JPH0324243A - Copper alloy for led lead frame - Google Patents

Copper alloy for led lead frame

Info

Publication number
JPH0324243A
JPH0324243A JP1158892A JP15889289A JPH0324243A JP H0324243 A JPH0324243 A JP H0324243A JP 1158892 A JP1158892 A JP 1158892A JP 15889289 A JP15889289 A JP 15889289A JP H0324243 A JPH0324243 A JP H0324243A
Authority
JP
Japan
Prior art keywords
lead frame
led
led lead
copper alloy
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1158892A
Other languages
Japanese (ja)
Inventor
Motohisa Miyato
宮藤 元久
Riichi Tsuno
津野 理一
Tatsuya Kinoshita
達也 木下
Hitoshi Tanaka
仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1158892A priority Critical patent/JPH0324243A/en
Publication of JPH0324243A publication Critical patent/JPH0324243A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Device Packages (AREA)

Abstract

PURPOSE:To obtain the LED lead frame having good solderability, adhesion in solder and low thermal conductivity at low cost by specifying the compsn. constituted of Ni, Si, Zn, P, Sn and Cu. CONSTITUTION:The alloy for an LED lead frame contains, by weight, 0.5 to 3.0% Ni, 1.0 to 3.0% Si, 0.05 to 5.0% Zn, 0. 01 to 0.05% P, 0.5 to 3.0% Sn and the balance Cu with inevitable impurities, which has excellent solderability, tight adhesion in solder and 90 deg.C repeated bendability, has about <=0.1cal/(cm.sec. deg.C) thermal conductivity (10% IACS electric conductivity), is hard to be affected by heat in the stage of assembling LED and has good strength and elongation properties.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はLED (発光ダーオード)リードフレーム用
銅合金に関する. 〔従来の技術] LEDは、例えば、第1図に示すように、リードフレー
ム1のステム2aに、半導体チップ3をダイボンディン
グし、次いで、ワイヤ4によりワイヤボンディングした
後、樹脂5により樹脂モールドディングして作成される
. ところで、従来、LEDリードフレーム用材料には、主
として純鉄(spcc)が使用されている.これは、安
価であることおよび強度、伸び特性のバランスが良いこ
と等によるものである.しかし、spccでは、直接は
んだ付けすることは困難であるため、前処理(Cu,N
i等の下地めっき処理)が必要となり、その結果コスト
アップにつながっている。しかも、spccは、熱伝導
率が6.  1 2cal/(cm−sec−’e) 
 (導電率=17%IACS)と高いため、LED組立
て工程時ないし使用時のはんだ付け作業中に熱影響を受
け、LEDの発光色が濁るという本質的な問題があるこ
とがわかった. そこで、LEDの発光色の濁りが防止し得る導電率を調
べたところ、O.  lcal/(cII−sec t
)(導電率10%IACS)以下であることが判明した
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a copper alloy for LED (light emitting diode) lead frames. [Prior Art] For example, as shown in FIG. 1, an LED is manufactured by die bonding a semiconductor chip 3 to a stem 2a of a lead frame 1, then wire bonding with a wire 4, and then resin molding with a resin 5. It is created by By the way, conventionally, pure iron (SPCC) has been mainly used as a material for LED lead frames. This is due to its low cost and good balance between strength and elongation properties. However, in SPCC, it is difficult to solder directly, so pre-treatment (Cu, N
Undercoat plating treatment such as i) is required, resulting in an increase in costs. Moreover, SPCC has a thermal conductivity of 6. 1 2cal/(cm-sec-'e)
It was found that because of its high conductivity (conductivity = 17% IACS), it was affected by heat during the LED assembly process or during the soldering work during use, causing the inherent problem that the LED light color became cloudy. Therefore, we investigated the conductivity that can prevent the color of LED light from becoming cloudy, and found that O. lcal/(cII-sec t
) (electrical conductivity 10% IACS) or less.

この問題に対応できる材料としては、42アロイが挙げ
られるが、高価である。
42 alloy is a material that can solve this problem, but it is expensive.

したがって、熱伝導率が0 .  1 cal/(cm
・sec・℃)(導電率10%IACS)以下であり、
はんだ付け性およびはんだの密着性が良好であり、しか
も安価なLEDリードフレーム用銅合金は現在のところ
開発されていない。
Therefore, the thermal conductivity is 0. 1 cal/(cm
・sec・℃) (conductivity 10% IACS) or less,
A copper alloy for LED lead frames that has good solderability and solder adhesion and is inexpensive has not yet been developed.

[発明が解決しようとする課題] 本発明は、上記に説明したような従来技術に鑑みなされ
たものであり、本発明者の鋭意研究の結果、はんだ付け
性およびはんだの密着性が良好であり、熱伝導率が0 
.  1 cal/(cts−sec・’c)  (導
電率10%I ACS)以下の安価なLEDリードフレ
ーム用銅合金を提供することを目的とする.[課題を解
決するための手段] 本発明に係るLEDリードフレーム用銅合金は、Ni:
0.5〜3.0wt%、Si:1.0〜3.0wt%、
Zn : 0.0 5 〜5.0wt%、P : 0.
0 1 〜0.0 5wt%、Sn:0,5〜3.0w
t%を含有し、残部がCuおよび不可避不純物からなる
ことを特徴とするものである. 本発明に係るLEDリードフレーム用銅合金について以
下詳細に説明する。
[Problems to be Solved by the Invention] The present invention has been made in view of the prior art as explained above, and as a result of intensive research by the inventor, it has been found that the solderability and solder adhesion are good. , thermal conductivity is 0
.. The purpose is to provide an inexpensive copper alloy for LED lead frames with a conductivity of 1 cal/(cts-sec・'c) (conductivity 10% I ACS) or less. [Means for Solving the Problems] The copper alloy for LED lead frames according to the present invention includes Ni:
0.5 to 3.0 wt%, Si: 1.0 to 3.0 wt%,
Zn: 0.05 to 5.0wt%, P: 0.
0 1 ~ 0.0 5wt%, Sn: 0.5 ~ 3.0w
t%, with the remainder consisting of Cu and unavoidable impurities. The copper alloy for LED lead frames according to the present invention will be described in detail below.

(含有成分の限定理由) Niは強度および伸び特性を向上させ、導電率を低下さ
せるための必頭の元素であり、0.5wt%未溝ではこ
の効果は少なく、また、3.0wt%を越えて含有され
ると、上記効果が飽和され高価となる。よってNi含有
量は0.5〜3.0wt%とする。
(Reasons for limiting the content) Ni is an essential element for improving strength and elongation properties and reducing electrical conductivity. If the content exceeds this amount, the above effects will be saturated and the price will increase. Therefore, the Ni content is set to 0.5 to 3.0 wt%.

StはCu中に固溶して導電率を極端に下げる効果を有
し、f.0wt%未満ではその効果は少なく、また、3
.0wt%を越えて含有ざれると熱間加工性が悪化する
. よってSi含有量は1.0〜3.owt%とする. Znは錫めっき、錫合金めっきおよびはんだの耐熱剥離
性を著しく改善する元素であり、含有量がO.O”5w
t%未満ではこの効果は少なく、5.0wt%を越えて
含有されるとはんだ付け性が悪化する.よってZn含有
量は0.05〜5.0wt%とする. PはStを多量に含有する銅合金において内部酸化を抑
制する効果を有する元素である.すなわち、酸化雰囲気
で酸素をP2 osの形で固定し、内部酸化を抑制する
のである.含有量が0.01wt%未満ではその効果は
少な<0.05wt%を越えて含有されると熱間加工性
が劣化する.よってP含有量は0.01〜0.05wt
%とする。
St dissolves in Cu and has the effect of extremely lowering the electrical conductivity; f. If it is less than 0 wt%, the effect is small, and 3
.. If the content exceeds 0 wt%, hot workability deteriorates. Therefore, the Si content is 1.0 to 3. It is assumed to be owt%. Zn is an element that significantly improves the heat peeling properties of tin plating, tin alloy plating, and solder. O”5w
If the content is less than t%, this effect is small, and if the content exceeds 5.0wt%, solderability deteriorates. Therefore, the Zn content is set to 0.05 to 5.0 wt%. P is an element that has the effect of suppressing internal oxidation in copper alloys containing a large amount of St. In other words, it fixes oxygen in the form of P2 os in an oxidizing atmosphere and suppresses internal oxidation. If the content is less than 0.01 wt%, the effect is small; if the content exceeds <0.05 wt%, hot workability deteriorates. Therefore, the P content is 0.01 to 0.05wt
%.

Snは強度および伸び特性を向上させ、また、繰返し曲
げ性の向上に寄与する元素であり、0.5wt%未満で
はこの効果は少ない。まk3.0wt%を越えて含有さ
れると熱間加工性が悪化する.よってSn含有量は0.
5〜3.0wt%とする. なお、上記成分以外にAg,A互,In,Fe,Mn,
B,Be,Mg,Cr,Zr,Tiを1種あるいは2種
以上を総量で1.0wt%まで含有しても、上記したL
EDリードフレーム用銅合金の特性は問題なく維持でき
るので、上記元素含有量は許容される. [実施例] 本発明に係るLEDリードフレーム用銅合金をその実施
例によって詳説する. 第1表 第1表に示すNot〜No9の含有成分および含有割合
の銅合金をクリブトル炉において、大気中で木炭被覆下
に溶解後鋳造して厚さ50mm、幅80mm、長さ18
0mmの鋳塊とした.この鋳塊の表裏面を面削し、88
0℃の温度で厚さ10mmまで熱間圧延を行い、水中急
冷した。
Sn is an element that improves strength and elongation characteristics, and also contributes to improving repeat bendability, and this effect is small if it is less than 0.5 wt%. If the content exceeds 3.0 wt%, hot workability deteriorates. Therefore, the Sn content is 0.
The content should be 5 to 3.0 wt%. In addition to the above components, Ag, A, In, Fe, Mn,
Even if one or more of B, Be, Mg, Cr, Zr, and Ti are contained up to a total amount of 1.0 wt%, the above-mentioned L
The above elemental content is permissible because the properties of the copper alloy for ED lead frames can be maintained without any problems. [Example] The copper alloy for LED lead frames according to the present invention will be explained in detail with reference to Examples. Table 1 Copper alloys having the contents and proportions of Not to No. 9 shown in Table 1 were melted and cast under charcoal coating in the air in a Kributol furnace to form a product with a thickness of 50 mm, width of 80 mm, and length of 18 mm.
The ingot was made into a 0mm ingot. The front and back surfaces of this ingot were milled, and
Hot rolling was performed at a temperature of 0° C. to a thickness of 10 mm, followed by quenching in water.

ここで、比較合金No5は、si含有量が3.0wt%
を越えており、熱間割れが発生したため、以後の試料調
整から除外した. また、比較合金NoIOはSnの偏析が激しく熱間割れ
が発生したため以後の試料調整から除外した. 次に、酸洗により酸化スケールを除去した後、冷間圧延
を行い、厚さ0.57mmに仕上げ、ソルトバス中で7
50℃の温度で20秒間加熱し、水中急冷した.ざらに
酸洗・研磨により酸化スケールを除去した.ここで比較
合金No8は内部酸化が激しく以後の試料調整を断念し
た.次いで、このような板材を冷間圧延により0.40
mmの厚さに仕上げ、以下に示す試験を実施した。
Here, comparative alloy No. 5 has a Si content of 3.0 wt%.
was exceeded and hot cracking occurred, so it was excluded from further sample preparation. In addition, the comparative alloy NoIO was excluded from subsequent sample preparations because of severe Sn segregation and hot cracking. Next, after removing the oxidized scale by pickling, cold rolling was performed to a thickness of 0.57 mm, and the product was placed in a salt bath for 7 days.
It was heated at a temperature of 50°C for 20 seconds and rapidly cooled in water. Oxidized scale was removed by rough pickling and polishing. Comparative alloy No. 8 was severely oxidized internally, and further sample preparation was abandoned. Next, such a plate material is cold rolled to a 0.40
It was finished to a thickness of mm, and the following tests were conducted.

(1)引張試験においては、圧延方向に平行に切り出し
たJIS13号B試験片を使用した。
(1) In the tensile test, a JIS No. 13 B test piece cut out parallel to the rolling direction was used.

(2)硬度は、マイクロスビッカース硬度計により荷重
500gfの条件で測定した. (3)導電率は幅が10mm,長さが300mmの試験
片を使用し、ダブルブリッジ法により測定した. (4)繰り返し曲げ性の試験においては、プレスで打ち
抜いた0.5mm幅のリードを試験片とし、その一端に
450gの錘りを吊して一方向往復で曲げR−0で90
@曲げを行った。そして、往復を1回と数えて、破断ま
での回数を数え、この回数を10個の試験片について平
均化して破断までの繰り返し曲げ回数を求めた.なお、
曲げ軸は圧延方向に平行とした. (5)はんだ付け性は弱活性フラックスを使用して、温
度が230℃のはんだ浴(Sn60−Pb40合金)で
試料をはんだ付けした。
(2) Hardness was measured using a Micros Vickers hardness meter under a load of 500 gf. (3) Electrical conductivity was measured by the double bridge method using a test piece with a width of 10 mm and a length of 300 mm. (4) In the repeated bendability test, a 0.5 mm wide lead punched out with a press was used as a test piece, a 450 g weight was hung from one end of the lead, and the test piece was bent back and forth in one direction at an R-0 of 90.
@Bending was performed. Then, each round trip was counted as one, the number of times until breakage was counted, and this number of times was averaged for 10 test pieces to determine the number of repeated bending times until breakage. In addition,
The bending axis was parallel to the rolling direction. (5) Solderability: Samples were soldered using a weakly activated flux in a solder bath (Sn60-Pb40 alloy) at a temperature of 230°C.

(6)はんだの密着試験は上記試料を150℃の温度に
1 000時間加熱し、この加熱期間中250時間毎に
90゜曲げ試験を実施して試料に対するはんだの密着性
、つまり剥離の有無を調査した。
(6) For the solder adhesion test, the above sample was heated to 150°C for 1000 hours, and a 90° bending test was performed every 250 hours during this heating period to check the adhesion of the solder to the sample, that is, the presence or absence of peeling. investigated.

以上の試験結果を第2表に示す. なお、その他の比較合金として、市販のSPCC(純鉄
)および42アロイを使用した.第2表 第2表から明らかなように、本発明合金Not〜No3
は、強度、伸び特性が良好であり、導電率は10%IA
CS以下であり、LED素子の組立て工程中でも熱影響
を受けることもなく、しかも、90゜繰返し曲げ性、は
んだ付け性およびはんだの密着性が良好であり,LED
リードフレーム材として信頼性の高いことが分る。
The above test results are shown in Table 2. As other comparative alloys, commercially available SPCC (pure iron) and 42 alloy were used. As is clear from Table 2, the alloys of the present invention No.
has good strength and elongation properties, and has an electrical conductivity of 10% IA.
CS or less, it is not affected by heat during the LED element assembly process, and has good 90° repeat bendability, solderability, and solder adhesion.
It can be seen that it is highly reliable as a lead frame material.

これに対して比較合金No4,6.9は、導電率が10
%IACSを越えており、組立て工程中での熱影響を受
け信頼性に問題があった。
On the other hand, comparative alloy No. 4, 6.9 has a conductivity of 10
%IACS, and there was a problem with reliability due to heat effects during the assembly process.

比較合金No7は、Znの含有量が0.05wt%未満
であり、はんだの密着性に問題がある。
Comparative alloy No. 7 has a Zn content of less than 0.05 wt% and has a problem in solder adhesion.

比較合金のspccは、はんだ付け性、導電率の面で信
頼性に劣っている。
Comparative alloy SPCC is inferior in reliability in terms of solderability and electrical conductivity.

比較合金42アロイは、特性的には問題ないがコストア
ップになる. [発明の効果] 以上説明したように本発明に係るLEDリードフレーム
用銅合金は上記の構成を有しているものであり、強度、
伸び特性が良好であり90’ll返し曲げ性、はんだ付
け性およびはんだの密着性も優れている.しかも、導電
率が10%I ACS以下でLEDの組立て工程中の熱
影響を受け難く、LEDの信頼性向上に多大に寄与する
ものである。
Comparative Alloy 42 has no problems in terms of properties, but costs increase. [Effects of the Invention] As explained above, the copper alloy for LED lead frames according to the present invention has the above structure, and has high strength and
It has good elongation properties, 90'll bendability, solderability, and solder adhesion. Moreover, since the conductivity is 10% IACS or less, it is less susceptible to heat effects during the LED assembly process, and greatly contributes to improving the reliability of LEDs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、LEDリードフレームを示す正面図である. FIG. 1 is a front view of the LED lead frame.

Claims (1)

【特許請求の範囲】[Claims] Ni:0.5〜3.0wt%、Si:1.0〜3.0w
t%、Zn:0.05〜5.0wt%、P:0.01〜
0.05wt%、Sn:0.5〜3.0wt%を含有し
、残部がCuおよび不可避不純物からなることを特徴と
するLEDリードフレーム用銅合金
Ni: 0.5-3.0wt%, Si: 1.0-3.0w
t%, Zn: 0.05-5.0wt%, P: 0.01-
A copper alloy for LED lead frames, characterized by containing 0.05 wt%, Sn: 0.5 to 3.0 wt%, and the remainder consisting of Cu and inevitable impurities.
JP1158892A 1989-06-21 1989-06-21 Copper alloy for led lead frame Pending JPH0324243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1158892A JPH0324243A (en) 1989-06-21 1989-06-21 Copper alloy for led lead frame

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158892A JPH0324243A (en) 1989-06-21 1989-06-21 Copper alloy for led lead frame

Publications (1)

Publication Number Publication Date
JPH0324243A true JPH0324243A (en) 1991-02-01

Family

ID=15681661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158892A Pending JPH0324243A (en) 1989-06-21 1989-06-21 Copper alloy for led lead frame

Country Status (1)

Country Link
JP (1) JPH0324243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070651A (en) * 2005-09-02 2007-03-22 Hitachi Cable Ltd Copper alloy material and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007070651A (en) * 2005-09-02 2007-03-22 Hitachi Cable Ltd Copper alloy material and its manufacturing method
JP4501818B2 (en) * 2005-09-02 2010-07-14 日立電線株式会社 Copper alloy material and method for producing the same

Similar Documents

Publication Publication Date Title
US4525434A (en) Copper alloy having high resistance to oxidation for use in leads on semiconductor devices and clad material containing said alloy
JP3550233B2 (en) Manufacturing method of high strength and high conductivity copper base alloy
JPS60245753A (en) High strength copper alloy having high electric conductivity
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS61183426A (en) High strength, highly conductive heat resisting copper alloy
JPS63149345A (en) High strength copper alloy having high electrical conductivity and improved heat resistance
JPS6215622B2 (en)
JPH0280532A (en) High tensile copper alloy having excellent bendability
JPS6239218B2 (en)
JPS6215621B2 (en)
JPH0324243A (en) Copper alloy for led lead frame
JPS60152646A (en) Material for lead frame for semiconductor
JPS6335699B2 (en)
JPS61264144A (en) High-strength and high conductivity copper alloy excelling in thermal peeling resistance of solder
JPS5947751A (en) Copper alloy for lead wire material of semiconductor device
JPS63125631A (en) High-tensile high-conductivity copper alloy
JPS63293130A (en) Lead frame material made of cu alloy for semiconductor device
JPH01180932A (en) High tensile and high electric conductivity copper alloy for pin, grid and array ic lead pin
JPS62133033A (en) Cu alloy lead material for semiconductor device
JP2534917B2 (en) High strength and high conductivity copper base alloy
JPS622017B2 (en)
JPS5853700B2 (en) Copper alloy for lead material of semiconductor equipment
JPH0572455B2 (en)
JPS6345342A (en) High strength conductive copper alloy
JPH0331776B2 (en)