JPS6245008B2 - - Google Patents

Info

Publication number
JPS6245008B2
JPS6245008B2 JP54028128A JP2812879A JPS6245008B2 JP S6245008 B2 JPS6245008 B2 JP S6245008B2 JP 54028128 A JP54028128 A JP 54028128A JP 2812879 A JP2812879 A JP 2812879A JP S6245008 B2 JPS6245008 B2 JP S6245008B2
Authority
JP
Japan
Prior art keywords
mold
forged
hot
hot forging
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54028128A
Other languages
Japanese (ja)
Other versions
JPS55120440A (en
Inventor
Yoshinobu Takeda
Atsushi Kuroishi
Susumu Nomichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2812879A priority Critical patent/JPS55120440A/en
Publication of JPS55120440A publication Critical patent/JPS55120440A/en
Publication of JPS6245008B2 publication Critical patent/JPS6245008B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 粉末熱間鍛造法によつて高性能機械部品を製造
する技術は、年々重要度が増しつつある。何故な
ら機械部品の需要家は、より優れた性能を有する
材料を、より経済的に求めているからである。
DETAILED DESCRIPTION OF THE INVENTION The technology of manufacturing high-performance mechanical parts by powder hot forging is becoming more and more important year by year. This is because consumers of mechanical parts are seeking materials with better performance and more economically.

粉末熱間鍛造法における重要な技術の一つに部
品の寸法精度の問題がある。鋳物や切削品と異り
殆ど機械加工なしに機械部品を製造する粉末熱間
鍛造法において、余分な機械加工なしに精度よく
仕上げることは、、経済性の最も大きなポイント
となるからである。
One of the important techniques in powder hot forging is the problem of dimensional accuracy of parts. This is because, in the powder hot forging method, which manufactures mechanical parts without almost any machining, unlike castings or cut products, finishing with high precision without extra machining is the most important point for economical efficiency.

従来の熱間鍛造法においては、品物を鋼のオー
ステナイト相温度領域で鍛造し、その後冷却過程
中で変態させる。従つて高温で高圧を受ける金型
の寿命は短く、金型費用が大きな問題となつた。
In conventional hot forging methods, the article is forged in the temperature region of the austenitic phase of the steel and then transformed during a cooling process. Therefore, the lifespan of molds that are exposed to high temperatures and high pressures is short, and mold costs have become a major problem.

更に、鍛造後の冷却過程で発生する鋼の変態の
為に体積寸法変化が大きく、寸法精度を低下させ
る原因となつた。寸法精度はこの他にも鍛造時の
温度のバラツキやこれに伴う熱膨張、残留応力の
バラツキによつて著しく影響を受け、高精度の部
品を作るのが容易でなかつた。
Furthermore, due to the transformation of the steel that occurs during the cooling process after forging, the change in volumetric dimensions is large, which causes a decrease in dimensional accuracy. In addition, dimensional accuracy is significantly affected by variations in temperature during forging, resulting thermal expansion, and variations in residual stress, making it difficult to produce high-precision parts.

金型の寿命は、特に形状が微細になればなる程
当該部分における応力集中が発生し摩耗が著しか
つた。
As for the life of the mold, especially as the shape becomes finer, stress concentration occurs in the part concerned and wear becomes more severe.

一方、冷間鍛造方法においては、熱間鍛造で問
題となつた主として熱に起因するトラブルは解決
されるものの、金型寿命はかえつて劣化さえし
た。何故なら被鍛造材の変形抵抗が著しく増し、
その結果熱間鍛造法の数倍の圧力を必要とする為
である。更に、得られた冷間鍛造部品の強度特性
は空孔の残留率が高く、又塑性変形性が劣つてい
る為に生じた微細クラツクが破壊の源となる為、
充分ではなかつた。
On the other hand, in the cold forging method, although the problems caused by hot forging, which were mainly caused by heat, were solved, the life of the mold was even deteriorated. This is because the deformation resistance of the forged material increases significantly,
As a result, the pressure required is several times that of hot forging. Furthermore, the strength characteristics of the obtained cold forged parts are such that the residual rate of pores is high, and the micro cracks that occur due to poor plastic deformability are a source of fracture.
It wasn't enough.

この様に、従来の粉末鍛造方法においては、熱
間、冷間それぞれに一長、一短があり、総合的に
充分な強度特性、寸法精度、経済性を満足する方
法は存在しなかつた。
As described above, in conventional powder forging methods, hot and cold forging methods each have their advantages and disadvantages, and there has been no method that comprehensively satisfies sufficient strength characteristics, dimensional accuracy, and economic efficiency.

本発明は、この両者を同時に満足させる方法を
粉末冶金的手法を活用して実現させたものであ
る。
The present invention utilizes powder metallurgy to realize a method that satisfies both of these requirements at the same time.

即ち、第1ステツプで熱間鍛造し、材料の強度
特性を満足させると共にマクロ的な形状を整え
る。これを実現するためには、鉄系合金粉末を粉
末予備成形体とし、これを通常の熱間鍛造温度で
ある1000〜1200℃に加熱して、表層部のみに空孔
が残る金型温度で熱間鍛造する。このとき粉末予
備成形体は、熱間鍛造する前に予め通常の焼結を
したものであつてもよい。
That is, in the first step, hot forging is performed to satisfy the strength characteristics of the material and to adjust the macroscopic shape. In order to achieve this, the iron-based alloy powder is made into a powder preform, which is then heated to the normal hot forging temperature of 1000 to 1200°C to create a mold temperature that leaves pores only in the surface layer. Hot forged. At this time, the powder preform may be previously sintered in a conventional manner before hot forging.

通常の熱間鍛造は、250〜400℃に加熱した金型
の中で行なわれるのであるが、本願第1ステツプ
のような温度の金型を用いた場合には、被熱間鍛
造体を金型に入れた瞬間に、その表面が急速に冷
却される。このため鍛造しても表面部の塑性変形
は少ないために、金型と接触した表面層には空孔
が残る。
Normal hot forging is carried out in a mold heated to 250 to 400°C, but when a mold at a temperature like the one used in the first step of the present invention is used, the hot forged object is The moment it is placed in the mold, its surface cools rapidly. Therefore, even when forged, the plastic deformation of the surface portion is small, so pores remain in the surface layer that has come into contact with the mold.

一方、内部の方は、通常の温度に保たれている
ので、空孔がなく、強度の高い鍛造体となつてい
る。しかしながら、前述したように、被鍛造体の
表面部の温度は下がつているので塑性変形されに
くく、狙い通りの寸法精度を有する高性能機械部
品を得ることは第1ステツプだけでは困難であ
る。熱間鍛造の金型は、表面から被鍛造体の熱を
吸収し、昇温する訳であるから、鍛造物表面の温
度を下げ、金型の冷却を強化することによつて、
温度上昇を抑制することが出来る。温度上昇が抑
制されれば、金型材料は高温で負荷を軽減する結
果となり、金型寿命の延長に結びついた。このよ
うにして、得られた熱間鍛造体に本発明では、第
2ステツプの加工を加える。
On the other hand, the internal temperature is maintained at a normal temperature, so there are no pores and the forged body has high strength. However, as mentioned above, since the temperature of the surface of the forged object is low, it is difficult to undergo plastic deformation, and it is difficult to obtain a high-performance mechanical component with the desired dimensional accuracy by using only the first step. The hot forging mold absorbs the heat of the forged object from its surface and raises its temperature, so by lowering the temperature of the surface of the forging and strengthening the cooling of the mold,
Temperature rise can be suppressed. If the temperature rise was suppressed, the mold material would be less loaded at high temperatures, leading to an extension of mold life. According to the present invention, the hot forged body thus obtained is subjected to a second step of processing.

即ち、第2ステツプでは、限定された部分の微
細形状を創成もしくは矯正するものである。第1
ステツプで、空孔の残つている部位が変形して微
細部の寸法精度を高めることができるのである。
That is, in the second step, a fine shape in a limited area is created or corrected. 1st
In this step, the portions where the holes remain are deformed, thereby increasing the dimensional accuracy of the minute portions.

第2ステツプでは金型温度は、通常の熱間鍛造
で用いる250〜400℃に加熱するが、被鍛造体の温
度は、鉄系合金の共析変態温度以下、250℃以上
であれば、本願の効果は得られる。
In the second step, the mold temperature is heated to 250 to 400°C, which is used in normal hot forging. The effect can be obtained.

しかしながら、被鍛造体が冷却される時の寸法
変化等を考慮すると、250〜400℃に加熱する方が
望ましい。
However, in consideration of dimensional changes when the forged body is cooled, it is preferable to heat the forged body to 250 to 400°C.

以上の理由により、第2ステツプでは金型の温
度及び被熱間鍛造体が共に250〜400℃の範囲にあ
れば、寸法精度の高い高性能機械部品の製造が可
能である。
For the above reasons, in the second step, if both the temperature of the mold and the hot forged body are in the range of 250 to 400°C, it is possible to manufacture high-performance mechanical parts with high dimensional accuracy.

本願の特徴は、第1ステツプの熱間鍛造で材料
の強度特性を満足させると共に、マクロ的形状を
整える。この時、金型寿命に悪影響を及ぼす微細
形状は創成しない。第2ステツプでは限られた部
分の微細形状を創成もしくは矯正する。この場合
第2ステツプの創成と矯正は、熱間鍛造によつて
全面的に空孔のない緻密な素材を処理しようとす
ると、著しく高い圧力を必要とし、結局金型の摩
耗を早める。この為、本発明では、第1ステツプ
で表層の特定部分に空孔を残し、残りの部分は空
孔が無くなる様に熱間鍛造することによつて、第
1ステツプ、第2ステツプ両者の金型の寿命を著
しく延長出来ることを見い出した。この様にして
得られた被鍛造体は、低温で寸法形状を創成・矯
正されている為、高寸法精度であり又材料中の欠
陥は熱間で加工されている為極めて僅かであり、
優れた機械部品として使用に供せられる。又、既
に記述した如く、金型の寿命は、従来の単一工程
法と比較して3倍以上に延長される為に、金型費
が経済性を損うことは避けられた。勿論、寸法、
形状精度の向上によつて高価な機械加工即ち、旋
削、ブローチ、研削等が不要になり著しく経済性
が増すことは言うまでもないことである。
The feature of the present application is that the first step of hot forging satisfies the strength characteristics of the material and also adjusts the macroscopic shape. At this time, fine shapes that adversely affect the life of the mold are not created. In the second step, a fine shape in a limited area is created or corrected. In this case, the creation and straightening of the second step requires extremely high pressures if a dense material with no pores is to be processed by hot forging, which ultimately leads to faster wear of the mold. For this reason, in the present invention, holes are left in a specific part of the surface layer in the first step, and the remaining parts are hot-forged so that there are no holes. We have discovered that the life of the mold can be significantly extended. The forged object obtained in this way has a high dimensional accuracy because the dimensions and shape are created and corrected at low temperatures, and there are very few defects in the material because it is hot processed.
It can be used as an excellent mechanical part. Moreover, as already mentioned, the life of the mold is extended by more than three times compared to the conventional single-step method, so that the cost of the mold can be avoided from impairing economic efficiency. Of course, the dimensions,
It goes without saying that the improvement in shape accuracy eliminates the need for expensive machining, such as turning, broaching, grinding, etc., thereby significantly increasing economic efficiency.

実施例 1 Fe―2Ni―0.5Mo―0.3Cの組成に調製したリン
グ状粉末予備成形体を金型温度60℃の金型中で表
層空孔を有する様熱間鍛造した。引継いて、300
℃に保持した金型中で350℃の被鍛造体を加工し
た。
Example 1 A ring-shaped powder preform prepared to have a composition of Fe-2Ni-0.5Mo-0.3C was hot forged in a mold at a mold temperature of 60°C so as to have surface pores. Take over, 300
A forged object at 350°C was processed in a mold held at 350°C.

得られた鍛造体は、全体密度が7.82g/c.c.表層
附近の空孔が極めて僅かだけ認められた。
The obtained forged body had a total density of 7.82 g/cc, and very few pores were observed near the surface layer.

一方、従来法として、金型温度250℃で熱間鍛
造しただけの鍛造体は、全体密度は7.83g/c.c.で
あつた。両者の寸法精度を比較したところ、52mm
の直径に対して、前者が±0.02mmであつたのに後
者は±0.05mmであつた。
On the other hand, a forged body that was simply hot forged at a mold temperature of 250°C as a conventional method had an overall density of 7.83 g/cc. Comparing the dimensional accuracy of both, it was 52mm.
The diameter of the former was ±0.02mm, while the latter was ±0.05mm.

実施例 2 金型プレスを用いて、−100メツシユ合金粉末
(Fe―2Ni―0.5Mo―0.3C)を成形圧力7ton/cm2
成形し、リング状の圧粉体を(外径60mmφ、内径
35mmφ、厚さ20mm)を得た。成形体密度は7.1
g/c.c.であつた。
Example 2 Using a mold press, -100 mesh alloy powder (Fe-2Ni-0.5Mo-0.3C) was molded at a molding pressure of 7 ton/cm 2 to form a ring-shaped green compact (outer diameter 60 mmφ, inner diameter
35mmφ, thickness 20mm) was obtained. The compact density is 7.1
g/cc.

この成形体を窒素ガスフロー中で1260℃、1時
間焼結して、比重7.30g/c.c.を有する焼結体に
し、更に窒素ガス中で1100℃20分加熱後、金型温
度70℃の金型中で圧力8ton/cm2で熱間鍛造した。
This molded body was sintered at 1260°C for 1 hour in a nitrogen gas flow to obtain a sintered body with a specific gravity of 7.30g/cc, and then heated at 1100°C for 20 minutes in nitrogen gas. Hot forging was carried out in a mold at a pressure of 8 tons/cm 2 .

成形体表層部は金型に熱をうばわれるため、温
度が低下し、加工性が悪くなり、熱間鍛造による
密度上昇が少なく、表層に比較的空孔の多い予備
鍛造体が得られた。これを金型温度300℃被鍛造
体の温度250℃にて再度鍛造したところ、実施例
1と同様±0.02mmの寸法精度のものが得られた。
Since the surface layer of the molded body was exposed to heat by the mold, the temperature decreased and workability deteriorated, and a preliminary forged body with little increase in density due to hot forging and a relatively large number of pores in the surface layer was obtained. When this was forged again at a mold temperature of 300° C. and a forged body temperature of 250° C., a dimensional accuracy of ±0.02 mm was obtained as in Example 1.

Claims (1)

【特許請求の範囲】 1 鉄系合金粉末を予備成形した後表層部のみに
空孔が残る金型温度で熱間鍛造し、しかるのち金
型および被鍛造体を250〜400℃に加熱して熱間鍛
造することを特徴とする粉末熱間鍛造による機械
部品の製法。 2 鉄系合金粉末を予備成形した後、焼結し表層
部のみに空孔が残る金型温度で熱間鍛造し、しか
るのち、金型および被鍛造体を250〜400℃に加熱
して熱間鍛造することを特徴とする粉末熱間鍛造
による機械部品の製法。
[Claims of Claims] 1. After preforming iron-based alloy powder, hot forging is performed at a mold temperature that leaves pores only in the surface layer, and then the mold and the body to be forged are heated to 250 to 400°C. A method for manufacturing mechanical parts using powder hot forging, which is characterized by hot forging. 2 After preforming the iron-based alloy powder, it is sintered and hot forged at a mold temperature that leaves pores only in the surface layer, and then the mold and the forged body are heated to 250 to 400°C to heat it. A method for manufacturing mechanical parts using powder hot forging, which is characterized by inter-forging.
JP2812879A 1979-03-09 1979-03-09 Production of powder hot forged part Granted JPS55120440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2812879A JPS55120440A (en) 1979-03-09 1979-03-09 Production of powder hot forged part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2812879A JPS55120440A (en) 1979-03-09 1979-03-09 Production of powder hot forged part

Publications (2)

Publication Number Publication Date
JPS55120440A JPS55120440A (en) 1980-09-16
JPS6245008B2 true JPS6245008B2 (en) 1987-09-24

Family

ID=12240138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2812879A Granted JPS55120440A (en) 1979-03-09 1979-03-09 Production of powder hot forged part

Country Status (1)

Country Link
JP (1) JPS55120440A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825376A (en) * 2017-01-23 2017-06-13 温州电泰阀门有限公司 A kind of valve body forging technology

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730576B2 (en) * 2001-07-27 2011-07-20 トヨタ自動車株式会社 Method for manufacturing sintered parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368608A (en) * 1976-11-30 1978-06-19 Honda Motor Co Ltd Carburizing and forging of ferrous powder molded article

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368608A (en) * 1976-11-30 1978-06-19 Honda Motor Co Ltd Carburizing and forging of ferrous powder molded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825376A (en) * 2017-01-23 2017-06-13 温州电泰阀门有限公司 A kind of valve body forging technology

Also Published As

Publication number Publication date
JPS55120440A (en) 1980-09-16

Similar Documents

Publication Publication Date Title
JP4080111B2 (en) Manufacturing method of aluminum alloy billet for forging
JP4304245B2 (en) Powder metallurgy object with a molded surface
JPH07506661A (en) Method for manufacturing a component having at least one divided bearing surface for a rolling element
JP6312988B2 (en) Large piston ring manufacturing method, large piston ring material, and large piston ring.
JP3016540B2 (en) Hot balanced and consolidated martensitic mold, die block member and method of manufacturing the same
JP2014237152A5 (en)
JP2008527166A (en) Method for producing surface densified powder metal parts
JPS6245008B2 (en)
US3987658A (en) Graphite forging die
JP2572053B2 (en) Manufacturing method of iron alloy moldings
JPH0643628B2 (en) Method for manufacturing aluminum alloy member
JPH0565568B2 (en)
SU1740131A1 (en) Method of manufacturing a molding die
JPH02299740A (en) Forming mold for high-temperature molten metal
JPS6216266B2 (en)
JPH03242490A (en) Molding method for oil sump groove on edge of aluminum alloy rotor
JPH0525591A (en) Wire for piston ring and its manufacture
JP2005240059A (en) Method for producing composite sintered component and composite sintered component obtained by the method
JPS6144103A (en) Production of connecting rod
JPS60116753A (en) Manufacture of heat-resistant aluminum alloy member
JPH11300459A (en) Sleeve for die casting machine
JPH0533013A (en) Production of highly accurate aluminum alloy sliding parts
JPS63290202A (en) Production of spiral part by forging aluminum alloy powder
JP2006122978A (en) Roll for rolling metallic plate
JPS61130403A (en) Sintering method of high-density material