は夫々上記金型により得られる油溜り溝の形状を
示す概念図である。こゝで第2図(A)には金型突起部
の先端形状を表わす曲率半径Rと突起部側面の接線角θ
が示されている。FIGS. 2 (A) and 3 (A) are cross-sectional views each showing an example of a mold used for stamping an oil reservoir groove as shown in FIG. 1 with pressure. ) And FIG. 3 (B) are conceptual diagrams showing the shape of the oil sump groove obtained by the mold, respectively. Here, FIG. 2 (A) shows a curvature radius R representing a tip shape of a mold projection and a tangent angle θ of a side surface of the projection.
It is shown.
以下、この発明に適合するローターの材質であるアル
ミニウム合金の上記組成範囲について説明する。アルミ
ニウム合金は粉末焼結合金か連鋳合金の何れでもよい。Hereinafter, the above-mentioned composition range of the aluminum alloy which is the material of the rotor conforming to the present invention will be described. The aluminum alloy may be either a powder sintered alloy or a continuous cast alloy.
主要な添加元素であるSiは、含有量を増加させること
により、膨張係数を下げ、耐摩耗性、剛性を向上するの
に有効な元素である。12重量%未満では熱膨張係数が高
く、耐摩耗性も十分でなく、30重量%を越えて含有させ
ると材質の延性が劣化しローターの切り欠き靭性値が低
下するため、Si含有量は12.0重量%以上30.0重量%以下
が良い。また、12重量%未満では材料の変形能が大きい
ため、本発明の特徴の一つである温間の刻印成形の必要
はなく、30重量%を越えて含有させると材料の延性が低
下するため、刻印成形により割れが発生し易くなる。こ
の観点からもSi含有量は12.0重量%以上30.0重量%以下
であることが望ましい。Si, which is a main additive element, is an element effective for decreasing the expansion coefficient and improving wear resistance and rigidity by increasing the content. If the content is less than 12% by weight, the coefficient of thermal expansion is high and the wear resistance is not sufficient. If the content exceeds 30% by weight, the ductility of the material is deteriorated and the notch toughness value of the rotor is reduced. It is preferable that the content is not less than 30.0% by weight and not more than 3% by weight. If the content is less than 12% by weight, the deformability of the material is large, so that it is not necessary to perform warm stamping, which is one of the features of the present invention. If the content exceeds 30% by weight, the ductility of the material is reduced. In addition, cracks are easily generated by stamping. Also from this viewpoint, the Si content is desirably 12.0% by weight or more and 30.0% by weight or less.
CuおよびMgは、合金の高強度化、高硬度化を図るため
の時効硬化型元素である。Cu含有量が0.5重量%未満、M
g含有量が0.2重量%未満では、十分な強度、硬度が得ら
れない。Cu含有量が5重量%を越える場合またはMg含有
量が2重量%を越える場合は粗大な析出物が生成されか
えって強度が劣化する上、熱安定性が低下する。よっ
て、Cu含有量を0.5〜5.0重量%及びMg含有量を0.2〜2.0
重量%とすることが望ましい。Cu and Mg are age hardening elements for increasing the strength and hardness of the alloy. Cu content less than 0.5% by weight, M
If the g content is less than 0.2% by weight, sufficient strength and hardness cannot be obtained. When the Cu content exceeds 5% by weight or when the Mg content exceeds 2% by weight, coarse precipitates are formed and the strength is deteriorated, and the thermal stability is lowered. Therefore, the Cu content is 0.5-5.0% by weight and the Mg content is 0.2-2.0%.
% By weight.
必要に応じて耐熱性、耐摩耗性或いは機械的性質を改
善するために、Fe,Ni,Mn等の遷移元素を含有させている
が、含有量が1.0重量%未満ではその効果が小さく、10.
0重量%を越えると材料の靭性を低下させ、材質の信頼
性を欠く上、変形能が低下し刻印成形による亀裂が発生
し易くなるため、これら遷移元素の含有量を1.0〜10.0
重量%とすることが良い。If necessary, a transition element such as Fe, Ni, or Mn is contained in order to improve heat resistance, wear resistance, or mechanical properties. However, if the content is less than 1.0% by weight, the effect is small. .
If the content exceeds 0% by weight, the toughness of the material is reduced, the reliability of the material is lost, the deformability is reduced, and cracks are easily generated by stamping. Therefore, the content of these transition elements is adjusted to 1.0 to 10.0.
% By weight.
上記組成を有するローターに油溜り溝を刻印成形する
場合、材料の延性を低下させるSiあるいは遷移元素等を
多量に含有しているため、冷間での刻印成形では、割れ
や亀裂を生じてしまう。When stamping an oil sump groove on a rotor having the above composition, since a large amount of Si or a transition element that reduces the ductility of the material is contained, cracking or cracking occurs in stamping in the cold state. .
そこで、材料を加熱して軟化させた状態で刻印成形す
る必要がある。加熱温度は、材料の組成や所要の油溜り
溝性状によって異なるが、刻印成形時にローター自身が
150〜450℃に加熱されていることが望ましい。150℃未
満であると割れや亀裂を生じる他、変形抵抗が大きく高
いプレス力を必要とする。450℃を越えると材料が焼鈍
されたり、Si晶等の析出物や晶出物が必要以上に粗大化
したりして材質が劣化する他、周辺設備の仕様が高級に
なる。よって、加圧刻印のローター自身の加熱温度は15
0〜450℃であることが望ましい。Therefore, it is necessary to perform stamp forming in a state where the material is heated and softened. The heating temperature depends on the composition of the material and the required properties of the oil sump groove.
Desirably, it is heated to 150 to 450 ° C. If the temperature is lower than 150 ° C., cracks and cracks are generated, and a large deformation resistance and a high pressing force are required. If the temperature exceeds 450 ° C., the material is annealed, precipitates such as Si crystals and crystallized substances become coarser than necessary, and the material deteriorates, and the specifications of peripheral equipment become high-grade. Therefore, the heating temperature of the rotor itself for pressure stamping is 15
Desirably, the temperature is 0 to 450 ° C.
次に、金型の突起部形状の範囲限定について説明す
る。Next, the range limitation of the shape of the protrusion of the mold will be described.
前述のように、ローター材料は延性を低下させるSiあ
るいは遷移元素等を多量に含有しているため、温間刻印
成形においても割れや亀裂を生じ易い。特に、突起部先
端Rが0.1mm未満であると割れや亀裂を生じ易くなる。
一方、先端部Rが2.0mmを越えると、油溜り溝の深さを
十分に確保しようとした場合に大きな加圧力を必要と
し、加圧方向と垂直方向への変形量が大きくなり、ロー
ターのベーン溝周辺に変形を与え、ベーン溝幅を狭めた
り、寸法精度を悪化させたりする。よって、金型の突起
部の先端形状Rが0.1〜2.0mmであることが良い。As described above, since the rotor material contains a large amount of Si, a transition element, or the like that reduces ductility, cracks and cracks are likely to occur even in warm stamping. In particular, if the tip R of the projection is less than 0.1 mm, cracks and cracks are likely to occur.
On the other hand, if the tip R exceeds 2.0 mm, a large pressing force is required to sufficiently secure the depth of the oil sump groove, and the amount of deformation in the pressing direction and the vertical direction increases, and the rotor It deforms around the vane groove, narrowing the vane groove width and deteriorating dimensional accuracy. Therefore, the tip shape R of the protrusion of the mold is preferably 0.1 to 2.0 mm.
金型の突起部側面の接線角は、30゜未満であると、ロ
ーター端面側への盛り上がりが大きくなり、先端部とロ
ーター材の食い付きが起こる。75゜を越えると先端部R
形状が大きい場合と同様な問題が発生する為、金型の突
起部の接線角は刻印方向に対して30゜〜75゜とする。If the tangent angle on the side surface of the protrusion of the mold is less than 30 °, the swelling toward the rotor end face side becomes large, and the tip portion and the rotor material bite. Exceeding 75 mm, tip R
Since the same problem as in the case of a large shape occurs, the tangent angle of the protrusion of the mold is set to 30 ° to 75 ° with respect to the marking direction.
また、刻印成形によって得られる溝深さが2.0mmを越
えると割れや亀裂が発生し易くなることや、塑性変形に
より材料が端面やベーン溝周辺へ移動し寸法精度が得ら
れなくなることから、通常は油溜り溝深さは2.0mmが限
度である。Also, if the groove depth obtained by stamping exceeds 2.0 mm, cracks and cracks are likely to occur, and the material will move to the end face and around the vane groove due to plastic deformation and the dimensional accuracy will not be obtained, so it is usually The maximum depth of the oil sump groove is 2.0mm.
以上説明した様に本発明によれば、コンプレッサーの
アルミニウム合金製ローター端面の油溜り溝を、温間に
て凹状の溝部を加圧刻印することにより、簡単なプレス
設備を用い簡易な作業にて安価に且つ材料歩留まり良く
成形できるに至った。As described above, according to the present invention, the oil sump groove on the aluminum alloy rotor end face of the compressor is hot-pressed and stamped into the concave groove portion, so that simple work can be performed using a simple press facility. Molding can be performed at low cost and with good material yield.
ローター材として15種類の粉末焼結アルミニウム合金
と2種類の連鋳アルミニウム合金を用意し、刻印成形条
件を変えて実験を行った結果を表1に示した。すなわ
ち、サンプルNo.1〜21は粉末焼結合金であり、サンプル
No.22〜29は連鋳合金である。Table 1 shows the results of experiments in which 15 types of powdered sintered aluminum alloys and 2 types of continuously cast aluminum alloys were prepared as rotor materials and the engraving molding conditions were changed. That is, Sample Nos. 1 to 21 are powder sintered alloys,
Nos. 22 to 29 are continuous cast alloys.
第1図はベーンロータリータイプのコンプレッサー用ロ
ーターを示す概念図、第2図(A)および第3図(A)
は夫々第1図に示されるような油溜り溝を加圧刻印する
ために用いられる金型の例を示す断面図であり第2図
(B)および第3図(B)は夫々上記金型により得られ
る油溜り溝の形状を示す概念図である。FIG. 1 is a conceptual diagram showing a vane rotary type compressor rotor, FIG. 2 (A) and FIG. 3 (A).
FIGS. 2A and 2B are cross-sectional views showing examples of dies used for stamping oil sump grooves as shown in FIGS. 1 and 2, respectively. FIGS. 2B and 3B show the dies, respectively. It is a conceptual diagram which shows the shape of the oil sump groove obtained by this.
フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F04C 18/356 F04C 29/00 B22F 3/24 Continuation of the front page (58) Field surveyed (Int. Cl. 6 , DB name) F04C 18/356 F04C 29/00 B22F 3/24
Claims (3)
凹状の油溜り溝を、突起部先端形状Rが0.1〜2.0mmの範
囲にありかつ突起部側面の接線角が刻印方向に対して30
〜75゜である金型を用いて、温間で加圧刻印することを
特徴とするベーンロータリータイプのコンプレッサー用
のアルミニウム合金製ローター端面の油溜り溝の成形方
法。1. A concave oil sump groove is formed on an end face of a rotor that slides with a side plate, a tip R of a projection is in a range of 0.1 to 2.0 mm, and a tangent angle of a side face of the projection is 30 degrees with respect to a marking direction.
A method of forming an oil sump groove on an end face of a rotor made of an aluminum alloy for a vane rotary type compressor, wherein the stamping is performed at a warm pressure using a mold of up to 75 °.
で行なう請求項(1)に記載の方法。3. The method according to claim 1, wherein the pressure stamping is performed at a rotor temperature of 150 to 450 ° C.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3398190A JP2910123B2 (en) | 1990-02-16 | 1990-02-16 | Method of forming oil sump groove on the end face of aluminum alloy rotor |
US07/969,516 US5265457A (en) | 1990-02-16 | 1992-10-30 | Method of forming an oil groove on the end surface of a rotor of an aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3398190A JP2910123B2 (en) | 1990-02-16 | 1990-02-16 | Method of forming oil sump groove on the end face of aluminum alloy rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03242490A JPH03242490A (en) | 1991-10-29 |
JP2910123B2 true JP2910123B2 (en) | 1999-06-23 |
Family
ID=12401666
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3398190A Expired - Fee Related JP2910123B2 (en) | 1990-02-16 | 1990-02-16 | Method of forming oil sump groove on the end face of aluminum alloy rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2910123B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102086870A (en) * | 2009-12-03 | 2011-06-08 | 耐力压缩机(北京)有限公司 | Slip sheet for handpiece of air compressor |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5310326A (en) * | 1992-09-14 | 1994-05-10 | Mainstream Engineering Corporation | Rotary compressor with improved bore configuration and lubrication system |
JP5005888B2 (en) * | 2005-03-24 | 2012-08-22 | 旭テックTdm株式会社 | Production method of metal products |
JP6988932B2 (en) * | 2020-01-29 | 2022-01-05 | 株式会社富士通ゼネラル | Rotary compressor |
-
1990
- 1990-02-16 JP JP3398190A patent/JP2910123B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102086870A (en) * | 2009-12-03 | 2011-06-08 | 耐力压缩机(北京)有限公司 | Slip sheet for handpiece of air compressor |
Also Published As
Publication number | Publication date |
---|---|
JPH03242490A (en) | 1991-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3942954A (en) | Sintering steel-bonded carbide hard alloy | |
US4696866A (en) | Fiber reinforced metal composite material | |
EP0577062B1 (en) | Oil pump made of aluminum alloys | |
EP0375337B1 (en) | Parts for use in rotary gear pump | |
US5976214A (en) | Slide member of sintered aluminum alloy and method of manufacturing the same | |
US5277562A (en) | Scroll fluid machine and producing method for the same | |
JP2910123B2 (en) | Method of forming oil sump groove on the end face of aluminum alloy rotor | |
US6492033B2 (en) | Lead-free plain bearing and method for its manufacture | |
US5265457A (en) | Method of forming an oil groove on the end surface of a rotor of an aluminum alloy | |
US4861372A (en) | Roller in rotary compressor and method for producing the same | |
JP2509052B2 (en) | Nitrogen compound aluminum sintered alloy and method for producing the same | |
JPH02136586A (en) | Vane type compressor | |
JPH06122933A (en) | High ductility al sintered plastic fluidized alloy, its production and its application | |
JP2577004B2 (en) | Vane | |
CN101020992A (en) | Sintered metal material for compressor | |
JPH0551708A (en) | Wear resistant material for compressor and compressor using the same | |
JPH02130289A (en) | Vane type compressor | |
JPS63201388A (en) | Vane type compressor | |
JP2000283060A (en) | Gear rotor, gear rotor set, and manufacture thereof | |
JPH11140603A (en) | Wear resistant sintered alloy material for part of compressor | |
JPH06207253A (en) | Iron base sliding part material | |
JPH07173509A (en) | Wear resistant material, production thereof and compressor using the same material | |
JPH112189A (en) | Gear rotor set made of powder aluminum alloy, and manufacture thereof | |
JPH0551709A (en) | Sliding parts material for compressor | |
JPH06128666A (en) | Powdery composite material for scroll |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |