JP2009167477A - Sintered clutch hub, compact therefor, and method for manufacturing sintered clutch hub - Google Patents

Sintered clutch hub, compact therefor, and method for manufacturing sintered clutch hub Download PDF

Info

Publication number
JP2009167477A
JP2009167477A JP2008007771A JP2008007771A JP2009167477A JP 2009167477 A JP2009167477 A JP 2009167477A JP 2008007771 A JP2008007771 A JP 2008007771A JP 2008007771 A JP2008007771 A JP 2008007771A JP 2009167477 A JP2009167477 A JP 2009167477A
Authority
JP
Japan
Prior art keywords
clutch hub
sintered
density
less
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008007771A
Other languages
Japanese (ja)
Inventor
Naoki Motooka
直樹 本岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Priority to JP2008007771A priority Critical patent/JP2009167477A/en
Publication of JP2009167477A publication Critical patent/JP2009167477A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a sintered clutch hub which is formed from an iron-based sintered alloy, is inexpensive and has high strength and high contact-pressure fatigue strength, without shortening the die life and causing cracks on products, while inhibiting a dimensional change after a sintering step. <P>SOLUTION: A raw powder of a compact has a composition comprising, by mass ratio, 2 to 4% Cr, 0.3 to 0.8% Mo, 0.4 to 0.8% C and the balance Fe. The compact has a density of 6.6 g/cm<SP>3</SP>or more but less than 7.0 g/cm<SP>3</SP>and has density difference of 0.15 g/cm<SP>3</SP>or less among each part. The sintered clutch hub 1 is formed by sintering the compact. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、主として自動車のマニュアルトランスミッションに使用されるクラッチハブ、特に、鉄系焼結合金によって形成される安価、高強度、高面圧疲労強度の焼結クラッチハブと、同クラッチハブ用の成形体(圧粉体)と、そのクラッチハブの製造方法に関する。   The present invention relates to a clutch hub mainly used for a manual transmission of an automobile, in particular, a low-cost, high-strength, high-pressure fatigue strength sintered clutch hub formed of an iron-based sintered alloy, and molding for the clutch hub. The present invention relates to a body (green compact) and a method for manufacturing the clutch hub.

高強度、高疲労強度の焼結部品の従来技術に、例えば、下記特許文献1、2に開示されたものがある。   Examples of conventional techniques for sintered parts having high strength and high fatigue strength are disclosed in Patent Documents 1 and 2 below.

特許文献1は、高い疲労強度を有する焼結体を得るための窒化処理方法を示したものであって、焼結体の材料として、重量比でC:0.2〜1.5%、Cr、V、Al、Mn、Mo、Ti、Niより選ばれる少なくとも1種:0.5〜5%、残部Feの組成の鉄系合金を挙げている。その組成の合金粉末で成形体を作り(この成形体は、密度7.1g/cmのものが実施例に示されている)、この成形体を焼結し、次いで、得られた焼結体に、その焼結体を陰極としたグロー放電による窒化処理を施し、そのときの条件として窒素を含んだガス雰囲気のガス分圧を150Pa以下にして表面に硬質の化合物層を生成する。 Patent Document 1 shows a nitriding treatment method for obtaining a sintered body having high fatigue strength. As a material of the sintered body, C: 0.2 to 1.5% by weight ratio, Cr , V, Al, Mn, Mo, Ti, and at least one selected from Ni: 0.5 to 5%, and an iron-based alloy having a balance of Fe. A molded body is made from the alloy powder of the composition (this molded body has a density of 7.1 g / cm 3 is shown in the examples), the molded body is sintered, and then the obtained sintered The body is subjected to nitriding treatment by glow discharge using the sintered body as a cathode, and as a condition at that time, a gas partial pressure in a gas atmosphere containing nitrogen is set to 150 Pa or less to form a hard compound layer on the surface.

一方、特許文献2が開示している方法は、鉄系焼結合金で形成される高強度の焼結体を、焼結のままで製造するものであり、重量比でCr:0.5〜1.5%、Mo:0.1〜2%、Mn:0.08%以下、残部Feの組成の鋼粉を成形した後に1100〜1300℃の温度で焼結し、焼結後に直ちに10〜200℃/minの速度で冷却する。この方法での成形体は、密度6.8g/cmと7.0g/cmが例示されている。
特開2003−313649公報 特開平6−340942号公報
On the other hand, the method disclosed in Patent Document 2 is to produce a high-strength sintered body formed of an iron-based sintered alloy as it is sintered, and Cr: 0.5 to After forming steel powder having a composition of 1.5%, Mo: 0.1 to 2%, Mn: 0.08% or less, and the balance Fe, sintering is performed at a temperature of 1100 to 1300 ° C. Cool at a rate of 200 ° C./min. Moldings in this manner, density 6.8 g / cm 3 and 7.0 g / cm 3 is illustrated.
JP 2003-313649 A JP-A-6-340942

特許文献1の方法で製造される焼結体は、密度7.1g/cmの成形体を焼結するので粉末成形での成形圧が高くなり、成形の困難さが増すのに加えて成形用金型の寿命低下やそれに伴う成形コスト上昇の問題も起こる。 The sintered body manufactured by the method of Patent Document 1 sinters a molded body having a density of 7.1 g / cm 3 , so that the molding pressure in powder molding increases, and the molding becomes difficult in addition to molding. There is also a problem that the service life of the metal mold is reduced and the molding cost is increased accordingly.

また、成形圧が高くなるため、製造する焼結体が、ボス部、リム部、外径歯部を有するクラッチハブの場合、形状が複雑なため、成形体の各部の密度を均一化するのが難しく、密度差が焼結時の亀裂発生の原因となる。   In addition, since the molding pressure is increased, the sintered body to be manufactured is a clutch hub having a boss part, a rim part, and an outer diameter tooth part, and the shape is complicated, so the density of each part of the molded body is made uniform. The density difference causes cracking during sintering.

さらに、各部に大きな密度差が生じると焼結後の寸法変化量の差も大きくなり、サイジングでの寸法矯正が難しくなってクラッチハブの要求寸法精度が得られなくなる。   Furthermore, if a large density difference occurs in each part, the difference in the amount of dimensional change after sintering also increases, making it difficult to correct the dimensions by sizing, and the required dimensional accuracy of the clutch hub cannot be obtained.

一方、特許文献2の方法で製造される焼結体は、例示された成形体の密度は6.8g/cmと7.0g/cmであるので、特許文献1の方法で製造される焼結体に比べると粉末の成形や成形体の密度の均一化が容易である。しかしながら、この焼結体は、Mn添加量の制御を必要とする。Mnの量を0.08%以下にすることで酸化物の生成量を抑えて強度低下を防止するとしているが、Mnの量を0.1%以下にするためには、鉄粉を製造する過程で純度の高い原料を選択する必要があり、鉄粉の価格が高くなってコストアップにつながる。 On the other hand, the sintered body manufactured by the method of Patent Document 2 is manufactured by the method of Patent Document 1 because the density of the exemplified molded body is 6.8 g / cm 3 and 7.0 g / cm 3. Compared to a sintered body, it is easier to form a powder and make the density of the formed body uniform. However, this sintered body requires control of the amount of Mn added. The amount of Mn is set to 0.08% or less to suppress the amount of oxide generation and prevent the strength from being reduced. To reduce the amount of Mn to 0.1% or less, iron powder is produced. It is necessary to select a high-purity raw material in the process, and the price of iron powder increases, leading to an increase in cost.

また、特許文献2の方法では、焼結後に直ちに所定の速度で冷却(焼入れ)を行なって焼結体の強度を高めており、その焼入れを行なうために、冷却の速度が規定される。   In the method of Patent Document 2, the strength of the sintered body is increased by cooling (quenching) immediately after sintering at a predetermined speed, and the cooling speed is defined in order to perform the quenching.

この発明は、鉄系焼結合金で形成される安価、高強度、高面圧疲労強度の焼結クラッチハブを、金型寿命の低下や製品の亀裂発生を招かないようにして、また、焼結後の寸法変化も抑えて製造できるようにすることを課題としている。   According to the present invention, a low-cost, high-strength, high-pressure fatigue strength sintered clutch hub formed of an iron-based sintered alloy can be produced without causing a decrease in mold life or cracking of the product. It is an object of the present invention to make it possible to manufacture while suppressing the dimensional change after ligation.

上記の課題を解決するため、この発明においては、焼結クラッチハブを、原料粉末の組成が質量比でCr:2〜4%、Mo:0.3〜0.8%、C:0.4〜0.8%、残Feであり、密度が6.6g/cm以上、7.0g/cm未満であり、かつ各部の密度差が0.15g/cm以下である成形体で構成する。この発明は、そのクラッチハブ用成形体を提供する。 In order to solve the above-described problems, in the present invention, the sintered clutch hub is composed of a raw material powder having a mass ratio of Cr: 2 to 4%, Mo: 0.3 to 0.8%, and C: 0.4. -0.8%, remaining Fe, a density of 6.6 g / cm 3 or more and less than 7.0 g / cm 3 , and a density difference of each part is 0.15 g / cm 3 or less. To do. The present invention provides a molded article for the clutch hub.

この成形体を焼結してこの発明の焼結クラッチハブを製造する。その製造は、上記組成の原料粉末で密度6.6g/cm以上、7.0g/cm未満の成形体を形成し、次いで、その成形体を非酸化性雰囲気中1200〜1300℃の温度で焼結する方法で行う。この発明は、かかる製造方法も提供する。 The molded body is sintered to produce the sintered clutch hub of the present invention. The preparation, density 6.6 g / cm 3 or more in the raw material powder of the above composition, 7.0 g / cm 3 less than the molded body is formed, and then the temperature of the non-oxidizing atmosphere 1200 to 1300 ° C. The molded body This is done by sintering. The present invention also provides such a manufacturing method.

この発明のクラッチハブ用成形体は、その密度を6.6g/cm以上、7.0g/cm未満としたので、成形が困難になることがなく、各部の密度差も0.15g/cm以下としたので、寸法精度を良くすることができる。 Since the density of the molded article for a clutch hub of the present invention is 6.6 g / cm 3 or more and less than 7.0 g / cm 3 , molding does not become difficult, and the density difference of each part is also 0.15 g / cm 3. Since it is set to cm 3 or less, the dimensional accuracy can be improved.

この成形体を、Cr:2〜4mass%、Mo:0.3〜0.8mass%、C:0.4〜0.8mass%、残Feの組成の原料粉末で形成することと併せて密度を6.6g/cm以上とすることで、最終製品の焼結クラッチハブについて、焼入れなしでも高強度、高面圧疲労強度を得ることができる。また、その密度を7.0g/cm未満とすることで成形圧の増加を抑えて成形金型の寿命低下を防止することができ、クラッチハブ用成形体の各部の密度差を小さくして焼結工程での亀裂の発生を抑制することも可能になる。さらに、各部の密度差を0.15g/cm以下にすることで焼結後の寸法変化量のばらつきを小さくしてサイジングによる寸法矯正を確実に行なうことも可能になる。 In addition to forming this molded body with raw material powder having a composition of Cr: 2 to 4 mass%, Mo: 0.3 to 0.8 mass%, C: 0.4 to 0.8 mass%, and residual Fe, the density is reduced. with 6.6 g / cm 3 or more, the sintered clutch hub of the final product, high strength even without quenching, it is possible to obtain a high surface pressure fatigue strength. Further, by setting the density to less than 7.0 g / cm 3, it is possible to prevent an increase in molding pressure and prevent a reduction in the life of the molding die, and to reduce the difference in density of each part of the molded article for the clutch hub. It is also possible to suppress the occurrence of cracks in the sintering process. Furthermore, by making the difference in density of each part 0.15 g / cm 3 or less, it becomes possible to reduce the variation in the amount of dimensional change after sintering and to reliably perform dimensional correction by sizing.

また、上記組成の原料粉末で形成された成形体の焼結を非酸化性雰囲気中1200〜1300℃の温度で行なうことでベイナイトまたはベイナイト中にマルテンサイトが分布した組織が得られ、焼入れ無しでも高強度、高面圧疲労強度が確保される。具体的には、焼入れ無しで、表面硬さ85HRB以上、引っ張り強度800MPa以上、曲げ疲労強度200MPa以上、面圧疲労強度0.8GPa以上の性能が得られる。   In addition, sintering of the molded body formed of the raw material powder having the above composition is performed at a temperature of 1200 to 1300 ° C. in a non-oxidizing atmosphere to obtain bainite or a structure in which martensite is distributed in bainite, and even without quenching. High strength and high surface fatigue strength are ensured. Specifically, without quenching, a performance with a surface hardness of 85 HRB or more, a tensile strength of 800 MPa or more, a bending fatigue strength of 200 MPa or more, and a surface pressure fatigue strength of 0.8 GPa or more can be obtained.

以下、添付図面に基づいてこの発明の実施の形態を説明する。図1〜図3に、焼結クラッチハブの一例を示す。例示の焼結クラッチハブ1は、自動車のマニュアルトランスミッション用であって、ボス部2と、リム部3と、外径歯部4を有している。ボス部2には軸穴5が設けられ、また、外径歯部4には周方向に定ピッチでキー溝6が設けられる。   Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 to 3 show an example of a sintered clutch hub. The illustrated sintered clutch hub 1 is for a manual transmission of an automobile, and has a boss portion 2, a rim portion 3, and an outer diameter tooth portion 4. The boss portion 2 is provided with a shaft hole 5, and the outer diameter tooth portion 4 is provided with a key groove 6 at a constant pitch in the circumferential direction.

この焼結クラッチハブ1は、質量比でCr:2〜4%、Mo:0.3〜0.8%、C:0.4〜0.8%、残Feの組成の原料粉末を金型で圧縮成形して成形体を作り、その成形体を焼結した後、サイジングによる焼結体の寸法矯正を行なって製造される。   This sintered clutch hub 1 is made by molding a raw material powder having a composition of Cr: 2 to 4%, Mo: 0.3 to 0.8%, C: 0.4 to 0.8%, and residual Fe by mass ratio. A compact is produced by compression molding, and after the compact is sintered, the size of the sintered body is corrected by sizing.

材料の鉄系合金は、窒化物形成元素のCr、固溶強化、析出強化に有効なMo、鉄系材料の強化に最も有効なCの含有量がそれぞれ2mass%未満、0.3mass%未満、0.4mass%未満であると、高強度、高面圧疲労強度確保の目的が達成されず、一方、Cr、Mo、Cの含有量がそれぞれ4mass%、0.8mass%、0.8mass%を上回ると粉末の圧縮性低下や硬質物の析出量過剰による強度低下などの問題が起こる。従って、これらの成分は、含有量を上記の範囲に制限する。   The iron-based alloy of the material is Cr that is the nitride-forming element, Mo that is effective for solid solution strengthening, Mo that is effective for precipitation strengthening, and C that is most effective for strengthening the iron-based material is less than 2 mass%, less than 0.3 mass%, If it is less than 0.4 mass%, the purpose of ensuring high strength and high surface pressure fatigue strength is not achieved, while the contents of Cr, Mo and C are 4 mass%, 0.8 mass% and 0.8 mass%, respectively. If it exceeds, problems such as a decrease in compressibility of the powder and a decrease in strength due to excessive precipitation of the hard material occur. Therefore, these components limit the content to the above range.

成形体は、最終製品と同一形状に成形される。その成形は、成形体の密度が6.6g/cm以上、7.0g/cm未満となるように成形圧を制御してなされる。また、ボス部2、リム部3、外径歯部4は分割パンチで個別に成形され、各分割パンチによる圧縮代を調整することで各部、すなわち、ボス部2、リム部3、外径歯部4の密度差が0.15g/cm以下に制御される。 The formed body is formed into the same shape as the final product. The molding is performed by controlling the molding pressure so that the density of the molded body is 6.6 g / cm 3 or more and less than 7.0 g / cm 3 . Moreover, the boss | hub part 2, the rim | limb part 3, and the outer diameter tooth part 4 are shape | molded separately by a division | segmentation punch, and each part, ie, the boss | hub part 2, the rim | limb part 3, and an outer diameter tooth | gear, is adjusted by adjusting the compression allowance by each division punch. The density difference of the part 4 is controlled to 0.15 g / cm 3 or less.

成形体の密度が6.6g/cm未満では、上記組成の材料を用いても強度確保が難しくなる。また、成形体の密度が7.0g/cmを超えると高い成形圧が必要になって成形が困難になり、金型の寿命の低下の抑制、焼結時の亀裂発生の抑制、焼結後の寸法変化の抑制の目的が十分に達成されない。 When the density of the molded body is less than 6.6 g / cm 3, it is difficult to ensure strength even if a material having the above composition is used. In addition, if the density of the molded body exceeds 7.0 g / cm 3 , a high molding pressure is required, which makes molding difficult, suppresses the reduction in mold life, suppresses the generation of cracks during sintering, and sintering. The purpose of suppressing the subsequent dimensional change is not sufficiently achieved.

このようにして得た成形体を焼結炉に導入して焼結する。その焼結は、非酸化性雰囲気中1200〜1300℃の温度条件下で実施し、焼結後の組織をベイナイトまたはベイナイト中にマルテンサイトが分布したものになす。フェライトやパーライトを含まない上記の組織にすることで高強度を得る。なお、必要があれば、150〜300℃の温度で戻し処理を行なう。   The molded body thus obtained is introduced into a sintering furnace and sintered. The sintering is performed under a temperature condition of 1200 to 1300 ° C. in a non-oxidizing atmosphere, and the sintered structure is bainite or martensite distributed in bainite. High strength is obtained by using the above structure that does not contain ferrite or pearlite. If necessary, the return treatment is performed at a temperature of 150 to 300 ° C.

焼結を行なう非酸化性雰囲気は、例えば、Nガス雰囲気があるが、真空雰囲気も非酸化性雰囲気として利用することができる。焼結温度は、不必要な加熱によるコスト増を抑えながら焼結を十分に進行させるために1200〜1300℃とする。焼結時間は、10〜60分もあれば十分である。 The non-oxidizing atmosphere for performing sintering is, for example, an N 2 gas atmosphere, but a vacuum atmosphere can also be used as the non-oxidizing atmosphere. The sintering temperature is set to 1200 to 1300 ° C. in order to sufficiently advance the sintering while suppressing an increase in cost due to unnecessary heating. A sintering time of 10 to 60 minutes is sufficient.

上記の条件で製造した焼結クラッチハブは、焼入れ無しで、表面硬さ85HRB以上、引っ張り強度800MPa以上、曲げ疲労強度200MPa以上、面圧疲労強度0.8GPa以上の性能が得られる。ここでの面圧疲労強度は2円筒試験機で測定される値である。   The sintered clutch hub manufactured under the above conditions can obtain performances with a surface hardness of 85 HRB or more, a tensile strength of 800 MPa or more, a bending fatigue strength of 200 MPa or more, and a surface fatigue strength of 0.8 GPa or more without quenching. The surface fatigue strength here is a value measured with a two-cylinder testing machine.

高負荷で使用されるクラッチハブは、表面硬さが85HRB未満であると相手部品との摺動による摩耗が進行して耐久性の要求基準を満たせない。また、クラッチハブについては、使用に伴って外径歯部の歯面と歯底コーナ部及び外径歯部に形成されるキー溝部に引っ張り応力が繰り返し作用する。クラッチハブが高負荷で使用される場合、その応力に耐えるために引っ張り強度は800MPa以上、曲げ疲労強度は200MPa以上であることが望まれ、また、相手部品と摺動する面にも0.8GPaを超える高い面圧疲労強度が望まれ、それらの要求が共に満たされる。   If the surface hardness of the clutch hub used under a high load is less than 85 HRB, wear due to sliding with the mating part proceeds and the required durability standard cannot be satisfied. As for the clutch hub, tensile stress repeatedly acts on the tooth surface of the outer diameter tooth portion, the root corner portion, and the key groove portion formed on the outer diameter tooth portion with use. When the clutch hub is used at a high load, it is desired that the tensile strength is 800 MPa or more and the bending fatigue strength is 200 MPa or more in order to withstand the stress, and the surface that slides with the counterpart part is 0.8 GPa. High surface fatigue strength exceeding 1 is desired, and both of these requirements are satisfied.

−実施例1−
以下に、実施例を挙げる。Fe−Cr−Mo合金粉末と黒鉛粉末を表1の実施例1〜6に示す割合で混合した原料粉末を準備した。
また、比較のために、Fe−Cr−Mo合金粉末と黒鉛粉末を表1の比較例1〜6に示す割合で混合した原料粉末と、Fe−0.5mass%Mo−4mass%Ni−1.5mass%Cu−0.5mass%C部分拡散合金粉末に0.5mass%の黒鉛粉末を混合した原料粉末も準備した。
Example 1
Examples are given below. The raw material powder which mixed the Fe-Cr-Mo alloy powder and the graphite powder in the ratio shown in Examples 1-6 of Table 1 was prepared.
For comparison, a raw material powder obtained by mixing Fe—Cr—Mo alloy powder and graphite powder in the proportions shown in Comparative Examples 1 to 6 in Table 1 and Fe-0.5 mass% Mo-4 mass% Ni-1. A raw material powder prepared by mixing 0.5 mass% graphite powder with 5 mass% Cu-0.5 mass% C partial diffusion alloy powder was also prepared.

そして、上記の各原料粉末を用いて所定の圧力で性能評価用テストピースの成形体を作製した。その成形体の密度を表1に併せて示す。成形体の密度は、実施例については、焼結後のテストピースの密度(焼結体密度)がいずれも6.7g/cmを上回るように調整した。 And the molded object of the test piece for performance evaluation was produced with the predetermined pressure using each said raw material powder. The density of the compact is also shown in Table 1. In the examples, the density of the molded body was adjusted so that the density of the test pieces after sintering (sintered body density) exceeded 6.7 g / cm 3 .

次に、試作した各成形体(比較例4を除く)を、温度1250℃の窒素雰囲気中で45分間保持して焼結した。比較例4については焼結温度を1150℃とし、雰囲気と焼結時間は他の試料と同じにした。   Next, each of the fabricated molded bodies (except for Comparative Example 4) was sintered by being held in a nitrogen atmosphere at a temperature of 1250 ° C. for 45 minutes. For Comparative Example 4, the sintering temperature was 1150 ° C., and the atmosphere and sintering time were the same as those of other samples.

以上の条件で作製したテストピース(表1に示す焼結体密度を有する)を使用して、焼結体の硬さと強度特性(ロックウェル硬さ、引っ張り強度、曲げ疲労強度、面圧疲労強度)を評価した。ロックウェル硬さはJIS Z 2245に準拠した方法で測定し、また、引っ張り強度はJIS Z 2241に準拠した方法で、曲げ疲労強度はJIS Z2274に準拠した方法で、面圧疲労強度は、島津製作所社製2円筒試験機でそれぞれ測定した。その結果を表1に示す。   Using the test piece (having the sintered body density shown in Table 1) produced under the above conditions, the hardness and strength characteristics of the sintered body (Rockwell hardness, tensile strength, bending fatigue strength, surface pressure fatigue strength) ) Was evaluated. Rockwell hardness is measured by a method according to JIS Z 2245, tensile strength is a method according to JIS Z 2241, bending fatigue strength is a method according to JIS Z 2274, and surface pressure fatigue strength is measured by Shimadzu Corporation. Each measurement was made with a 2-cylinder testing machine manufactured by the company. The results are shown in Table 1.

Figure 2009167477
Figure 2009167477

表1のデータからわかるように、Cr、Mo、Cのいずれかの成分が規定値に満たない比較例2,3,5及び焼結温度が1200℃未満の比較例4は、硬さや強度特性に関して、ユーザが要望する数値(表面硬さ85HRB以上、引っ張り強度800MPa以上、曲げ疲労強度200MPa以上、面圧疲労強度0.8GPa以上)のすべてを満足する性能が得られていない。なお、比較例6は、その要求性能を満たしているが、これはNiとCuを含有しており、コストが高くつく。   As can be seen from the data in Table 1, Comparative Examples 2, 3, and 5 in which any component of Cr, Mo, and C is less than the specified value and Comparative Example 4 in which the sintering temperature is less than 1200 ° C. are hardness and strength characteristics. , The performance satisfying all of the numerical values requested by the user (surface hardness of 85 HRB or more, tensile strength of 800 MPa or more, bending fatigue strength of 200 MPa or more, surface pressure fatigue strength of 0.8 GPa or more) is not obtained. Comparative Example 6 satisfies the required performance, but it contains Ni and Cu and is expensive.

−実施例2−
Fe−Cr−Mo合金粉末と黒鉛粉末を表2に示す割合で混合した原料粉末を準備し、その原料粉末を金型で成形して図1〜図3に示した形状の焼結クラッチハブ用成形体を作成し、さらに、その成形体を温度1250℃の窒素雰囲気中で45分間保持して焼結した。その後、得られた焼結クラッチハブを同一条件でサイジングし、その後に、各クラッチハブの外径真円度を測定して外径精度を評価した。その結果と、焼結前の成形体について調べたボス部、リム部、外径歯部の密度差(分割密度差)も表2に示す。表2における外径真円度は、外径歯部(基準外径φ90mm)の外径の最大値と最小値の差の測定値で表している。また、焼結体密度は外径歯部の密度を測定した。
-Example 2-
A raw material powder prepared by mixing an Fe—Cr—Mo alloy powder and a graphite powder in the proportions shown in Table 2 is prepared, and the raw material powder is molded with a mold for a sintered clutch hub having the shape shown in FIGS. A molded body was prepared, and the molded body was further sintered in a nitrogen atmosphere at a temperature of 1250 ° C. for 45 minutes. Thereafter, the obtained sintered clutch hub was sized under the same conditions, and then the outer diameter roundness of each clutch hub was measured to evaluate the outer diameter accuracy. Table 2 also shows the results and the density difference (division density difference) between the boss part, rim part, and outer diameter tooth part examined for the green body before sintering. The outer diameter roundness in Table 2 is expressed as a measured value of the difference between the maximum value and the minimum value of the outer diameter tooth portion (reference outer diameter φ90 mm). Moreover, the sintered compact density measured the density of the outer diameter tooth part.

Figure 2009167477
Figure 2009167477

この表2の結果から、成形体の分割密度差が本願の規定値を満たしていないものは、製品の外径真円度(外径精度)が悪くなる。この外径真円度がサイジングによる寸法矯正代をオーバーすると、サイジング自体が不可能になる。   From the results in Table 2, when the divided density difference of the molded body does not satisfy the specified value of the present application, the outer diameter roundness (outer diameter accuracy) of the product is deteriorated. If this outer diameter roundness exceeds the dimension correction allowance by sizing, sizing itself becomes impossible.

この発明のクラッチハブの一例を示す斜視図The perspective view which shows an example of the clutch hub of this invention 図1のクラッチハブの平面図1 is a plan view of the clutch hub of FIG. 図2のX−X線に沿った断面図Sectional view along line XX in FIG.

符号の説明Explanation of symbols

1 焼結クラッチハブ
2 ボス部
3 リム部
4 外径歯部
5 軸穴
6 キー溝
1 Sintered clutch hub 2 Boss part 3 Rim part 4 Outer diameter tooth part 5 Shaft hole 6 Keyway

Claims (4)

焼結クラッチハブ用の成形体であって、原料粉末の組成が質量比でCr:2〜4%、Mo:0.3〜0.8%、C:0.4〜0.8%、残Feであり、密度が6.6g/cm以上、7.0g/cm未満であり、かつ各部の密度差が0.15g/cm以下である焼結クラッチハブ用成形体。 It is a molded body for a sintered clutch hub, and the composition of the raw material powder is in a mass ratio of Cr: 2 to 4%, Mo: 0.3 to 0.8%, C: 0.4 to 0.8%, the balance A molded article for a sintered clutch hub which is Fe, has a density of 6.6 g / cm 3 or more and less than 7.0 g / cm 3 , and a difference in density of each part is 0.15 g / cm 3 or less. 請求項1に記載の成形体を焼結して作られた焼結クラッチハブであって、ベイナイトまたはベイナイト中にマルテンサイトが分布した組織を有する焼結クラッチハブ。   A sintered clutch hub made by sintering the molded body according to claim 1, wherein the sintered clutch hub has a structure in which bainite or martensite is distributed in bainite. 表面硬さ85HRB以上、引っ張り強度800MPa以上、曲げ疲労強度200MPa以上、面圧疲労強度0.8GPa以上の性能を有している請求項2に記載の焼結クラッチハブ。   The sintered clutch hub according to claim 2, having a surface hardness of 85 HRB or more, a tensile strength of 800 MPa or more, a bending fatigue strength of 200 MPa or more, and a surface pressure fatigue strength of 0.8 GPa or more. 質量比でCr:2〜4%、Mo:0.3〜0.8%、C:0.4〜0.8%、残Feの組成の原料粉末で密度6.6g/cm以上、7.0g/cm未満の成形体を形成し、次いで、その成形体を非酸化性雰囲気中1200〜1300℃の温度で焼結してクラッチハブを得る焼結クラッチハブの製造方法。 Raw material powder having a composition of Cr: 2 to 4%, Mo: 0.3 to 0.8%, C: 0.4 to 0.8%, and residual Fe in terms of mass ratio, density 6.6 g / cm 3 or more, 7 A method for producing a sintered clutch hub, comprising forming a molded body of less than 0.0 g / cm 3 and then sintering the molded body in a non-oxidizing atmosphere at a temperature of 1200 to 1300 ° C.
JP2008007771A 2008-01-17 2008-01-17 Sintered clutch hub, compact therefor, and method for manufacturing sintered clutch hub Pending JP2009167477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008007771A JP2009167477A (en) 2008-01-17 2008-01-17 Sintered clutch hub, compact therefor, and method for manufacturing sintered clutch hub

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008007771A JP2009167477A (en) 2008-01-17 2008-01-17 Sintered clutch hub, compact therefor, and method for manufacturing sintered clutch hub

Publications (1)

Publication Number Publication Date
JP2009167477A true JP2009167477A (en) 2009-07-30

Family

ID=40968993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008007771A Pending JP2009167477A (en) 2008-01-17 2008-01-17 Sintered clutch hub, compact therefor, and method for manufacturing sintered clutch hub

Country Status (1)

Country Link
JP (1) JP2009167477A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101145636B1 (en) 2010-04-30 2012-05-24 기아자동차주식회사 Water pump for vehicle
JP2013204112A (en) * 2012-03-29 2013-10-07 Sumitomo Electric Sintered Alloy Ltd Ferrous sintered alloy and method of producing the same
US8668066B2 (en) 2009-10-07 2014-03-11 Miba Sinter Austria Gmbh Sintered coupling ring
JP2014080642A (en) * 2012-10-15 2014-05-08 Sumitomo Denko Shoketsu Gokin Kk Method of manufacturing sintered component
EP3296418A1 (en) * 2016-09-16 2018-03-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JP2021191901A (en) * 2017-02-08 2021-12-16 住友電工焼結合金株式会社 Sintered component

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668066B2 (en) 2009-10-07 2014-03-11 Miba Sinter Austria Gmbh Sintered coupling ring
KR101145636B1 (en) 2010-04-30 2012-05-24 기아자동차주식회사 Water pump for vehicle
JP2013204112A (en) * 2012-03-29 2013-10-07 Sumitomo Electric Sintered Alloy Ltd Ferrous sintered alloy and method of producing the same
JP2014080642A (en) * 2012-10-15 2014-05-08 Sumitomo Denko Shoketsu Gokin Kk Method of manufacturing sintered component
EP3296418A1 (en) * 2016-09-16 2018-03-21 Toyota Jidosha Kabushiki Kaisha Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
CN107829015A (en) * 2016-09-16 2018-03-23 丰田自动车株式会社 The manufacture method and wearability iron-base sintered alloy of wearability iron-base sintered alloy
JP2021191901A (en) * 2017-02-08 2021-12-16 住友電工焼結合金株式会社 Sintered component
JP7235822B2 (en) 2017-02-08 2023-03-08 住友電工焼結合金株式会社 sintered parts

Similar Documents

Publication Publication Date Title
JP2648519B2 (en) Method of manufacturing synchronizer hub
JP4891421B2 (en) Powder metallurgy mixture and method for producing powder metallurgy parts using the same
CA2725652C (en) Iron-based pre-alloyed powder
JP5773267B2 (en) Iron-based sintered sliding member and manufacturing method thereof
JP4902280B2 (en) Powder forged member, mixed powder for powder forging, method for producing powder forged member, and fracture split type connecting rod using the same
JP6688287B2 (en) Pre-alloyed iron-based powder, iron-based powder mixture containing pre-alloyed iron-based powder, and method of manufacturing press-formed and sintered parts from the iron-based powder mixture
JP2009167477A (en) Sintered clutch hub, compact therefor, and method for manufacturing sintered clutch hub
JP6194613B2 (en) Iron-based sintered alloy for sliding member and manufacturing method thereof
JP6722511B2 (en) Carburized Sintered Steel, Carburized Sintered Member and Manufacturing Methods Thereof
EP2778243A1 (en) Iron based sintered sliding member and method for producing the same
JP2010111937A (en) High-strength composition iron powder and sintered component using the same
US20150211621A1 (en) Sintered component
EP2781283A1 (en) Iron base sintered sliding member and method for producing same
KR101622378B1 (en) Piston rings and cylinder sleeves
JP2010538156A (en) Manufacturing method of sintered hardened parts
JPH09511020A (en) Sintered product manufacturing method
KR20130031454A (en) Synchronizer sleeve and manufacturing method thereof
WO2009104692A1 (en) Powder for iron-based sintered alloy
JP2014185380A (en) Iron-based sintered alloy and manufacturing method therefor
JP2005042812A (en) Sintered sprocket for silent chain and production method therefor
JP4301507B2 (en) Sintered sprocket for silent chain and manufacturing method thereof
JP6528899B2 (en) Method of manufacturing mixed powder and sintered body for powder metallurgy
US9950369B2 (en) Manufacturing method of sintered alloy, compact for sintering, and sintered alloy
JP6271310B2 (en) Iron-based sintered material and method for producing the same
WO1988000505A1 (en) Alloy steel powder for powder metallurgy