JP4188970B2 - Cam lobe material, camshaft using the same, and method of manufacturing cam lobe material - Google Patents

Cam lobe material, camshaft using the same, and method of manufacturing cam lobe material Download PDF

Info

Publication number
JP4188970B2
JP4188970B2 JP2005512070A JP2005512070A JP4188970B2 JP 4188970 B2 JP4188970 B2 JP 4188970B2 JP 2005512070 A JP2005512070 A JP 2005512070A JP 2005512070 A JP2005512070 A JP 2005512070A JP 4188970 B2 JP4188970 B2 JP 4188970B2
Authority
JP
Japan
Prior art keywords
cam lobe
cam
lobe material
density
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005512070A
Other languages
Japanese (ja)
Other versions
JPWO2005010226A1 (en
Inventor
浩行 高村
俊輔 竹口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Piston Ring Co Ltd
Original Assignee
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Piston Ring Co Ltd filed Critical Nippon Piston Ring Co Ltd
Publication of JPWO2005010226A1 publication Critical patent/JPWO2005010226A1/en
Application granted granted Critical
Publication of JP4188970B2 publication Critical patent/JP4188970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2303/00Manufacturing of components used in valve arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H53/00Cams ; Non-rotary cams; or cam-followers, e.g. rollers for gearing mechanisms
    • F16H53/02Single-track cams for single-revolution cycles; Camshafts with such cams
    • F16H53/025Single-track cams for single-revolution cycles; Camshafts with such cams characterised by their construction, e.g. assembling or manufacturing features

Description

本発明は、内燃機関に用いられるカムロブ材、これを用いたカムシャフト、及びカムロブ材の製造方法に関する。  The present invention relates to a cam lobe material used in an internal combustion engine, a camshaft using the cam lobe material, and a cam lobe material manufacturing method.

内燃機関(エンジン)に用いられる動弁装置のカムシャフトとして、シャフトにカムロブを備えた組立式のカムシャフトが知られている。このカムシャフトに備えられるカムロブは、転がり接触するカムフォロワ(ローラフォロワ)を相手材とするもの、及び、摺動接触(滑り接触)するカムフォロワ(スリッパフォロワ)を相手材とするもの、に分けられる(例えば、特許文献1参照)。  As a camshaft of a valve operating apparatus used in an internal combustion engine (engine), an assembly type camshaft having a cam lobe on the shaft is known. The cam lobe provided in this camshaft is divided into a cam follower (roller follower) that makes rolling contact and a cam follower (slipper follower) that makes sliding contact (sliding contact). For example, see Patent Document 1).

こうした内燃機関において、カムシャフトやロッカーアーム等の部品は、運転中に高速で摺動することから、摺動特性が要求されている。特に、上述の転がり接触するローラフォロワを相手材とするカムロブは、ローラフォロワとの接触面積が少なく、その外周面において耐摩耗性、耐ピッチング性及び耐スカッフィング性の全ての摺動特性に優れることが要求されている。  In such an internal combustion engine, parts such as a camshaft and a rocker arm slide at high speed during operation, and thus sliding characteristics are required. In particular, the cam lobe that uses the roller follower that is in rolling contact as described above has a small contact area with the roller follower and has excellent sliding properties such as wear resistance, pitting resistance, and scuffing resistance on the outer peripheral surface thereof. Is required.

このため、従来より、鋳造時にカムノーズ部分に冷やし金を用いて急速凝固させ、カムノーズの表面部分に固い白鋳鉄組織を形成したチルカムを備えるカムシャフトが用いられている。このチルカムシャフトは、外周表面に固いチル組織を有するため、優れた耐摩耗性及び耐スカッフィング性を有するものである。  For this reason, a camshaft having a chill cam in which a hard white cast iron structure is formed on the surface portion of the cam nose by rapidly solidifying the cam nose portion with a cooling metal during casting has been used. Since this chill cam shaft has a hard chill structure on the outer peripheral surface, it has excellent wear resistance and scuffing resistance.

一方、組立式カムシャフトにおいて、カムピースを温間成形することにより、カムピースの密度を向上させて、シャフトの拡径処理の際にカムピースが割れるという問題を解決する技術が知られている(例えば、特許文献2参照)。
:特開2001−240948号公報 :特開2003−14085号公報
On the other hand, in the assembly type camshaft, a technology is known that improves the density of the cam piece by warm forming the cam piece and solves the problem that the cam piece breaks during the diameter expansion process of the shaft (for example, Patent Document 2).
: JP-A-2001-240948 : JP 2003-14085 A

しかしながら、チルカムシャフトは、耐ピッチング特性に劣るという問題があった。そのため、チルカムシャフトは、高負荷のかかるエンジンには使用が難しいという問題があった。  However, the chill cam shaft has a problem that it has poor pitting resistance. For this reason, the chill camshaft has a problem that it is difficult to use for a high load engine.

また、温間成形によるカムピースの密度の向上には限界があり、チルカムシャフトと同様に、高負荷のかかるエンジンには使用が難しいという問題があった。  In addition, there is a limit to improving the density of the cam piece by warm forming, and there is a problem that it is difficult to use for an engine with a high load, like the chill cam shaft.

そこで、本発明は、こうした問題点を解決し、耐摩耗性、耐ピッチング性及び耐スカッフィング性等の摺動特性に優れ、高負荷のかかるエンジンに好適に使用できるカムロブ材、これを用いたカムシャフト及びカムロブ材の製造方法を提供することを目的とする。  Accordingly, the present invention solves these problems, has excellent sliding characteristics such as wear resistance, pitting resistance and scuffing resistance, and is a cam lobe material that can be suitably used for a high-load engine, and a cam using the same It is an object of the present invention to provide a method for manufacturing a shaft and a cam lobe material.

上記課題を解決する本発明のカムロブ材は、Ni:0.3−5.0質量%、C:0.5−1.2質量%、B及びPの少なくとも一方:0.02−0.3質量%及び残部が不可避的不純物を含有する鉄系焼結合金からなり、外周面硬さがHRC50以上で、かつ、密度が7.5g/cm以上であることを特徴とする。The cam lobe material of the present invention that solves the above problems is Ni: 0.3-5.0 mass%, C: 0.5-1.2 mass%, and at least one of B and P: 0.02-0.3. The mass% and the balance are made of an iron-based sintered alloy containing inevitable impurities, the outer peripheral surface hardness is HRC50 or more, and the density is 7.5 g / cm 3 or more.

この発明によれば、特定の成分組成からなる鉄基合金からカムロブ材を作製するので、高硬度、高密度のカムロブ材を提供することができる。特に、B及びPの少なくともいずれかが含有されていることにより、焼結中に液相を発生させて、製造されたカムロブ材の密度を高めることができる。その結果、本発明のカムロブ材は、耐摩耗性、耐スカッフィング性、耐ピッチング性等の摺動特性に優れたものとなる。そのため、高負荷のかかるエンジン、たとえば、通常のエンジンの2倍程度の面圧のかかるエンジンに対しても、好適に使用できるカムロブを提供することができる。  According to this invention, since the cam lobe material is produced from the iron-based alloy having a specific component composition, a cam lobe material having high hardness and high density can be provided. In particular, when at least one of B and P is contained, a liquid phase is generated during sintering, and the density of the manufactured cam lobe material can be increased. As a result, the cam lobe material of the present invention has excellent sliding characteristics such as wear resistance, scuffing resistance, and pitting resistance. Therefore, it is possible to provide a cam lobe that can be suitably used for an engine with a high load, for example, an engine with a surface pressure about twice that of a normal engine.

上記本発明のカムロブ材においては、前記鉄系焼結合金は、さらに、Mo:2.5質量%以下を含有することを特徴とする。この発明によれば、上述の作用に加えて、焼結後のカムロブ材の焼入れ性を高め、鉄合金基地の固溶効果を促進したカムロブ材が得られる。  In the cam lobe material of the present invention, the iron-based sintered alloy further contains Mo: 2.5% by mass or less. According to this invention, in addition to the above-mentioned action, a cam lobe material is obtained in which the hardenability of the sintered cam lobe material is enhanced and the solid solution effect of the iron alloy base is promoted.

上記本発明のカムロブ材においては、前記カムロブ材は、ローラフォロワを相手材とすることを特徴とする。この発明によれば、カムロブ材が、その靭性及び硬さにより、繰り返し接触疲労強度が向上したものであるため、耐ピッチング特性に代表される繰り返し接触疲労強度が必要とされるローラフォロワの相手材として好適に使用することができる。  In the cam lobe material of the present invention, the cam lobe material has a roller follower as a counterpart material. According to this invention, since the cam lobe material has improved repeated contact fatigue strength due to its toughness and hardness, it is a counterpart material for a roller follower that requires repeated contact fatigue strength typified by pitting resistance. Can be suitably used.

上記課題を解決する本発明のカムシャフトは、上記本発明のカムロブ材からなるカムロブを備えたことを特徴とする。この発明によれば、耐摩耗性、耐スカッフィング性、耐ピッチング性等の摺動特性に優れ、高負荷のかかるエンジンにも好適に使用できるカムシャフトを提供することができる。  The camshaft of the present invention that solves the above-described problems is characterized by including a cam lobe made of the cam lobe material of the present invention. According to the present invention, it is possible to provide a camshaft that is excellent in sliding characteristics such as wear resistance, scuffing resistance, and pitting resistance, and that can be suitably used for a high-load engine.

さらに、上記課題を解決するカムロブ材の製造方法は、上記本発明のカムロブ材の製造方法であって、前記鉄系焼結合金の組成となるように調製された鉄系合金粉末を所定のカムロブ形状に圧縮成形する圧縮成形工程と、前記圧縮成形された成形体を焼結する焼結工程とを二度以上繰り返し、前記焼結された焼結体を焼入れ・焼戻し処理することを特徴とする。  Furthermore, a cam lobe material manufacturing method for solving the above-described problems is the cam lobe material manufacturing method according to the present invention, wherein an iron-based alloy powder prepared to have the composition of the iron-based sintered alloy is added to a predetermined cam lobe material. A compression molding step for compression molding into a shape and a sintering step for sintering the compression molded body are repeated twice or more, and the sintered sintered body is quenched and tempered. .

この発明によれば、最後の焼結工程の前後の寸法精度が高く、カムロブ製造後の切削をせずに済むか、切削量が少なくて済む。そのため、カムロブの製造にかかる手間と費用を低減させることができる。さらに、製造後のカムロブの外周面硬さをHRC50以上とすることができ、また、密度を7.5g/cm以上とすることができる。そのため、製造後のカムロブ材は、高硬度、高密度とすることができ、耐摩耗性、耐スカッフィング性、耐ピッチング性等の摺動特性に優れたものとすることができる。そのため、高負荷のかかるエンジン、たとえば、通常使用されているエンジンの2倍程度の面圧がかかるエンジンに対しても、好適に使用できるカムロブを提供することができる。According to the present invention, the dimensional accuracy before and after the last sintering step is high, and it is not necessary to cut after the cam lobe manufacturing or the cutting amount is small. Therefore, the labor and cost for manufacturing the cam lobe can be reduced. Furthermore, the outer peripheral surface hardness of the cam lobe after manufacture can be set to HRC50 or more, and the density can be set to 7.5 g / cm 3 or more. Therefore, the cam lobe material after manufacture can have high hardness and high density, and can have excellent sliding characteristics such as wear resistance, scuffing resistance, and pitting resistance. Therefore, it is possible to provide a cam lobe that can be suitably used even for an engine with a high load, for example, an engine with a surface pressure about twice that of a normally used engine.

上記本発明のカムロブ材の製造方法は、前記カムロブ材の外周面にショットブラストを施すことを特徴とする。この発明によれば、ショットブラストを行うことにより、カムロブ材の耐ピッチング性を向上させることができる。  The manufacturing method of the cam lobe material of the present invention is characterized in that shot blasting is performed on the outer peripheral surface of the cam lobe material. According to the present invention, the shot blasting can improve the pitting resistance of the cam lobe material.

以上のように、本発明のカムロブ材によれば、特定の成分組成からなる鉄基合金から製造されるので、高硬度、高密度のカムロブ材を提供することができる。特に、B及びPの少なくともいずれかが含有されていることにより、焼結中に液相を発生させて、製造されたカムロブ材の密度を高めることができる。その結果、本発明のカムロブ材は、耐摩耗性、耐スカッフィング性、耐ピッチング性等の摺動特性に優れたものとなる。そのため、高負荷のかかるエンジン、たとえば、通常のエンジンの2倍程度の面圧のかかるエンジンに対しても、好適に使用できるカムロブを提供することができる。そして、本発明のカムロブ材は、ローラタイプのカムフォロワの相手材として、好適に用いられるものとなる。  As described above, according to the cam lobe material of the present invention, since it is manufactured from an iron-based alloy having a specific component composition, it is possible to provide a cam lobe material having high hardness and high density. In particular, when at least one of B and P is contained, a liquid phase is generated during sintering, and the density of the manufactured cam lobe material can be increased. As a result, the cam lobe material of the present invention has excellent sliding characteristics such as wear resistance, scuffing resistance, and pitting resistance. Therefore, it is possible to provide a cam lobe that can be suitably used for an engine with a high load, for example, an engine with a surface pressure about twice that of a normal engine. The cam lobe material of the present invention is suitably used as a counterpart material for a roller type cam follower.

また、本発明のカムロブ材の製造方法によれば、最後の焼結工程の前後の寸法精度が高く、カムロブ材製造後の切削をせずに済むか、切削量が少なくて済む。そのため、カムロブ材の製造にかかる手間と費用を低減させることができる。さらに、製造後のカムロブ材の外周面硬さをHRC50以上とすることができ、また、密度を7.5g/cm以上とすることができる。そのため、製造後のカムロブ材は、高硬度、高密度とすることができ、耐摩耗性、耐スカッフィング性、耐ピッチング性等の摺動特性に優れたものとなる。そのため、高負荷のかかるエンジン、たとえば、通常のエンジンの2倍程度の面圧のかかるエンジンに対しても、好適に使用できるカムロブを提供することができる。Further, according to the method of manufacturing the cam lobe material of the present invention, the dimensional accuracy before and after the final sintering step is high, and it is not necessary to cut after the cam lobe material is manufactured, or the cutting amount is small. Therefore, it is possible to reduce labor and cost for manufacturing the cam lobe material. Furthermore, the outer peripheral surface hardness of the cam lobe material after manufacture can be set to HRC 50 or more, and the density can be set to 7.5 g / cm 3 or more. Therefore, the cam lobe material after production can have high hardness and high density, and has excellent sliding characteristics such as wear resistance, scuffing resistance, and pitting resistance. Therefore, it is possible to provide a cam lobe that can be suitably used for an engine with a high load, for example, an engine with a surface pressure about twice that of a normal engine.

[図1]本発明のカムロブ材を備えた内燃機関の動弁装置の一態様を示す斜視図及び本発明のカムシャフトの平面図である。
[図2]本発明の実施例の評価に用いた二円筒接触試験機の概略図である。
[図3]本発明の実施例について、Ni(ニッケル)含有量に対するカムロブ材の密度を示すグラフである。
[図4]本発明の実施例について、Ni含有量に対するカムロブ材の硬度を示すグラフである。
[図5]本発明の実施例について、Ni含有量に対するカムロブ材のピッチング発生回数を示すグラフである。
[図6]本発明の実施例について、Ni含有量に対するカムロブ材の寸法変化率を示すグラフである。
[図7]本発明の実施例について、Ni含有量に対するカムロブ材のカムリフト誤差を示すグラフである。
[図8]本発明の実施例について、C(炭素)含有量に対するカムロブ材の密度を示すグラフである。
[図9]本発明の実施例について、C含有量に対するカムロブ材の硬度を示すグラフである。
[図10]本発明の実施例について、P(リン)含有量に対するカムロブ材の密度を示すグラフである。
[図11]本発明の実施例について、P含有量に対するカムロブ材の硬度を示すグラフである。
[図12]本発明の実施例について、P含有量に対するカムロブ材のピッチング発生回数を示すグラフである。
[図13]本発明の実施例について、B(ホウ素)含有量に対するカムロブ材の密度を示すグラフである。
[図14]本発明の実施例について、B含有量に対するカムロブ材の硬度を示すグラフである。
[図15]本発明の実施例について、Mo(モリブデン)含有量に対するカムロブ材の密度を示すグラフである。
[図16]本発明の実施例について、Mo含有量に対するカムロブ材の硬度を示すグラフである。
FIG. 1 is a perspective view showing an embodiment of a valve operating apparatus for an internal combustion engine provided with a cam lobe material of the present invention and a plan view of a camshaft of the present invention.
FIG. 2 is a schematic view of a two-cylinder contact tester used for evaluation of examples of the present invention.
FIG. 3 is a graph showing the density of a cam lobe material with respect to the Ni (nickel) content for an example of the present invention.
FIG. 4 is a graph showing the hardness of the cam lobe material with respect to the Ni content in Examples of the present invention.
FIG. 5 is a graph showing the number of occurrences of pitching of the cam lobe material with respect to the Ni content in Examples of the present invention.
FIG. 6 is a graph showing the dimensional change rate of the cam lobe material with respect to the Ni content in Examples of the present invention.
FIG. 7 is a graph showing the cam lift error of the cam lobe material with respect to the Ni content in the example of the present invention.
FIG. 8 is a graph showing the density of the cam lobe material with respect to the C (carbon) content in Examples of the present invention.
FIG. 9 is a graph showing the hardness of the cam lobe material with respect to the C content in Examples of the present invention.
FIG. 10 is a graph showing the density of the cam lobe material relative to the P (phosphorus) content for the examples of the present invention.
FIG. 11 is a graph showing the hardness of the cam lobe material with respect to the P content in Examples of the present invention.
FIG. 12 is a graph showing the number of occurrences of pitching of the cam lobe material with respect to the P content in Examples of the present invention.
FIG. 13 is a graph showing the density of a cam lobe material with respect to B (boron) content in an example of the present invention.
FIG. 14 is a graph showing the hardness of the cam lobe material with respect to the B content in Examples of the present invention.
FIG. 15 is a graph showing the density of a cam lobe material with respect to the Mo (molybdenum) content for an example of the present invention.
FIG. 16 is a graph showing the hardness of the cam lobe material with respect to the Mo content in Examples of the present invention.

符号の説明Explanation of symbols

1 カムロブ材(回転接触用)
2 カムシャフト
3 ローラフォロワ(回転接触用のカムフォロワ)
4 内燃機関の動弁装置
5 カムロブ材(滑り接触用)
6 スリッパフォロワ(滑り接触用のカムフォロワ)
7 シャフト
8 カムロブ材の試験片
9 相手材円筒試験片
10 潤滑油
11 荷重
1 Cam lobe material (for rotating contact)
2 Camshaft 3 Roller follower (cam follower for rotating contact)
4 Valve operating device for internal combustion engine 5 Cam lobe material (for sliding contact)
6 Slipper follower (cam follower for sliding contact)
7 Shaft 8 Cam lobe test piece 9 Cylindrical test piece 10 Lubricating oil 11 Load

以下に、本発明のカムロブ材、カムシャフト及びカムロブ材の製造方法について説明する。  The cam lobe material, cam shaft, and cam lobe material manufacturing method of the present invention will be described below.

本発明のカムロブ材は、Ni:0.3−5.0質量%、C:0.5−1.2質量%、B及びPの少なくとも一方:0.02−0.3質量%及び残部が不可避的不純物を含有する鉄系焼結合金からなり、外周面硬さHRCが50以上であり、密度が7.5g/cm以上である。鉄系焼結合金には、さらに、Mo:2.5質量%以下を含有させることができる。The cam lobe material of the present invention has Ni: 0.3-5.0% by mass, C: 0.5-1.2% by mass, at least one of B and P: 0.02-0.3% by mass, and the balance It is made of an iron-based sintered alloy containing inevitable impurities, has an outer peripheral surface hardness HRC of 50 or more, and a density of 7.5 g / cm 3 or more. The iron-based sintered alloy may further contain Mo: 2.5% by mass or less.

まず、鉄系焼結合金について説明する。  First, the iron-based sintered alloy will be described.

Ni(ニッケル)は、強度・靭性を高める作用がある。Niの含有量は、0.3−5.0質量%とする。Niが0.3質量%未満では、十分な強度・靭性が得られない。一方、Niが5.0質量%を超えると焼結時の寸法変化量が大きくなるため、精度が悪くなってしまう。Niは、1.0−3.0質量%含有させることが好ましい。  Ni (nickel) has an effect of increasing strength and toughness. The Ni content is 0.3-5.0% by mass. If Ni is less than 0.3% by mass, sufficient strength and toughness cannot be obtained. On the other hand, if Ni exceeds 5.0% by mass, the amount of dimensional change during sintering increases, resulting in poor accuracy. Ni is preferably contained in an amount of 1.0 to 3.0% by mass.

C(炭素)は、耐摩耗性を満足させるカム外周面硬さが得られる作用がある。Cの含有量は、0.5−1.2質量%とする。Cが0.5質量%未満では、焼入れ・焼戻し処理後に所望のカム外周面硬さが得られにくく、耐摩耗性に劣る。一方、Cが1.2質量%を超えると圧縮性が著しく低下し、密度が上がらない。Cは、0.8−1.0質量%含有させることが好ましい。  C (carbon) has an effect of obtaining a cam outer peripheral surface hardness that satisfies wear resistance. The C content is 0.5-1.2% by mass. When C is less than 0.5% by mass, it is difficult to obtain a desired cam outer peripheral surface hardness after quenching and tempering treatment, and wear resistance is poor. On the other hand, when C exceeds 1.2% by mass, the compressibility is remarkably lowered and the density is not increased. C is preferably contained in an amount of 0.8 to 1.0% by mass.

B(ホウ素)及びP(リン)は、Fe(鉄)及びCと低融点の三元共晶液相を生じて焼結を促進させる作用がある。B及びPの少なくともいずれかが、本発明のカムロブ材に用いる鉄系焼結合金に含まれている。このB及びPの少なくとも一方の含有量は、0.02−0.3質量%である。B及びPの少なくとも一方が0.02質量%未満では、上記の作用が小さく、後述する密度及び硬度を有さなくなる場合がある。一方、B及びPの少なくとも一方が0.3質量%を超えると、焼結時の収縮量が大きくなり、カムロブ材の寸法精度が悪化する。B及びPの少なくとも一方は、0.05−0.20質量%含有させることが好ましい。なお、B及びPの双方を含有させる場合には、そのBとPとの含有割合は、特に限定されないが、通常、B:P=2:1−1:2程度とする。  B (boron) and P (phosphorus) have the effect of promoting sintering by producing a low-melting ternary eutectic liquid phase with Fe (iron) and C. At least one of B and P is included in the iron-based sintered alloy used for the cam lobe material of the present invention. The content of at least one of B and P is 0.02-0.3% by mass. When at least one of B and P is less than 0.02% by mass, the above-described action is small, and the density and hardness described later may not be obtained. On the other hand, if at least one of B and P exceeds 0.3% by mass, the amount of shrinkage during sintering increases, and the dimensional accuracy of the cam lobe material deteriorates. At least one of B and P is preferably contained in an amount of 0.05-0.20% by mass. In addition, when both B and P are contained, the content ratio of B and P is not particularly limited, but is usually about B: P = 2: 1-1: 2.

任意に添加されるMo(モリブデン)は、焼入れ性を高め、鉄系合金基地の固溶効果を促進させる作用がある。Moの含有量は、2.5質量%以下とする。Moは含有量0.05質量%程度から少しずつ効果が得られるが、Moが2.5質量%を超えると圧縮性が著しく悪くなり、密度が上がらない。Moは、好ましくは、0.2−1.5質量%以下程度含有させることが望ましい。  Mo (molybdenum) added arbitrarily has the effect of enhancing the hardenability and promoting the solid solution effect of the iron-based alloy base. The Mo content is 2.5% by mass or less. The effect is obtained little by little from the content of about 0.05% by mass of Mo, but if Mo exceeds 2.5% by mass, the compressibility is remarkably deteriorated and the density is not increased. Mo is preferably contained in an amount of about 0.2 to 1.5% by mass or less.

なお、残部の不可避的不純物は、原料粉末に混入する微量の不純物の他、焼結用粉末に添加されるステアリン酸亜鉛のような潤滑剤やその他の添加成分の残留物も含まれる。  The remaining inevitable impurities include not only a trace amount of impurities mixed in the raw material powder, but also residues of lubricants such as zinc stearate added to the sintering powder and other additive components.

次いで、上述の鉄系焼結合金によるカムロブ材の物性について説明する。  Next, the physical properties of the cam lobe material using the iron-based sintered alloy will be described.

カムロブ材の外周面硬さは、HRC50以上とする。HRC50未満では耐摩耗性が満足できない。なお、カムロブ材の外周面硬さの上限値は特に限定されないが、通常、HRC60程度である。外周面硬さはHRC50−55であることが好ましい。ここで、カムロブ材の外周面とは、カムロブとしてカムシャフトに用いた場合にカムフォロワと摺動する面をいう。  The outer peripheral surface hardness of the cam lobe material is HRC50 or more. If it is less than HRC50, the wear resistance cannot be satisfied. The upper limit of the outer peripheral surface hardness of the cam lobe material is not particularly limited, but is usually about HRC60. The outer peripheral surface hardness is preferably HRC50-55. Here, the outer peripheral surface of the cam lobe material refers to a surface that slides with the cam follower when used as a cam shaft as a cam lobe.

また、カムロブ材の密度は、7.5g/cm以上とする。密度が7.5g/cm未満では、カムロブ材の有する空孔により強度が低下して、耐ピッチング性が悪くなり、高負荷のかかるエンジンには使用できない。なお、カムロブ材の密度の上限値は特に限定されないが、通常、7.7g/cm程度である。密度は、7.5−7.6g/cmであることが好ましい。The density of the cam lobe material is 7.5 g / cm 3 or more. If the density is less than 7.5 g / cm 3 , the strength of the cam lobe material is lowered and the pitting resistance is deteriorated, so that the engine cannot be used for a heavy load engine. The upper limit of the density of the cam lobe material is not particularly limited, but is usually about 7.7 g / cm 3 . The density is preferably 7.5-7.6 g / cm 3 .

以上のように、本発明のカムロブ材は、高密度・高硬度であるため、カムフォロワとの接触において、高い耐ピッチング特性を有する。このため、本発明のカムロブ材からなるカムロブは、高負荷のかかるエンジンに好適に使用することができる。さらに、本発明のカムロブ材は、耐摩耗性、耐スカッフィング性にも優れ、摺動特性に優れたものである。  As described above, since the cam lobe material of the present invention has a high density and high hardness, it has high pitting resistance in contact with the cam follower. For this reason, the cam lobe made of the cam lobe material of the present invention can be suitably used for an engine with a high load. Furthermore, the cam lobe material of the present invention is excellent in wear resistance and scuffing resistance and has excellent sliding characteristics.

また、本発明のカムロブ材は、ローラタイプのカムフォロワ(ローラフォロワ)の相手材として、好適に用いられる。ここで、図1(a)には、本発明のカムロブ材からなるカムロブ1を備えたカムシャフト2とローラフォロワ(転がり接触タイプのカムフォロワ)3が接触する態様を示した内燃機関の動弁装置4の斜視図を示す。なお、図1(a)の手前側にはカムシャフト2に備えられたカムロブ5とスリッパフォロワ(摺動接触タイプのカムフォロワ)6が示されている。  Further, the cam lobe material of the present invention is suitably used as a counterpart material for a roller type cam follower (roller follower). Here, FIG. 1A shows a valve operating apparatus for an internal combustion engine showing a mode in which a camshaft 2 provided with a cam lobe 1 of the present invention and a roller follower (rolling contact type cam follower) 3 are in contact with each other. 4 is a perspective view. A cam lobe 5 and a slipper follower (sliding contact type cam follower) 6 provided on the camshaft 2 are shown on the front side of FIG.

このローラフォロワ3としては、ローラタペット、ローラロッカーアーム等が挙げられる。このようなローラフォロワ3及びこの相手材となるカムロブ材1においては、耐ピッチング特性に代表される繰り返し接触疲労強度が必要とされる。本発明においては、カムロブ材の焼結中にB又は/及びP成分により液相を発生させ、カムロブ材を緻密化し、密度を向上させたものである。このようにして、カムロブ材の靭性及び硬さの向上が図られ、繰り返し接触疲労強度を向上させたものである。そのため、本発明のカムロブ材は、ローラフォロワの相手材として好適に使用することができる。  Examples of the roller follower 3 include a roller tappet and a roller rocker arm. In such a roller follower 3 and the cam lobe material 1 as the counterpart material, repeated contact fatigue strength typified by pitting resistance is required. In the present invention, a liquid phase is generated by the B or / and P component during the sintering of the cam lobe material, thereby densifying the cam lobe material and improving the density. Thus, the toughness and hardness of the cam lobe material are improved, and the repeated contact fatigue strength is improved. Therefore, the cam lobe material of the present invention can be suitably used as a counterpart material for a roller follower.

なお、上述の本発明のカムロブ材を用いることにより、図1(a)、図1(b)に示すようなカムシャフト2を提供することができる。このカムシャフト2の態様、製造方法については後述する。  In addition, the cam shaft 2 as shown to FIG. 1 (a) and FIG.1 (b) can be provided by using the cam lobe material of the above-mentioned this invention. The mode and manufacturing method of the camshaft 2 will be described later.

次いで、本発明のカムロブ材の製造方法について説明する。この製造方法は、上述の本発明のカムロブ材についてのものである。  Next, a method for producing the cam lobe material of the present invention will be described. This manufacturing method is for the cam lobe material of the present invention described above.

本発明のカムロブ材の製造方法は、上述の組成の鉄系焼結合金となるように配合、調製した鉄系合金粉末を用い、圧縮成形工程及び焼結工程を二度以上繰り返し、焼入れ・焼戻し処理を行うものである。さらに、カムロブ材の外周面にショットブラストを施すことができる。  The manufacturing method of the cam lobe material of the present invention uses an iron-based alloy powder blended and prepared so as to become an iron-based sintered alloy having the above composition, and repeats the compression molding step and the sintering step twice or more, and quenching and tempering The processing is performed. Furthermore, shot blasting can be performed on the outer peripheral surface of the cam lobe material.

鉄系合金粉末に添加する元素の組成、配合比、作用等は、上述のカムロブ材の説明におけるものと同様である。焼結後に、上述の範囲内の組成比となるように、鉄系合金粉末を配合、調製する。  The composition, blending ratio, action, etc. of the elements added to the iron-based alloy powder are the same as those in the description of the cam lobe material. After sintering, an iron-based alloy powder is blended and prepared so that the composition ratio is within the above range.

そうした鉄系合金粉末を、各成分が均等に混ざるように混合し、所定の形状に圧縮成形する圧縮成形工程について説明する。この圧縮成形工程は、2回以上行われる。なお、2回目以降の圧縮成形工程は、焼結工程の後に行われる。  A compression molding process will be described in which such iron-based alloy powder is mixed so that each component is evenly mixed and compression molded into a predetermined shape. This compression molding process is performed twice or more. The second and subsequent compression molding steps are performed after the sintering step.

この圧縮成形工程は、従来公知の圧縮成形装置を用いて行われ、通常、メカプレス等を用いてプレス成形が行われる。圧縮成形時の面圧は、最後の圧縮成形工程を除く圧縮成形工程(仮成形)においては、通常、5−7ton/cm程度とする。また、最後の圧縮成形工程においては、通常、7−12ton/cm程度とし、仮成形よりも高い面圧とする。なお、圧縮成形工程における温度は、通常の温度と同様であり、20−40℃程度で行う。This compression molding step is performed using a conventionally known compression molding apparatus, and usually press molding is performed using a mechanical press or the like. The surface pressure at the time of compression molding is usually about 5-7 ton / cm 2 in the compression molding process (temporary molding) excluding the last compression molding process. Moreover, in the last compression molding process, it is usually about 7-12 ton / cm < 2 >, and is set as a surface pressure higher than temporary molding. In addition, the temperature in a compression molding process is the same as normal temperature, and is performed at about 20-40 degreeC.

このように鉄系合金粉末を圧縮成形した後、その成形体を焼結する焼結工程について説明する。この焼結工程は、2回以上行われる。  After the iron-based alloy powder is compression-molded as described above, a sintering process for sintering the compact will be described. This sintering process is performed twice or more.

焼結工程は、従来公知の焼結装置を用いることができ、通常、真空焼結炉等を用いて行う。焼結工程における温度は、最後の焼結工程を除く焼結工程(仮焼結)においては、通常、650−850℃程度とする。また、最後の焼結工程においては、通常、1100−1200℃程度、好ましくは1130−1180℃程度とし、仮焼結よりも高い温度とする。焼結工程における成形体の周囲の雰囲気は、通常の焼結時の雰囲気と同様であり、特に限定されないが、Axガス、Rxガス、真空等の雰囲気の下で焼結が行われる。カムロブ材の成形体の焼結にかかる時間は、通常の時間と同様であり、特に限定されないが、30−90分程度である。  In the sintering step, a conventionally known sintering apparatus can be used, and it is usually performed using a vacuum sintering furnace or the like. The temperature in the sintering step is usually about 650-850 ° C. in the sintering step (temporary sintering) excluding the final sintering step. Moreover, in the last sintering process, it is about 1100-1200 degreeC normally, Preferably it is set to about 1130-1180 degreeC, and is set as temperature higher than temporary sintering. The atmosphere around the molded body in the sintering step is the same as that during normal sintering, and is not particularly limited, but sintering is performed under an atmosphere such as Ax gas, Rx gas, or vacuum. The time required for sintering the molded body of the cam lobe material is the same as the normal time and is not particularly limited, but is about 30 to 90 minutes.

次いで、最後の焼結工程で得られたカムロブ材の焼結体について、焼入れ・焼戻し処理を行う。焼入れ処理は、通常、熱処理炉等において、800−950℃で、30−150分程度保持した後、油、水等を用いて、30−100℃程度に急冷することにより行う。焼戻し処理は、上述の焼入れ処理の後、通常、120−200℃で、30−150分程度保持した後、2−10℃/分程度の速度で、10−40℃程度まで冷却することにより行う。焼入れ・焼戻し処理によれば、カム外周面の硬さを高めて、カムロブ材の耐摩耗性を向上させることができる。  Next, the sintered body of the cam lobe material obtained in the final sintering step is subjected to quenching / tempering treatment. The quenching treatment is usually performed by holding at 800-950 ° C. for about 30-150 minutes in a heat treatment furnace or the like and then rapidly cooling to about 30-100 ° C. using oil, water or the like. The tempering treatment is usually performed by holding at 120-200 ° C. for about 30-150 minutes and then cooling to about 10-40 ° C. at a rate of about 2-10 ° C./minute after the above-described quenching treatment. . According to the quenching / tempering treatment, the hardness of the outer peripheral surface of the cam can be increased and the wear resistance of the cam lobe material can be improved.

さらに、カムロブ材の焼結体の外周面に、ショットブラストを行うことが好ましい。ショットブラストを行うことにより、カムロブ材の外周面に残留圧縮応力を生じさせ、耐ピッチング性を向上させることができる。ショットブラストは、通常、カムロブ材を回転させ、その外周面にショットできるようにノズルを調整し、スチール、ガラスビーズ等のグリッドを、5kg/cm程度の圧力でカムロブ材の外周面にぶつけることにより処理が行われる。Furthermore, it is preferable to perform shot blasting on the outer peripheral surface of the sintered body of the cam lobe material. By performing shot blasting, residual compressive stress is generated on the outer peripheral surface of the cam lobe material, and the pitting resistance can be improved. Shot blasting usually involves rotating the cam lobe material, adjusting the nozzle so that it can be shot on the outer peripheral surface, and hitting the outer surface of the cam lobe material with a grid of steel, glass beads, etc. at a pressure of about 5 kg / cm 2. The processing is performed.

なお、本発明のカムロブ材の製造方法により製造されたカムロブ材は、最後の焼結工程の前後における寸法変化率が−−(±)0〜0.5%程度となる。この寸法変化率とは、三次元測定機を使用し、最後の焼結工程前の成形体とその焼結工程後の焼結体の外周形状を360°に渡り1°毎に最低一点を測定し、測定点からトレースされた両方の形状を重ね合わせて各測定点の寸法変化率を求め、そのうちの最大値を指す。  Note that the cam lobe material manufactured by the method of manufacturing a cam lobe material of the present invention has a dimensional change rate of about-(±) 0 to 0.5% before and after the final sintering step. This dimensional change rate is measured by using a three-dimensional measuring machine, and measuring at least one point every 1 ° over 360 ° of the outer shape of the green body before the final sintering step and the sintered body after the sintering step. Then, by superimposing both shapes traced from the measurement point, the dimensional change rate of each measurement point is obtained, and the maximum value is indicated.

このように、本発明のカムロブ材の製造方法によれば、少なくとも2回の圧縮成形工程と焼結工程とを経るので、最後の焼結工程の前後の寸法精度が高く、カムロブ材製造後の切削をせずに済むか、切削量が少なくて済む。そのため、カムロブ材の製造にかかる手間と費用を低減させることができる。さらに、製造後のカムロブ材の外周面硬さをHRC50以上とすることができ、また、密度を7.5g/cm以上とすることができる。そのため、製造後のカムロブ材は、高硬度、高密度とすることができ、耐摩耗性、耐スカッフィング性、耐ピッチング性等の摺動特性に優れたものとすることができる。その結果、高負荷のかかるエンジン、たとえば、通常のエンジンの2倍程度の面圧のかかるエンジンに対しても、好適に使用できるカムロブ材を提供することができる。Thus, according to the method of manufacturing the cam lobe material of the present invention, since the compression molding process and the sintering process are performed at least twice, the dimensional accuracy before and after the final sintering process is high, Either no cutting or no cutting amount. Therefore, it is possible to reduce labor and cost for manufacturing the cam lobe material. Furthermore, the outer peripheral surface hardness of the cam lobe material after manufacture can be set to HRC 50 or more, and the density can be set to 7.5 g / cm 3 or more. Therefore, the cam lobe material after manufacture can have high hardness and high density, and can have excellent sliding characteristics such as wear resistance, scuffing resistance, and pitting resistance. As a result, it is possible to provide a cam lobe material that can be suitably used for an engine with a high load, for example, an engine with a surface pressure about twice that of a normal engine.

なお、このようにして製造されたカムロブ材を、シャフトに組み付け、固定することによって、図1(b)に示すような組立式カムシャフト2が得られる。こうしたカムシャフト2は、例えば、S45C等の材質からなるシャフト7の所定位置に所定角度で、焼きばめ又は冷やしばめによって組み付け、固定することによって得られる。カムロブ材をシャフトに組み付け、固定する方法としては、上記した焼きばめ及び冷やしばめが、組立精度、安価な設備費の点で好ましいが、圧入や、拡散接合等の他の方法によることも可能である。また、このカムシャフト2は、本発明のカムロブ材からなるカムロブ1のみを備えてもよいし、図1(a)のように、本発明によるカムロブ1と、滑りタイプのカムフォロワ6に対して好適な摺動特性を有するカムロブ5とを備えるものとしてもよい。このようにして製造されるカムシャフトは、カムロブの研削加工が全く不要か、必要であっても非常にわずかで済む。こうして、耐摩耗性、耐スカッフィング性、耐ピッチング性等の摺動特性に優れ、高負荷のかかるエンジンにも好適に使用できるカムシャフトを提供することができる。  The assembled camshaft 2 as shown in FIG. 1B is obtained by assembling and fixing the cam lobe material thus manufactured to the shaft. Such a camshaft 2 can be obtained, for example, by being assembled and fixed at a predetermined position of the shaft 7 made of a material such as S45C at a predetermined angle by shrink fitting or cold fitting. As a method of assembling and fixing the cam lobe material to the shaft, the above-mentioned shrink fitting and cold fitting are preferable in terms of assembly accuracy and inexpensive equipment costs, but it is also possible to use other methods such as press fitting and diffusion bonding. Is possible. The camshaft 2 may be provided with only the cam lobe 1 made of the cam lobe material of the present invention, or suitable for the cam lobe 1 according to the present invention and the sliding type cam follower 6 as shown in FIG. It is good also as what is provided with the cam lobe 5 which has an appropriate sliding characteristic. The camshaft produced in this way requires no or even very little grinding of the cam lobe. Thus, it is possible to provide a camshaft that is excellent in sliding characteristics such as wear resistance, scuffing resistance, and pitting resistance, and that can be suitably used for a high-load engine.

以下に、実施例と比較例によって本発明をさらに具体的に説明する。  Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.

(実施例1−30)
表1に記載の最終成分組成になるように各元素を鉄粉中に添加して焼結用粉末を調製し、6ton/cmの面圧でカムロブの形状に圧縮成形し、次いで700℃で90分間焼結を行った。さらに、10ton/cmの面圧で圧縮成形し、次いで1140℃で60分間焼結を行った。次いで、この焼結体を900℃で100分加熱し、その後、油冷にて焼入れ処理を行った。さらに、この焼結体を150℃で60分間加熱し、その後、空冷にて焼戻し処理を行った。その後、ショットブラストを行い、実施例1−30のカムロブ材を作製した。
(Example 1-30)
Each element was added to the iron powder so as to have the final component composition shown in Table 1, to prepare a powder for sintering, and compression molded into a cam lobe shape with a surface pressure of 6 ton / cm 2 , and then at 700 ° C. Sintering was performed for 90 minutes. Further, compression molding was performed at a surface pressure of 10 ton / cm 2 , and then sintering was performed at 1140 ° C. for 60 minutes. Subsequently, this sintered body was heated at 900 ° C. for 100 minutes, and then quenched by oil cooling. Furthermore, this sintered body was heated at 150 ° C. for 60 minutes, and then tempered by air cooling. Thereafter, shot blasting was performed to produce the cam lobe material of Example 1-30.

(比較例1)
表1に記載の最終成分組成になるように、各元素を溶融させ、冷やし金を有する鋳型に流し込んで急冷し、凝固させてチル鋳鉄を得た。これを研磨することにより、比較例1のカムロブ材を作製した。
(Comparative Example 1)
Each element was melted so as to have the final component composition shown in Table 1, poured into a mold having a cooling metal, quenched, and solidified to obtain chilled cast iron. By polishing this, the cam lobe material of Comparative Example 1 was produced.

(比較例2−5)
表1に記載の最終成分組成になるように各元素を鉄粉中に添加して焼結用粉末を調製し、5ton/cmの面圧でカムロブの形状に圧縮成形し、次いで1100℃で60分間焼結を行うことにより、比較例2−5のカムロブ材を作製した。
(Comparative Example 2-5)
Each element was added to the iron powder so as to have the final component composition shown in Table 1 to prepare a powder for sintering, compression-molded into a cam lobe shape with a surface pressure of 5 ton / cm 2 , and then at 1100 ° C. By performing sintering for 60 minutes, a cam lobe material of Comparative Example 2-5 was produced.

Figure 0004188970
Figure 0004188970
Figure 0004188970
Figure 0004188970

(評価方法及びその結果)
各実施例及び各比較例により得られたカムロブについて、(1)密度、(2)外周面のロックウェル硬さHRC、(3)ピッチング発生回数及び摩耗量、(4)寸法変化率、(5)カムリフト誤差を測定した。各測定方法を以下に説明し、各測定結果を表2に示す。
(Evaluation method and results)
For the cam lobes obtained in the examples and comparative examples, (1) density, (2) Rockwell hardness HRC of the outer peripheral surface, (3) number of occurrences of pitching and wear, (4) dimensional change rate, (5 ) Cam lift error was measured. Each measurement method will be described below, and each measurement result is shown in Table 2.

(1)密度
得られたカムロブ材の試験片をパラフィンで封孔処理し、アルキメデス法によって密度を測定した。
(1) Density The test piece of the obtained cam lobe material was sealed with paraffin, and the density was measured by Archimedes method.

(2)外周面のロックウェル硬さ
ロックウェル硬度計により、Cスケールにて、得られたカムロブ材の試験片のカムノーズの外周を5点計測し、その平均値を算出し、外周面のロックウェル硬さとした。
(2) Rockwell hardness of outer peripheral surface Using a Rockwell hardness meter, measure the outer periphery of the cam nose of the obtained cam lobe specimen on the C scale at five points, calculate the average value, and lock the outer peripheral surface. Well hardness.

(3)ピッチング発生回数及び摩耗量
ピッチング発生回数と摩耗量については、以下のように測定した。図2に示す二円筒接触試験機を用い、一定速度に回転するカムロブ材の各試験片8と相手材円筒試験片9の回転面を接触させ、両試験片の接触面に潤滑油10を滴下しながら所定の荷重11をかけて回転させ、ピッチングが発生するまでの回転回数を計測し、ピッチング発生回数とした。また、同様に各試験片8を回転させて、一定回転回数(1×10回)当たりの摩耗沈み量(μm)を測定し、摩耗量とした。
(3) Pitching occurrence number and wear amount Pitching occurrence number and wear amount were measured as follows. Using the two-cylinder contact testing machine shown in FIG. 2, the rotating surfaces of the cam lobe test piece 8 and the counterpart cylindrical test piece 9 rotating at a constant speed are brought into contact with each other, and lubricating oil 10 is dropped on the contact surfaces of both test pieces. While rotating by applying a predetermined load 11, the number of rotations until the occurrence of pitching was measured, and the number of occurrences of pitching was determined. Similarly, each test piece 8 was rotated, and the amount of wear subsidence (μm) per certain number of rotations (1 × 10 5 times) was measured to obtain the amount of wear.

(測定条件)
測定装置:二円筒接触試験機
回転数:1500rpm
潤滑油:エンジンオイル 10W30
油温:100℃
油量:2×10−4/min
荷重:3000N
スベリ率:0%
相手材:SUJ2
判定方法:AE(アコースティックエミッション)にて、ピッチング発生の亀裂を検知し、そのときの接触回数をピッチング発生回数としてS−N曲線を作成し、各試験片と比較した。
(Measurement condition)
Measuring device: Two-cylinder contact test machine rotation speed: 1500rpm
Lubricating oil: Engine oil 10W30
Oil temperature: 100 ° C
Oil amount: 2 × 10 −4 m 3 / min
Load: 3000N
Sliding rate: 0%
Opponent material: SUJ2
Judgment method: AE (acoustic emission) was used to detect cracks in which pitching occurred, and an SN curve was created using the number of contacts at that time as the number of times pitching occurred, and compared with each test piece.

(4)寸法変化率
三次元測定機を使用し、二次成形体と二次焼結体の外周形状を360°に渡り1°毎に測定し、測定点からトレースされた両方の形状を重ね合わせて各測定点の寸法変化率を求め、その中の最大値を二次成形体に対する二次焼結体の寸法変化率として特定した。なお、比較例2−5については、成形と焼結を一度だけ行っているので、一次成形体と一次焼結体の外周形状について、寸法変化率を測定した。
(4) Dimensional change rate Using a three-dimensional measuring machine, measure the outer shape of the secondary compact and secondary sintered compact every 360 ° over 360 °, and overlay both shapes traced from the measurement point. In addition, the dimensional change rate at each measurement point was determined, and the maximum value among them was specified as the dimensional change rate of the secondary sintered body relative to the secondary compact. In addition, about Comparative Example 2-5, since shaping | molding and sintering were performed only once, the dimensional change rate was measured about the outer periphery shape of a primary molded object and a primary sintered compact.

(5)カムリフト誤差
二次焼結体を焼入、焼戻し後、更にショットブラストした後の試験片についてカムリフト誤差を測定した。カムプロフィール測定プログラムアドコールを用いてカムプロフィールを測定し、目的のプロフィールと比較して、その誤差を検出し、リフト誤差とした。なお、比較例2−5については、成形と焼結を一度だけ行っているので、一次焼結体を焼入、焼戻し後の試験片についてカムリフト誤差を測定した。
(5) Cam lift error The cam lift error was measured for the test piece after quenching and tempering the secondary sintered body and further shot blasting. The cam profile was measured using a cam profile measurement program ad call, and compared with the target profile, the error was detected and taken as a lift error. In Comparative Example 2-5, since molding and sintering were performed only once, the cam lift error was measured for the specimen after quenching and tempering the primary sintered body.

Figure 0004188970
Figure 0004188970
Figure 0004188970
Figure 0004188970

(測定結果についての考察)
(イ)Ni(ニッケル)量の影響(実施例1〜8、16)
表2の実施例1〜8、16は、Ni量が互いに異なる合金の密度、硬度、ピッチング発生回数、摩耗量、寸法変化率、カムリフト誤差のそれぞれの試験結果を示している。
密度、硬度およびピッチング発生回数は、Ni量0.5%〜5.0%までは、Ni量が増加するにつれて、いずれも増加傾向である。密度は、図3に示すように、7.52〜7.58g/cmと少しずつ増加傾向である。硬度も、図4に示すように、52.5〜55.5HRCと、密度と同様に少しずつ増加傾向である。また、ピッチング発生回数も、図5に示すように、1.2×10〜6.0×10と増加傾向となっている。
摩耗量は、Ni量0.5%〜5.0%までは、0.19〜0.23μm/1×10回と、比較的変化が少なく安定している。
寸法変化率は、図6に示すように、Ni量0.5%〜5.0%までは、−0.1〜−0.5%と少しずつ増加傾向である。また、カムリフト誤差は、図7に示すように、寸法変化率と同様に、Ni量0.5%〜5.0%までは、0.02〜0.05mmと少しずつ増加傾向である。
(Consideration of measurement results)
(I) Effect of Ni (nickel) amount (Examples 1-8, 16)
Examples 1 to 8 and 16 in Table 2 show the test results of the density, hardness, pitching occurrence number, wear amount, dimensional change rate, and cam lift error of alloys having different Ni amounts.
The density, the hardness, and the number of occurrences of pitching tend to increase as the Ni amount increases from 0.5% to 5.0%. As shown in FIG. 3, the density tends to increase gradually from 7.52 to 7.58 g / cm 3 . As shown in FIG. 4, the hardness is also 52.5 to 55.5 HRC and tends to increase little by little like the density. Also, the number of occurrences of pitching tends to increase from 1.2 × 10 6 to 6.0 × 10 6 as shown in FIG.
The wear amount is stable with relatively little change, 0.19 to 0.23 μm / 1 × 10 5 times when the Ni amount is 0.5% to 5.0%.
As shown in FIG. 6, the dimensional change rate tends to increase gradually from −0.1 to −0.5% when the Ni content is 0.5% to 5.0%. Further, as shown in FIG. 7, the cam lift error tends to increase gradually from 0.02 to 0.05 mm when the Ni amount is 0.5% to 5.0%, similarly to the dimensional change rate.

(ロ)C(炭素)量の影響(実施例9〜12、24、25)
表2の実施例9〜12、24、25は、C量が互いに異なる合金の密度、硬度、ピッチング発生回数、摩耗量、寸法変化率、カムリフト誤差のそれぞれの試験結果を示している。
密度は、図8に示すように、C量が0.5%と低い場合には7.55g/cmと高めであり、C量が増加すると密度は減少傾向となり、C量が1.2%と高い場合には、密度は7.51g/cmと低めである。硬度は、密度とは逆に、図9に示すように、C量0.5%〜1.2%までは、51.5〜56.0HRCと増加傾向となっている。
ピッチング発生回数は、C量0.5%〜1.2%までは、1.5×10〜3.5×10と比較的変化が少なく安定している。摩耗量は、ピッチング発生回数と同様に、C量0.5%〜1.2%までは、0.16〜0.25μm/1×10回と比較的変化が少なく安定している。寸法変化率は、C量0.5%〜1.2%までは、−0.1〜−0.4%と少し増加傾向である。カムリフト誤差は、C量0.5%〜1.2%までは、0.01〜0.03mmと比較的変化が少なく安定している。
(B) Effect of C (carbon) amount (Examples 9 to 12, 24, 25)
Examples 9 to 12, 24, and 25 in Table 2 show the test results of the density, hardness, pitching occurrence number, wear amount, dimensional change rate, and cam lift error of alloys having different C amounts.
As shown in FIG. 8, the density is as high as 7.55 g / cm 3 when the amount of C is as low as 0.5%. As the amount of C increases, the density tends to decrease, and the amount of C is 1.2. When it is as high as%, the density is as low as 7.51 g / cm 3 . Contrary to the density, the hardness tends to increase to 51.5 to 56.0 HRC when the C content is 0.5% to 1.2%, as shown in FIG.
Pitting number, until C of 0.5% to 1.2%, relatively unchanged it is less stable with 1.5 × 10 6 ~3.5 × 10 6 . Like the number of occurrences of pitching, the wear amount is stable with relatively little change of 0.16 to 0.25 μm / 1 × 10 5 times when the C amount is 0.5% to 1.2%. The dimensional change rate tends to increase slightly to -0.1 to -0.4% when the C content is 0.5% to 1.2%. The cam lift error is stable with relatively little change of 0.01 to 0.03 mm up to a C amount of 0.5% to 1.2%.

(ハ)P(リン)量の影響(実施例1、13〜15)
表2の実施例1、13〜15は、P量が互いに異なる合金の密度、硬度、ピッチング発生回数、摩耗量、寸法変化率、カムリフト誤差のそれぞれの試験結果を示している。
P量に関する密度、硬度、ピッチング発生回数は、Niと同様の傾向を示している。密度は、図10に示すように、P量0.05%〜0.3%までは、7.51〜7.54g/cmと少しずつ増加傾向である。硬度も、図11に示すように、P量0.05%〜0.3%までは、52.0〜54.0HRCと、密度と同様に少しずつ増加傾向である。また、ピッチング発生回数は、図12に示すように、P量0.05%〜0.3%までは、8.5×10〜1.5×10と増加傾向となっている。
摩耗量は、P量0.05%〜0.3%までは、0.20〜0.23μm/1×10回と比較的変化が少なく安定している。寸法変化率は、摩耗量と同様に、P量0.05%〜0.3%までは、−0.1〜−0.2%と比較的変化が少なく安定している。カムリフト誤差は、P量0.05%〜0.3%までは、0.02〜0.03mmと比較的変化が少なく安定している。
(C) Effect of P (phosphorus) amount (Examples 1, 13 to 15)
Examples 1 and 13 to 15 in Table 2 show the test results of the density, hardness, pitching occurrence number, wear amount, dimensional change rate, and cam lift error of alloys having different P amounts.
The density, hardness, and number of occurrences of pitching relating to the P amount show the same tendency as Ni. As shown in FIG. 10, the density tends to increase gradually from 7.51 to 7.54 g / cm 3 when the P content is 0.05% to 0.3%. As shown in FIG. 11, the hardness is 52.0 to 54.0 HRC in the amount of P from 0.05% to 0.3%, which is increasing little by little like the density. Further, as shown in FIG. 12, the number of occurrences of pitching tends to increase from 8.5 × 10 5 to 1.5 × 10 6 when the P amount is 0.05% to 0.3%.
The wear amount is stable with relatively little change of 0.20 to 0.23 μm / 1 × 10 5 times when the P amount is 0.05% to 0.3%. Similar to the wear amount, the dimensional change rate is stable with relatively little change of -0.1 to -0.2% up to 0.05% to 0.3% of the P amount. The cam lift error is stable with relatively little change of 0.02 to 0.03 mm up to a P amount of 0.05% to 0.3%.

(ニ)B(ホウ素)量の影響(実施例10、17〜19)
表2の実施例10、17〜19は、B量が互いに異なる合金の密度、硬度、ピッチング発生回数、摩耗量、寸法変化率、カムリフト誤差のそれぞれの試験結果を示している。
密度は、図13に示すように、B量0.02%〜0.3%までは、7.51〜7.53g/cmと変化が少なく安定している。硬度も、図14に示すように、B量0.02%〜0.3%までは、53.0〜54.0HRCと密度と同様に変化が少なく安定している。
ピッチング発生回数は、B量0.02%〜0.3%までは、2.0×10〜3.2×10と比較的変化が少なく安定している。摩耗量も、B量0.02%〜0.3%までは、0.21〜0.24μm/1×10回と、比較的変化が少なく安定している。寸法変化率は、摩耗量と同様に、B量0.02%〜0.3%までは、−0.2〜−0.4%と比較的変化が少なく安定している。カムリフト誤差は、B量0.02%〜0.3%までは、0.02〜0.04mmと比較的変化が少なく安定している。
(D) Influence of B (boron) amount (Examples 10 and 17 to 19)
Examples 10 and 17 to 19 in Table 2 show the test results of the density, hardness, number of occurrences of pitching, wear amount, dimensional change rate, and cam lift error of alloys having different B amounts.
As shown in FIG. 13, the density is stable with little change of 7.51 to 7.53 g / cm 3 when the B content is 0.02% to 0.3%. As shown in FIG. 14, the hardness is stable with little change from 53.0 to 54.0 HRC and a density of B from 0.02% to 0.3%, similar to the density.
The number of occurrences of pitching is stable with relatively little change of 2.0 × 10 6 to 3.2 × 10 6 when the B amount is 0.02% to 0.3%. The wear amount is also stable with relatively little change, 0.21 to 0.24 μm / 1 × 10 5 times, when the B amount is 0.02% to 0.3%. Similar to the amount of wear, the dimensional change rate is stable with relatively little change of -0.2 to -0.4% when the B amount is 0.02 to 0.3%. The cam lift error is stable with relatively little change of 0.02 to 0.04 mm until the B amount is 0.02 to 0.3%.

(ホ)Mo(モリブデン)量の影響(実施例6、20〜23、26〜30)
表2の実施例6、20〜23、26〜30は、Mo量が互いに異なる合金の密度、硬度、ピッチング発生回数、摩耗量、寸法変化率、カムリフト誤差のそれぞれの試験結果を示している。
密度は、図15に示すように、Mo量が0.3%と低い場合には7.54g/cmと高めであり、Mo量が増加すると密度は減少傾向となり、Mo量が2.5%と高い場合には、圧縮性が著しく悪くなるために、密度が7.50g/cmと低めである。硬度は、図16に示すように、Mo量が0.3%〜2.5%までは、焼入れ性が高まり、55.5〜56.5HRCと高めであり、変化が少なく安定している。
ピッチング発生回数は、Mo量が0.3%〜2.5%までは、1.8×10〜2.5×10と比較的変化が少なく安定している。摩耗量は、Mo量が0.3%〜2.5%までは、0.16〜0.21μm/1×10回と低めであり、かつ、比較的変化が少なく安定している。寸法変化率は、Mo量が0.3%〜2.5%までは、0〜−0.3%と、比較的変化が少なく安定している。カムリフト誤差は、Mo量が0.3%〜2.5%までは、カムリフト誤差は0.02〜0.04mmと比較的変化が少なく安定している。
(E) Effect of Mo (molybdenum) amount (Examples 6, 20 to 23, 26 to 30)
Examples 6, 20 to 23, and 26 to 30 in Table 2 show the test results of the density, hardness, number of pitching occurrences, wear amount, dimensional change rate, and cam lift error of alloys having different Mo amounts.
As shown in FIG. 15, the density is as high as 7.54 g / cm 3 when the amount of Mo is as low as 0.3%. As the amount of Mo increases, the density tends to decrease. When it is as high as%, the compressibility is remarkably deteriorated, so the density is as low as 7.50 g / cm 3 . As shown in FIG. 16, when the Mo amount is 0.3% to 2.5%, the hardenability is increased and the hardness is as high as 55.5 to 56.5 HRC, and the change is stable with little change.
The number of occurrences of pitching is stable with relatively little change of 1.8 × 10 6 to 2.5 × 10 6 when the Mo amount is 0.3% to 2.5%. The wear amount is as low as 0.16 to 0.21 μm / 1 × 10 5 times when the Mo amount is 0.3% to 2.5%, and is relatively stable with little change. The dimensional change rate is stable with relatively little change of 0 to -0.3% when the Mo amount is 0.3% to 2.5%. The cam lift error is stable with a relatively small change of 0.02 to 0.04 mm, when the Mo amount is 0.3% to 2.5%.

(ヘ)Ni、B、Moの各種組合せについて(実施例24〜29)
表2の実施例24〜29は、Ni量、B量、Mo量が互いに異なる合金の密度、硬度、ピッチング発生回数、摩耗量、寸法変化率、カムリフト誤差のそれぞれの試験結果を示している。
Ni量1.0%〜3.5%、B量0.05%〜0.2%、Mo量0.3%〜2.0%の組合せにおける各試験結果について考察する。
密度は、Moの影響を受ける為、Ni、Bの元素を変化させてもほとんど効果がなく、7.50〜7.54g/cmと、比較的低めから中程度に推移している。硬度は、C量が高めであり、かつ、Moの影響を受ける為、55.5〜56.5HRCと比較的高めに推移している。
ピッチング発生回数は、Moにより密度が影響を受け、また、Niの影響を受ける為、1.8×10〜3.5×10と広範囲に推移している。摩耗量は、C量が高めであり、CとMoとの相乗効果により硬度が影響を受ける為、硬度が高めであり、0.16〜0.21μm/1×10回と、比較的低めに推移している。
寸法変化率は、Niの影響を受けるため、0〜−0.4%と広範囲に推移している。カムリフト誤差は、寸法変化率と同様に、Niの影響を受けるため、0.01〜0.04mmと広範囲に推移している。
(F) Various combinations of Ni, B, and Mo (Examples 24-29)
Examples 24 to 29 in Table 2 show the test results of the density, hardness, number of occurrences of pitching, wear amount, dimensional change rate, and cam lift error of alloys having different amounts of Ni, B, and Mo, respectively.
Consider each test result in a combination of Ni amount 1.0% to 3.5%, B amount 0.05% to 0.2%, Mo amount 0.3% to 2.0%.
Since the density is affected by Mo, even if the elements of Ni and B are changed, there is almost no effect, and the density changes from 7.50 to 7.54 g / cm 3 , which is relatively low to medium. The hardness is relatively high at 55.5 to 56.5 HRC because the amount of C is high and affected by Mo.
The number of occurrences of pitching is in a wide range of 1.8 × 10 6 to 3.5 × 10 6 because the density is affected by Mo and the influence of Ni. The amount of wear is high because the amount of C is high, and the hardness is affected by the synergistic effect of C and Mo, so the hardness is high, 0.16 to 0.21 μm / 1 × 10 5 times relatively low. It has transitioned to.
Since the dimensional change rate is affected by Ni, it changes over a wide range of 0 to -0.4%. Like the dimensional change rate, the cam lift error is affected by Ni, and thus has a wide range of 0.01 to 0.04 mm.

(ト)B、Pの組合せについて(実施例30)
表2の実施例30は、BおよびPの組合せによる合金の密度、硬度、ピッチング発生回数、摩耗量、寸法変化率、カムリフト誤差のそれぞれの試験結果を示している。
C量、Mo量が高めのため、密度は低めで、硬さは逆に高めとなり、ピッチング発生回数、摩耗量は、上述の各実施例の範囲中の中間程度であり、寸法変化率は低めで、カムリフト誤差は高めであった。このように、BとPとを組み合わせても、本発明の範囲の密度および硬度が得られ、その他も良好な結果が得られた。
(G) Combination of B and P (Example 30)
Example 30 in Table 2 shows the test results of the alloy density, hardness, number of pitching occurrences, wear amount, dimensional change rate, and cam lift error of the combination of B and P.
Because the amount of C and Mo is high, the density is low and the hardness is high, and the number of occurrences of pitching and the amount of wear are about the middle of the ranges of the above-mentioned embodiments, and the dimensional change rate is low. The cam lift error was high. Thus, even when B and P were combined, the density and hardness within the range of the present invention were obtained, and other good results were obtained.

(チ)比較例について
実施例1−30は、比較例1−5のいずれよりも優れていた。
比較例2は、BおよびPを含有していない点で、本発明に含まれていない。その結果、比較例2は、密度、ピッチング発生回数が各実施例よりも低く、耐ピッチング性が劣っていた。また、比較例2は、摩耗量が各実施例よりも大きく、耐摩耗性が劣っていた。比較例2は、一回圧縮一回焼結により製造された(以下、1P1Sという。)ため、寸法変化率が各実施例よりも高めであり、また、カムリフト誤差も各実施例よりも高めであった。このように、比較例2は、寸法変化率、カムリフト誤差、双方ともに劣っていた。
比較例3は、Niを含有していない点で、本発明に含まれていない。その結果、比較例3は、密度、ピッチング発生回数が各実施例よりも低く、耐ピッチング性が劣っていた。また、比較例3は、密度、硬度ともに各実施例よりも低いため、摩耗量が各実施例よりも大きく、耐摩耗性が劣っていた。比較例3は、1P1Sにより製造されたため、寸法変化率が各実施例よりも高めであり、また、カムリフト誤差も各実施例よりも高めであった。このように、比較例3は、寸法変化率、カムリフト誤差、双方ともに劣っていた。
比較例4は、C、Ni、Pの含有量が本発明の規定量よりも低く、本発明に含まれていない。その結果、比較例4は、密度、ピッチング発生回数が各実施例よりも低く、上述の比較例2、3よりもさらに耐ピッチング性が劣っていた。また、比較例4は、密度、硬度ともに各実施例よりも低いため、摩耗量が各実施例および上述の比較例2、3よりも大きく、耐摩耗性が非常に劣っていた。
比較例5は、C、Ni、Pの含有量がいずれも本発明の規定量よりも高く、本発明に含まれていない。その結果、比較例5は、比較例2、3と同様に、密度、ピッチング発生回数が各実施例よりも低く、耐ピッチング性が劣っていた。また、比較例5は、密度、硬度ともに各実施例よりも低いため、摩耗量が各実施例よりも大きく、耐摩耗性が劣っていた。さらに、比較例5は、1P1Sにより製造されたため、寸法変化率が各実施例よりも極端に高めであり、また、カムリフト誤差も各実施例よりも極端に高めであった。このように、比較例5は、寸法変化率、カムリフト誤差、双方ともに劣っていた。
(H) About Comparative Example Example 1-30 was superior to any of Comparative Examples 1-5.
Comparative Example 2 is not included in the present invention in that it does not contain B and P. As a result, in Comparative Example 2, the density and the number of occurrences of pitching were lower than in each Example, and the pitting resistance was inferior. Moreover, the comparative example 2 had a larger abrasion amount than each Example, and its abrasion resistance was inferior. Since Comparative Example 2 was manufactured by one-time compression-one-time sintering (hereinafter referred to as 1P1S), the dimensional change rate was higher than in each example, and the cam lift error was also higher than in each example. there were. Thus, Comparative Example 2 was inferior in both dimensional change rate and cam lift error.
Comparative Example 3 is not included in the present invention in that it does not contain Ni. As a result, in Comparative Example 3, the density and the number of occurrences of pitching were lower than in each Example, and the pitting resistance was inferior. Moreover, since the comparative example 3 was lower in density and hardness than each Example, the amount of wear was larger than each Example, and its abrasion resistance was inferior. Since Comparative Example 3 was manufactured by 1P1S, the dimensional change rate was higher than that of each example, and the cam lift error was also higher than that of each example. Thus, Comparative Example 3 was inferior in both dimensional change rate and cam lift error.
In Comparative Example 4, the contents of C, Ni, and P are lower than the specified amounts of the present invention, and are not included in the present invention. As a result, in Comparative Example 4, the density and the number of occurrences of pitching were lower than in each Example, and the pitting resistance was inferior to that of Comparative Examples 2 and 3 described above. Moreover, since the comparative example 4 was lower in density and hardness than each Example, the abrasion loss was larger than each Example and the above-mentioned Comparative Examples 2 and 3, and abrasion resistance was very inferior.
In Comparative Example 5, the contents of C, Ni, and P are all higher than the specified amount of the present invention and are not included in the present invention. As a result, in Comparative Example 5, as in Comparative Examples 2 and 3, the density and the number of occurrences of pitching were lower than in each Example, and the pitting resistance was inferior. Moreover, since the comparative example 5 was lower than each Example in both a density and hardness, the amount of wear was larger than each Example, and its abrasion resistance was inferior. Furthermore, since the comparative example 5 was manufactured by 1P1S, the dimensional change rate was extremely higher than each Example, and the cam lift error was also extremely higher than each Example. Thus, Comparative Example 5 was inferior in both dimensional change rate and cam lift error.

Claims (6)

Ni:0.3−5.0質量%、C:0.5−1.2質量%、B及びPの少なくとも一方:0.02−0.3質量%、並びに残部がFe及び不可避的不純物からなる鉄系焼結合金からなり、外周面硬さがHRC50以上で、かつ、密度が7.5g/cm3以上であることを特徴とするカムロブ材。Ni: 0.3-5.0 mass%, C: 0.5-1.2 wt%, at least one of B and P: 0.02-0.3 wt%, and the balance Fe and unavoidable impurities A cam lobe material comprising an iron-based sintered alloy having an outer peripheral surface hardness of HRC50 or more and a density of 7.5 g / cm 3 or more. 前記鉄系焼結合金は、さらに、Mo:2.5質量%以下を含有することを特徴とする請求項1に記載のカムロブ材。  2. The cam lobe material according to claim 1, wherein the iron-based sintered alloy further contains Mo: 2.5% by mass or less. 前記カムロブ材は、ローラフォロワを相手材とすることを特徴とする請求項1又は請求項2に記載のカムロブ材。  The cam lobe material according to claim 1, wherein the cam lobe material has a roller follower as a mating material. 請求項1乃至請求項3のいずれか1項に記載のカムロブ材からなるカムロブを備えたことを特徴とするカムシャフト。  A camshaft comprising a cam lobe made of the cam lobe material according to any one of claims 1 to 3. 請求項1乃至請求項3のいずれか1項に記載のカムロブ材の製造方法であって、前記鉄系焼結合金の組成となるように調製された鉄系合金粉末を所定のカムロブ形状に圧縮成形する圧縮成形工程と、前記圧縮成形された成形体を焼結する焼結工程とを二度以上繰り返し、前記焼結された焼結体を焼入れ・焼戻し処理することを特徴とするカムロブ材の製造方法。A manufacturing method of the cam lobe member according to any one of claims 1 to 3, compressing the iron-based alloy powder prepared so as to have the composition of the iron-based sintered alloy in a predetermined cam lobe shape A cam lobe material characterized in that a compression molding step for molding and a sintering step for sintering the compression molded body are repeated twice or more, and the sintered sintered body is quenched and tempered. Production method. 前記カムロブ材の外周面にショットブラストを施すことを特徴とする請求項5に記載のカムロブ材の製造方法。  6. The method of manufacturing a cam lobe material according to claim 5, wherein shot blasting is performed on an outer peripheral surface of the cam lobe material.
JP2005512070A 2003-07-29 2004-07-28 Cam lobe material, camshaft using the same, and method of manufacturing cam lobe material Active JP4188970B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003203133 2003-07-29
JP2003203133 2003-07-29
PCT/JP2004/010736 WO2005010226A1 (en) 2003-07-29 2004-07-28 Cam lobe member, camshaft using the same and method for producing cam lobe member

Publications (2)

Publication Number Publication Date
JPWO2005010226A1 JPWO2005010226A1 (en) 2006-09-07
JP4188970B2 true JP4188970B2 (en) 2008-12-03

Family

ID=34100623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005512070A Active JP4188970B2 (en) 2003-07-29 2004-07-28 Cam lobe material, camshaft using the same, and method of manufacturing cam lobe material

Country Status (4)

Country Link
US (1) US20070006828A1 (en)
JP (1) JP4188970B2 (en)
KR (1) KR100662721B1 (en)
WO (1) WO2005010226A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170118904A (en) * 2015-03-26 2017-10-25 히타치 긴조쿠 가부시키가이샤 Sliding component and sliding structure
CN107035834B (en) * 2017-03-27 2019-04-12 大连理工大学 A kind of group of double-linked cam transmission device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5830361B2 (en) * 1979-02-26 1983-06-29 日本ピストンリング株式会社 Method for manufacturing wear-resistant parts for internal combustion engines
JPS55145151A (en) * 1979-04-26 1980-11-12 Nippon Piston Ring Co Ltd Wear resistant sintered alloy material for internal combustion engine
JPH0417645A (en) * 1990-05-09 1992-01-22 Mitsubishi Materials Corp Fe-base sintered alloy excellent in wear resistance
US5456136A (en) * 1991-04-24 1995-10-10 Ntn Corporation Cam follower with roller for use with engine
JP3257196B2 (en) * 1993-10-15 2002-02-18 三菱マテリアル株式会社 Iron-based sintered alloy for sliding members with excellent strength and wear resistance
JPH0931612A (en) * 1995-07-20 1997-02-04 Mitsubishi Materials Corp Iron-base sintered alloy excellent in strength and wear resistance
JPH1150210A (en) * 1997-07-29 1999-02-23 Sumitomo Electric Ind Ltd Ferrous sintered alloy part and production thereof
US6473964B1 (en) * 2000-01-12 2002-11-05 Keystone Investment Corporation Method of fabricating camshafts

Also Published As

Publication number Publication date
KR20050057658A (en) 2005-06-16
KR100662721B1 (en) 2006-12-28
WO2005010226A1 (en) 2005-02-03
JPWO2005010226A1 (en) 2006-09-07
US20070006828A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
US9458743B2 (en) Iron-based alloys and methods of making and use thereof
JP3926320B2 (en) Iron-based sintered alloy valve seat and method for manufacturing the same
JP2012521489A (en) Nitritable steel piston ring, steel cylinder liner and casting method for manufacturing the same
CN108026800B (en) Sintered valve seat
WO2015141331A1 (en) Valve seat constituted of iron-based sintered alloy
JP5823697B2 (en) Ferrous sintered alloy valve seat
CN108698130B (en) It is sintered valve seat
JPH09511020A (en) Sintered product manufacturing method
JP2004124244A (en) High-accuracy sintered cam lobe material
JP6871361B2 (en) Valve seat made of iron-based sintered alloy for internal combustion engine with excellent thermal conductivity
JP4137122B2 (en) Camshaft manufacturing method, camshaft, and cam lobe material used therefor
JP4188970B2 (en) Cam lobe material, camshaft using the same, and method of manufacturing cam lobe material
JP2009167477A (en) Sintered clutch hub, compact therefor, and method for manufacturing sintered clutch hub
JP2015513644A (en) Connecting rod and manufacturing method thereof
JP3942136B2 (en) Iron-based sintered alloy
JP4220401B2 (en) Valve operating device for internal combustion engine
CA2584460A1 (en) Sintered alloys for cam lobes and other high wear articles
JP2001234305A (en) Sintered member
GB2318126A (en) Powder mixture and component made therefrom
JP2004124137A (en) High precision sintered cam lobe member
JP2002220645A (en) Iron-based sintered alloy of hard-particle dispersion type
JP2006283576A (en) Valve gear of internal combustion engine
JP2023152728A (en) Valve seat formed of iron sintered alloy for internal combustion engine and production method of the same
JP2023152727A (en) Valve seat for internal combustion engine made of iron sintered alloy and production method
JP2013173961A (en) Valve seat made from iron-based sintered alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

R150 Certificate of patent or registration of utility model

Ref document number: 4188970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5