JPS6216266B2 - - Google Patents

Info

Publication number
JPS6216266B2
JPS6216266B2 JP58217008A JP21700883A JPS6216266B2 JP S6216266 B2 JPS6216266 B2 JP S6216266B2 JP 58217008 A JP58217008 A JP 58217008A JP 21700883 A JP21700883 A JP 21700883A JP S6216266 B2 JPS6216266 B2 JP S6216266B2
Authority
JP
Japan
Prior art keywords
cemented carbide
forging
binder phase
weight
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58217008A
Other languages
Japanese (ja)
Other versions
JPS60110840A (en
Inventor
Masaya Myake
Akio Hara
Juichi Hirayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58217008A priority Critical patent/JPS60110840A/en
Publication of JPS60110840A publication Critical patent/JPS60110840A/en
Publication of JPS6216266B2 publication Critical patent/JPS6216266B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ) 技術分野 本発明は温間鍛造、熱間鍛造用工具に用いられ
る高性能、高寿命の超硬合金を提供するものであ
る。 (ロ) 従来技術とその問題点 従来熱間鍛造用工具である金型、パンチはダイ
ス鋼(SKD61)が主に使われていた。ダイス鋼
は表面に熱亀裂変形が発生しやすいため、寿命は
短かく、製品の寸法精度が悪いのが現状である。
従つて熱間鍛造後の部品は、研削加工が必要とさ
れている。最近の動向として、温間鍛造、熱間鍛
造による精密鍛造を行い、後加工を省略する方向
の開発が進められている。これには高性能鍛造用
工具が必要とされる。従来から用いられている熱
間ダイス鋼では肌荒れ、変形、熱亀裂が著しくま
た鋼の熱膨張が大きいため高精度を出すことは出
来ない。高温での硬度が高いSKH―51でも熱膨
張、熱亀裂、クラツクの問題があり高寿命を望め
ない。高温での熱膨張が鋼の1/2である超硬合金
は望ましいが、現在市場で用いられている超硬合
金は耐熱衝撃性、靫性が低いため熱間鍛造の如
く、厳しい使用条件下では使用に耐えない。 (ハ) 発明の開示 本発明は温間、熱間鍛造用工具として、高温硬
度が高く、熱膨張率の低い超硬合金の改良を進め
た結果、耐熱亀裂性、耐割損性の優れた熱間塑性
加工用超硬合金を開発できたものである。 本願の要旨は、硬質層と結合相よりなる超硬合
金において、硬質相がWCよりなり、結合相が
Co、Ni、Crの三元合金からなり、該結合相量が
10〜40重量%にあり、かつCoとNiの比較が99≧
Co/Ni≧1であり、Crの添加量が0.1〜3重量%
である超硬合金を急冷処理により結合相の凝固粒
度を300μ以下に制御したことを特徴とする合金
が、温熱間鍛造用超硬合金工具に適していること
を見出したものである。 温間、熱間鍛造では被加工物の温度が高く、ま
た鍛造材料の変形による発熱にて金型表面の温度
が急上昇する。一方ワーク取り出し後潤滑剤、冷
却水、冷却油等を金型表面に吹きつけるため急冷
されるなどの熱衝撃により工具表面の損傷が起こ
る。なおここでいう温間とは約500〜800℃であ
り、熱間とは約800〜1100℃の範囲を示すもので
ある。 本発明では、急激な熱サイクル、工具表面温度
の上昇による高温硬度の低下、鍛造時に必要な高
温靫性、冷却水による工具表面の腐食、被加工物
による磨耗等の悪条件下でも使用可能な超硬合金
を見出したものである。例えば熱間で使用される
超硬合金として鋼線材圧延に用いられる圧延ロー
ルが知られているが、これは圧延時は、均等荷重
下で用いられ、本願の熱間鍛造工具のような強い
衝撃は加わつていないことからも、本願でいう使
用条件がいかに厳しいかが推定できるわけであ
る。 本発明者らは、硬質相としてWCを用い結合相
としてCoを用いた場合、第1図に示す通り高温
での硬度低下が著しいこと、また第2図に示すよ
うに高温靫性値が低下するとの新らしい知見に基
くものである。即ち、WC−Co系超硬合金にNi−
Crが加わると靫性が低下するとされているが、
99≧Co/Ni≧1の条件では合金の靭性を低下さ
せることなく高強度を維持できることができる。
Crの添加は冷却水による超硬合金工具表面の肌
荒れを減少することができ0.1%以下では効果が
なく、また3重量%を越えると強度が低下するた
め、0.1〜3重量%の範囲が望ましい。 以上の組成面の検討で熱間鍛造工具として必要
な高温硬度、高温靭性、肌荒れは解決するが、熱
亀裂に対する対策として次のことを見出した。 温間鍛造、熱間鍛造では金型表面に生成する熱
亀裂は鍛造時の衝撃により一層成長する。従つて
表面の亀裂発生を極力防止しなければならない。
本発明では鍛造時の亀裂生成機構を鋭意検討した
結果、初期に発生する亀裂深さ、亀裂密度は結合
相の凝固粒度、Co/Niの均一分散、Crの濃度分
布に影響されることが判明した。 本発明者等はWC−Co−Ni−Cr系合金は熱間
鍛造に適しているが、耐熱亀裂性を向上させる方
法を種々検討した結果、焼結工程において焼結温
度から焼結体を急速に冷却することによつて凝固
粒度を制御できること、さらには凝固粒度が0.3
mm以下に制御すると鍛造時に発生する熱亀裂を防
止し得ることを見い出したものである。 凝固粒度は、焼結体の冷却速度によつて著しく
影響を受けるものであり、例えばガスの流入量
や、発熱体と被冷却物との間隔等によつて異つて
くる。例えば熱伝導度の大きいHe、Hz等を用い
れば冷却速度は大巾に向上しその結果0.1mm以下
の凝固粒径をもつ超硬合金を得ることができる。 用途によつて、必要な凝固粒度も異なつてくる
が例えば熱間塑性加工用工具としては0.1mm以下
の凝固粒度をもつものの方が、特性としては良好
となる。 結合相の凝固粒度を0.3mm以上にすると深い熱
亀裂が見られるようになり、さらに大きくすると
大破する恐れが出てくる。超硬合金の凝固粒度は
イオンエツチングあるいは化学的腐食法により容
易に検出することが出来る。第3図に超硬合金の
顕微鏡による凝固組織を示した。濃淡の差は結晶
方位によるものである。 このようにして得られた熱間、温間鍛造用塑性
加工工具の中のダイ、パンチ、ノツクアウト、エ
ジエクターピン、シヤー刃、ロール等に本発明で
得た材料を利用することができる。 (ニ) 実施例 1 WC、Co、NiおよびCrの粉末を秤量し、WC−
12重量%Co−8重量%Ni−2重量%Crとなるよ
うに配合し、混合粉砕を行つた。これを外径100
mm、内径40mm、高さ80mmの円筒状に成形し、真空
炉中10-2Torrにて5時間かけて、1400℃に昇温
し、さらに1時間その温度で保持した。保持後、
炉内に装入した架台を一気に加熱部より冷却部に
移し、N2ガスを炉内に導入し、超硬合金を一気
に急冷凝固させた合金(A)と、1400℃にて1時間保
持まで前記と同じ条件でありその後加熱電源を切
断した後、炉中で1000℃まで冷却しその後N2
スを導入して得た合金(B)を製作した。かくの如く
して得られた合金を鋼シヤンクに圧入し加工して
ベベルギヤー用鍛造金型を製作した。 鍛造用材料を1100℃に加熱し、鍛造圧200tonに
てベベルギヤーの温間鍛造を行つた。ダイス鋼を
金型とした場合は5000ケで寿命となつたが、本発
明の超硬合金(A)は5万ケで寿命となり、また(B)は
1万個の寿命であつた。超硬合金金型は従来のダ
イス鋼金型に比較して割高となるが、それを勘案
すると(B)ではその価値はないが、(A)では充分に超
硬合金を使用する価値があることがわかつた。 この実施例で得られた超硬合金の凝固粒度をイ
オンエツチングによつて調べた結果(A)は平均150
μmであつた。一方(B)は300μmであつた。ダイ
寿命は金型内面に発生する熱亀裂によるものであ
り、さらに熱亀裂の表面エツヂ部にチツピングが
発生し製品形状不良および表面傷による寿命であ
つた。 本発明の超硬合金(A)は亀裂深さが浅くかつ亀裂
の開き工合が小さいため長寿命となることがわか
つた。しかし超硬合金(B)は亀裂が深くかつ亀裂部
が開口し、最後にチツピングが発生する。また衝
撃が大きい部分では亀裂が伸びて、超硬合金が割
れている。ダイス鋼の場合は肌荒れが著しく熱亀
裂およびダイスの変形が見られ、製品形状、製品
の表面状態が悪化している。 実施例 2 実施例1と同様の方法にて第1表に示すような
配合で超硬合金を製作した。これを実施例1の(A)
と同様の方法で急速冷却して、ベベルギヤー用鍛
造金型を製作し温間鍛造を行つた。 【表】
[Detailed Description of the Invention] (a) Technical Field The present invention provides a high-performance, long-life cemented carbide for use in warm forging and hot forging tools. (b) Conventional technology and its problems Traditionally, die steel (SKD61) was mainly used for hot forging tools such as dies and punches. Die steel is prone to thermal cracking and deformation on its surface, so its lifespan is short and the dimensional accuracy of the product is poor.
Therefore, parts after hot forging require grinding. As a recent trend, development is progressing in the direction of precision forging using warm forging and hot forging and omitting post-processing. This requires high performance forging tools. The conventionally used hot die steel cannot achieve high accuracy because it suffers from severe surface roughness, deformation, and thermal cracking, and also because the steel has a large thermal expansion. Even SKH-51, which has high hardness at high temperatures, has problems with thermal expansion, thermal cracking, and cracks, making it difficult to expect a long life. Cemented carbide, whose thermal expansion at high temperatures is 1/2 that of steel, is desirable, but the cemented carbide currently used in the market has low thermal shock resistance and scorching properties, so it cannot be used under harsh conditions such as hot forging. It cannot withstand use. (C) Disclosure of the Invention The present invention is a tool for warm and hot forging that has improved heat cracking resistance and fracture resistance as a result of improving cemented carbide with high high temperature hardness and low coefficient of thermal expansion. This enabled us to develop a cemented carbide for hot plastic working. The gist of this application is that in a cemented carbide consisting of a hard layer and a binder phase, the hard phase is made of WC and the binder phase is
It consists of a ternary alloy of Co, Ni, and Cr, and the amount of the binder phase is
10 to 40% by weight, and the comparison between Co and Ni is 99≧
Co/Ni≧1, and the amount of Cr added is 0.1 to 3% by weight
It has been discovered that an alloy characterized by controlling the solidified grain size of the binder phase to 300μ or less by rapid cooling treatment is suitable for cemented carbide tools for hot forging. During warm and hot forging, the temperature of the workpiece is high, and the temperature of the mold surface rises rapidly due to heat generated by the deformation of the forging material. On the other hand, after the work is taken out, lubricant, cooling water, cooling oil, etc. are sprayed onto the mold surface, which causes damage to the tool surface due to rapid cooling and other thermal shocks. Note that warm here refers to a temperature of approximately 500 to 800°C, and term hot refers to a range of approximately 800 to 1100°C. The present invention can be used even under adverse conditions such as rapid thermal cycles, a decrease in high-temperature hardness due to an increase in tool surface temperature, high-temperature toughness required during forging, corrosion of the tool surface due to cooling water, and wear due to workpieces. This is the discovery of cemented carbide. For example, a rolling roll used for steel wire rolling is known as a cemented carbide used in hot rolling, but this roll is used under uniform load during rolling, and is used under a strong impact like the hot forging tool of the present application. From the fact that is not added, it can be inferred how severe the conditions of use as referred to in the present application are. The present inventors found that when WC was used as the hard phase and Co was used as the binder phase, the hardness decreased significantly at high temperatures as shown in Figure 1, and the high-temperature toughness value decreased as shown in Figure 2. This is based on new knowledge. In other words, Ni-
It is said that the addition of Cr reduces the eyelids, but
Under the condition of 99≧Co/Ni≧1, high strength can be maintained without reducing the toughness of the alloy.
Addition of Cr can reduce roughening of the cemented carbide tool surface caused by cooling water, but if it is less than 0.1% it is ineffective, and if it exceeds 3% by weight, the strength will decrease, so a range of 0.1 to 3% by weight is desirable. . The above compositional studies solved the high-temperature hardness, high-temperature toughness, and surface roughness necessary for hot forged tools, but the following measures were discovered as countermeasures against thermal cracking. In warm forging and hot forging, thermal cracks that form on the die surface grow further due to the impact during forging. Therefore, the occurrence of surface cracks must be prevented as much as possible.
In the present invention, as a result of intensive investigation of the crack generation mechanism during forging, it was found that the initial crack depth and crack density are influenced by the solidified particle size of the binder phase, the uniform dispersion of Co/Ni, and the concentration distribution of Cr. did. The present inventors found that WC-Co-Ni-Cr alloys are suitable for hot forging, but as a result of investigating various ways to improve their heat cracking resistance, they discovered that WC-Co-Ni-Cr alloys are suitable for hot forging. The solidification particle size can be controlled by cooling to a temperature of 0.3.
It has been discovered that thermal cracks that occur during forging can be prevented by controlling the thickness to less than mm. The solidified particle size is significantly affected by the cooling rate of the sintered body, and varies depending on, for example, the amount of gas inflow, the distance between the heating element and the object to be cooled, and the like. For example, by using He, Hz, etc., which have high thermal conductivity, the cooling rate can be greatly improved, and as a result, a cemented carbide having a solidified grain size of 0.1 mm or less can be obtained. The required solidified grain size varies depending on the application, but for example, as a tool for hot plastic working, a tool with a solidified grain size of 0.1 mm or less will have better properties. If the solidified particle size of the binder phase is increased to 0.3 mm or more, deep thermal cracks will become visible, and if it becomes even larger, there is a risk of major damage. The solidified particle size of cemented carbide can be easily detected by ion etching or chemical corrosion. Figure 3 shows the solidified structure of the cemented carbide under a microscope. The difference in shading is due to the crystal orientation. The material obtained by the present invention can be used for the die, punch, knockout, ejector pin, shear blade, roll, etc. of the plastic working tool for hot and warm forging thus obtained. (d) Example 1 WC, Co, Ni and Cr powders were weighed and WC-
A mixture of 12% by weight Co, 8% by weight Ni and 2% by weight Cr was mixed and pulverized. This is the outer diameter of 100
It was formed into a cylindrical shape with a diameter of 40 mm, an inner diameter of 40 mm, and a height of 80 mm, heated to 1400° C. in a vacuum furnace at 10 -2 Torr over 5 hours, and held at that temperature for an additional hour. After holding,
The frame charged in the furnace was moved from the heating section to the cooling section at once, N2 gas was introduced into the furnace, and the alloy (A), which was made by rapidly solidifying cemented carbide, was held at 1400℃ for 1 hour. Alloy (B) was produced under the same conditions as above, after which the heating power source was cut off, the alloy was cooled to 1000° C. in a furnace, and then N 2 gas was introduced. The alloy thus obtained was press-fitted into a steel shank and processed to produce a forging die for a bevel gear. The forging material was heated to 1100℃ and the bevel gear was warm-forged at a forging pressure of 200 tons. When die steel was used as a mold, the life span was 5,000 pieces, but the cemented carbide of the present invention (A) had a lifespan of 50,000 pieces, and (B) had a life of 10,000 pieces. Cemented carbide molds are more expensive than conventional die steel molds, but if you take that into consideration, it is not worth it in (B), but it is well worth using cemented carbide in (A). I found out. The solidified grain size of the cemented carbide obtained in this example was investigated by ion etching, and the average result (A) was 150.
It was μm. On the other hand, (B) was 300 μm. The die life was shortened due to thermal cracks occurring on the inner surface of the mold, and chipping occurred at the surface edges of the thermal cracks, resulting in poor product shape and surface scratches. It was found that the cemented carbide (A) of the present invention has a long life because the crack depth is shallow and the crack opening is small. However, in cemented carbide (B), the cracks are deep and the cracks open, eventually causing chipping. Also, in areas where the impact is large, the cracks extend and the cemented carbide breaks. In the case of die steel, the surface is severely roughened, thermal cracks and die deformation are observed, and the product shape and surface condition are deteriorated. Example 2 A cemented carbide was produced using the same method as in Example 1 with the formulations shown in Table 1. This is (A) in Example 1.
A forging die for a bevel gear was made by rapid cooling in the same manner as above, and warm forging was performed. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種超硬合金の硬度の温度特性を示す
ものであり、第2図は各種超硬合金の衝撃値の温
度特性を示すものである。第3図は30倍の顕微鏡
写真を示す。 図中1……WC−16Co、2……WC−8Co−7Ni
−1Cr、3……WC−25Co、4……WC−15Co、
5……WC−12Co、6……WC−14Co−1.5Ni−
0.5Cr、7……WC−14Co−4Ni−2Cr。
FIG. 1 shows the temperature characteristics of hardness of various cemented carbide alloys, and FIG. 2 shows the temperature characteristics of impact values of various cemented carbide alloys. Figure 3 shows a 30x micrograph. In the figure 1...WC-16Co, 2...WC-8Co-7Ni
-1Cr, 3...WC-25Co, 4...WC-15Co,
5...WC-12Co, 6...WC-14Co-1.5Ni-
0.5Cr, 7...WC−14Co−4Ni−2Cr.

Claims (1)

【特許請求の範囲】 1 硬質相と結合相よりなる超硬合金において、
硬質相がWCよりなり、結合相がCo、Ni、Crよ
りなり、99≧Co/Ni≧1の範囲であり、かつCr
が0.1〜3重量%であり、結合相の量が10〜40重
量%であり、凝固結晶粒が0.3mm以下であること
を特徴とする熱間塑性加工用超硬合金。 2 硬質相と結合相よりなる超硬合金において、
硬質相がWCよりなり、結合相がCo、Ni、Crよ
りなり、99≧Co/Ni≧1の範囲であり、かつCr
が0.1〜3重量%であり、結合相の量が10〜40重
量%である超硬合金の焼結過程で、焼結温度より
ガス体によつて急冷することを特徴とする熱間塑
性加工用超硬合金の製造法。
[Claims] 1. In a cemented carbide comprising a hard phase and a binder phase,
The hard phase consists of WC, the binder phase consists of Co, Ni, and Cr, and the range is 99≧Co/Ni≧1, and Cr
is 0.1 to 3% by weight, the amount of the binder phase is 10 to 40% by weight, and the solidified crystal grains are 0.3 mm or less. 2 In cemented carbide consisting of a hard phase and a binder phase,
The hard phase consists of WC, the binder phase consists of Co, Ni, and Cr, and the range is 99≧Co/Ni≧1, and Cr
is 0.1 to 3% by weight, and the amount of the binder phase is 10 to 40% by weight. Hot plastic processing characterized by rapid cooling by a gas body from the sintering temperature during the sintering process of cemented carbide in which the amount of the binder phase is 10 to 40% by weight. Manufacturing method of cemented carbide for use.
JP58217008A 1983-11-16 1983-11-16 Sintered hard alloy for hot plastic working and its production Granted JPS60110840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58217008A JPS60110840A (en) 1983-11-16 1983-11-16 Sintered hard alloy for hot plastic working and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58217008A JPS60110840A (en) 1983-11-16 1983-11-16 Sintered hard alloy for hot plastic working and its production

Publications (2)

Publication Number Publication Date
JPS60110840A JPS60110840A (en) 1985-06-17
JPS6216266B2 true JPS6216266B2 (en) 1987-04-11

Family

ID=16697375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58217008A Granted JPS60110840A (en) 1983-11-16 1983-11-16 Sintered hard alloy for hot plastic working and its production

Country Status (1)

Country Link
JP (1) JPS60110840A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155951U (en) * 1986-03-20 1987-10-03
JPH0774540B2 (en) * 1990-12-01 1995-08-09 北海道農材工業株式会社 Outer wall of building and its construction method
SE509566C2 (en) 1996-07-11 1999-02-08 Sandvik Ab sintering Method

Also Published As

Publication number Publication date
JPS60110840A (en) 1985-06-17

Similar Documents

Publication Publication Date Title
US3930895A (en) Special magnesium-manganese aluminum alloy
JPS6238402B1 (en)
JP5314807B1 (en) Cemented carbide and manufacturing method thereof, and carbide tool
US4244738A (en) Method of and apparatus for hot pressing particulates
US9101984B2 (en) High hardness, corrosion resistant PM Nitinol implements and components
JPS6216266B2 (en)
US2796660A (en) Method for the production of light metal articles
JP5896296B2 (en) Manufacturing method of high-strength mold with excellent high-temperature softening resistance
JPS61235533A (en) High heat resistant sintered hard alloy
JP4537501B2 (en) Cemented carbide and method for producing the same
CN113260473B (en) 3D printed high-carbon-content steel and preparation method thereof
US3987658A (en) Graphite forging die
JP2001214238A (en) Powder hot tool steel excellent in heat crack resistance and wear resistance and hot die
US4029475A (en) Blank for rolling and forging and method of producing same
JPH0373614B2 (en)
JP3765475B2 (en) Ti-Si alloy-based target material, method for producing the same, and film coating method
JPS63216942A (en) Tool for warm and hot forgings
JP2890909B2 (en) Method of manufacturing a gear member of a rotary gear pump having a materially densified tooth profile
JPS6360253A (en) Warm-and hot-forging tool
JPS62156203A (en) Production of tool
CN113840674B (en) Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy
CN115625335A (en) Preparation method of metal soft magnetic powder pressing die punch
JPS6350443A (en) Warm-and hot-forging tool
KR102046232B1 (en) Method for manufacturing blank for forming
Liu et al. Green machining for conventional P/M processes