JPH03242240A - Manufacture of iron slightly discharging carbon dioxide - Google Patents

Manufacture of iron slightly discharging carbon dioxide

Info

Publication number
JPH03242240A
JPH03242240A JP2036301A JP3630190A JPH03242240A JP H03242240 A JPH03242240 A JP H03242240A JP 2036301 A JP2036301 A JP 2036301A JP 3630190 A JP3630190 A JP 3630190A JP H03242240 A JPH03242240 A JP H03242240A
Authority
JP
Japan
Prior art keywords
gas
sea
carbon dioxide
iron
seawater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2036301A
Other languages
Japanese (ja)
Inventor
Yoshio Suzuki
喜夫 鈴木
Shozo Itagaki
省三 板垣
Nariyasu Mitani
三谷 成康
Kenji Matsubara
健次 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2036301A priority Critical patent/JPH03242240A/en
Publication of JPH03242240A publication Critical patent/JPH03242240A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To well dissolve CO2 discharged from an iron manufacturing process in seawater in the depths of the sea, to preserve the CO2 and to prevent the warming of the earth by blowing the CO2 into the depths of the sea. CONSTITUTION:Gas discharged from an iron manufacturing process contains CO2 and CO in large quantities. When the CO2 and CO are blown into seawater, they are blown as CO2 into the depths of the sea after the CO is converted into CO2 by a water gas shift reaction optionally in the presence of an iron oxide iron chromium catalyst, etc. The blown CO2 attains to the critical pressure or exceeds the pressure and dissolves in the seawater by the increased solubility. Since the seawater in the depths of the sea moves hardly toward the surface of the sea, the CO2 is preserved in the depths of the sea and the warming of the earth is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 最近炭酸ガスの排出量が世界中で多くなり、これによる
地球の温暖化が大きな問題になっている。
[Detailed Description of the Invention] [Industrial Application Field] Recently, carbon dioxide emissions have increased throughout the world, and global warming due to this has become a major problem.

本発明はその対策のひとつとして製鉄工程で排出される
炭酸ガスの量を低減させる製鉄法に関するものである。
The present invention relates to an iron manufacturing method that reduces the amount of carbon dioxide gas emitted during the iron manufacturing process as one of the measures against this problem.

〔従来の技術〕[Conventional technology]

製鉄工程において炭酸ガス又はその前駆体である一酸化
炭素の生成量の多いところは高炉法の場合には石炭をコ
ークスに変えるコークス炉、粉状の鉄鉱石を焼結する焼
結機及び高炉及び製鋼炉である。高炉には普通、鉄鉱石
及びコークスが投入され、さらに燃焼用の空気が吹込ま
れる。この普通高炉は送風量が多いため多大な送風エネ
ルギーを要し、また排ガス量が多いためエネルギーが排
ガスとともに逃げやすいという欠点がある。製鉄工程で
はエネルギーをコークスの燃焼によって得ているためエ
ネルギーの増加は炭酸ガス排出量の増加ム二つながる。
In the steel manufacturing process, the areas where a large amount of carbon dioxide gas or its precursor carbon monoxide is produced are, in the case of the blast furnace method, coke ovens that turn coal into coke, sintering machines that sinter powdered iron ore, and blast furnaces. It is a steelmaking furnace. Blast furnaces are normally charged with iron ore and coke, and are blown with air for combustion. This conventional blast furnace has the disadvantage that it requires a large amount of energy for blowing air because of its large air flow, and that energy is likely to escape together with the exhaust gas because it generates a large amount of exhaust gas. In the steel manufacturing process, energy is obtained by burning coke, so an increase in energy leads to an increase in carbon dioxide emissions.

一方、高炉ガスの有効利用を目的として空気の代わりに
純酸素を吹込む技術が開発されている(特公昭50−2
2966号公報、同51−8091号公報、同52−3
2323号公報、特開昭60−159104号公報等)
On the other hand, a technology to blow pure oxygen instead of air has been developed for the purpose of effectively utilizing blast furnace gas (Special Public Interest Publication No. 50-2
No. 2966, No. 51-8091, No. 52-3
2323, JP-A-60-159104, etc.)
.

この酸素高炉法を用いると送風量が少な(て済み、反応
効率も高まるところからエネルギー消費量を低下させ炭
酸ガス排出量を減少させることができる。
When this oxygen blast furnace method is used, only a small amount of air is required and the reaction efficiency is increased, so it is possible to lower energy consumption and reduce carbon dioxide emissions.

さらに、最近鉄鉱石を高温で溶融状態にして還元する溶
融還元法(例えば鉄鋼界昭和62年2月号9〜15頁)
が注目を集めている。溶融還元法は鉄鉱石と石炭の予備
処理が不要なので焼結機やコークス炉が不要になる、鉄
鉱石や原料炭の銘柄に左右されず安価な原料を使用でき
る、溶融状態での反応であるので反応速度が極めて大き
く設備の小型化を行なえる、炉内で原料が滞留しないの
で稼動、停止を自由に行なえる等の数々の利点を有して
いる。
Furthermore, recently, the smelting reduction method in which iron ore is brought into a molten state at high temperatures and reduced (e.g. Iron and Steel Industry February 1986 issue, pages 9-15)
is attracting attention. The smelting reduction method does not require preliminary treatment of iron ore and coal, so it eliminates the need for a sintering machine or coke oven.It is a reaction in a molten state that allows the use of inexpensive raw materials regardless of the brand of iron ore or coking coal. Therefore, it has many advantages such as the reaction rate is extremely high and the equipment can be downsized, and since the raw material does not stagnate in the furnace, it can be started and stopped freely.

また、銑鉄を製綱する転炉、電気炉、平炉等からも炭酸
ガス及び一酸化炭素を含有するガスが排出される。
Furthermore, gases containing carbon dioxide and carbon monoxide are also emitted from converters, electric furnaces, open hearth furnaces, etc. that produce pig iron.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の酸素高炉法も炭酸ガス排出量の低下という点では
効果がさほど大きくなく、さらに炭酸ガス排出量を削減
することが望まれている。また、溶融還元法も大量の石
炭を使用することに変わりはなく、やはり炭酸ガス排出
量を削減することが望まれている。転炉ガス等について
も同様である。
The aforementioned oxygen blast furnace method is also not very effective in reducing carbon dioxide emissions, and further reductions in carbon dioxide emissions are desired. Furthermore, the smelting reduction method still uses a large amount of coal, and it is desired to reduce carbon dioxide emissions. The same applies to converter gas and the like.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決するべくなされたものであり、
製鉄プロセスから排出される炭酸ガス及び一酸化炭素を
含有ガスを水性ガス転化反応させ、あるいはさせずに深
海に圧入することによって該ガスに含まれている炭酸ガ
スを深海中に溶解させて除去しようとするものである。
The present invention has been made to solve the above problems,
By injecting carbon dioxide and carbon monoxide-containing gas discharged from the steel manufacturing process into the deep sea with or without causing a water gas conversion reaction, the carbon dioxide contained in the gases will be dissolved in the deep sea and removed. That is.

製鉄プロセスの種類は問うところではなく、高炉、酸素
高炉、溶融還元炉等の製銑工程、その原料を調製するコ
ークス炉、焼結炉等の工程、銑鉄を製鋼する転炉、電気
炉、平炉等の工程から排出される各炉ガス等が対象にな
る。これらの炉ガスは、いずれも炭酸ガス及び一酸化炭
素を大量に含んでいる。これらのなかで窒素ガスが少な
く、炭酸ガス及び一酸化炭素の多い炉ガスが圧縮が容易
な点、及び圧送ガス量を少なくできる点で本発明の方法
に適しており、例えば酸素高炉ガス、溶融還元炉ガス、
転炉ガス等が特に好ましい。
The type of iron-making process does not matter, but includes iron-making processes such as blast furnaces, oxygen blast furnaces, and smelting reduction furnaces, processes such as coke ovens and sintering furnaces that prepare the raw materials, converter furnaces, electric furnaces, and open hearth furnaces that make pig iron. This applies to each furnace gas etc. discharged from the process. All of these furnace gases contain large amounts of carbon dioxide gas and carbon monoxide. Among these, furnace gas containing less nitrogen gas and more carbon dioxide gas and carbon monoxide is suitable for the method of the present invention because it is easy to compress and the amount of gas to be pumped can be reduced. reduction furnace gas,
Converter gas and the like are particularly preferred.

これらのガスを海水中に圧入するだけの場合には一酸化
炭素を水性ガス転化反応させて炭酸ガスに変える。一方
、海水中に未溶解のガスを回収する場合には回収ガスの
利用方法等に応じて水性ガス転化反応させてもよく、さ
せなくてもよい。
When these gases are simply injected into seawater, carbon monoxide undergoes a water gas conversion reaction and is converted into carbon dioxide gas. On the other hand, when undissolved gas in seawater is recovered, a water gas conversion reaction may or may not be carried out depending on the method of utilizing the recovered gas.

水性ガス転化反応させる場合には、このガスを必要によ
り脱硫等の触媒毒除去処理を行ない、次いで水性ガス転
化反応させる。
When carrying out a water gas conversion reaction, this gas is subjected to catalyst poison removal treatment such as desulfurization, if necessary, and then subjected to a water gas conversion reaction.

水性ガス転化反応は酸化鉄一酸化クロム触媒、酸化亜鉛
一酸化クロム触媒等の水性ガス転化用触媒の存在下、2
00〜600°C程度で反応させる。圧力は常圧であっ
てもよく、反応容器を小型化し、あるいは反応速度を高
める目的で加圧してもよい。
The water gas conversion reaction is carried out in the presence of a water gas conversion catalyst such as an iron oxide chromium monoxide catalyst or a zinc oxide chromium monoxide catalyst.
The reaction is carried out at about 00 to 600°C. The pressure may be normal pressure, or may be pressurized for the purpose of downsizing the reaction vessel or increasing the reaction rate.

この反応は平衡反応であるので水蒸気をさらに添加して
一酸化炭素の3倍モル以上、特に5倍モル以上としてお
くことが好ましい。
Since this reaction is an equilibrium reaction, it is preferable to further add water vapor to make the amount of carbon monoxide 3 times or more, particularly 5 times or more, by mole.

水性ガス転化反応を行なわせた、あるいは行なわなかっ
たガスは深海に圧入する。深さは500mより深くする
ことが好ましい。未溶解ガスを回収する場合には、深海
中に下部に海水が流通可能な開放部を有する容器を設け
ておいて、そこに吹込む。
Gas that has undergone or has not undergone a water gas conversion reaction is injected into the deep sea. The depth is preferably greater than 500 m. When recovering undissolved gas, a container is provided in the deep sea with an opening at the bottom through which seawater can flow, and the gas is blown into it.

この容器には送気ラインと排気ラインを接続しておく。Connect the air supply line and exhaust line to this container.

容器の上部はガス溜として機能する。海中に吹き出させ
たガスは炭酸ガスを充分に溶解しうるよう、微気泡とな
るようにし、さらに上昇路をラセン状にするとか、邪魔
板を適宜設けることが好ましい。容器の上部に集まった
ガスは排気ラインを通って地上に回収される。
The top of the container acts as a gas reservoir. It is preferable that the gas blown into the sea be made into microbubbles so that carbon dioxide gas can be sufficiently dissolved, and that the ascending path be spiral-shaped or that baffles be provided as appropriate. The gas that collects at the top of the container is returned to the ground through an exhaust line.

このガスは、そのまま燃料ガス等として利用してもよく
、あるいは必要により深冷分離するなどしてさらに精製
し、水素ガス、一酸化炭素ガス等として利用してもよい
This gas may be used as it is as a fuel gas or the like, or it may be further purified by cryogenic separation if necessary and used as hydrogen gas, carbon monoxide gas, or the like.

一方、海中に圧入するだけの場合には、深冷分離等によ
り一酸化炭素、水素等は予め除去しておく。
On the other hand, in the case of simply injecting into the sea, carbon monoxide, hydrogen, etc. are removed in advance by cryogenic separation or the like.

〔作用〕[Effect]

銑鉄プロセスから排出されるガスを深海に吹き込むこと
によって炭酸ガスが臨界圧に近くなり、あるいは臨界圧
を越えて溶解度が高まり海中に溶解する。深海の水はほ
とんど上面に移動しない。
By blowing gases emitted from the pig iron process into the deep sea, carbon dioxide gas approaches or exceeds the critical pressure, increasing its solubility and dissolving into the ocean. Deep sea water rarely moves to the top.

そこで、炭酸ガスは深海に貯蔵されることになり大気中
の炭酸ガスを増加させない。
Therefore, carbon dioxide gas is stored in the deep sea and does not increase the amount of carbon dioxide gas in the atmosphere.

〔実施例〕〔Example〕

CO□25%、N270%、H2O3%を含むコークス
炉の燃焼排ガス、0023%、C0,18%、N253
%、823%、H2O3%を含む高炉ガス、及び007
0%、CO□15%、N215%を含む転炉ガスを用い
た。
Coke oven combustion exhaust gas containing CO□25%, N270%, H2O3%, 0023%, C0.18%, N253
%, 823%, blast furnace gas containing H2O3%, and 007
A converter gas containing 0%, 15% CO□, and 15% N2 was used.

これらのガスをいずれも除塵後、脱硫し、200%の水
蒸気を加えて400″Cで水性ガス転化反応を行なわせ
た。その際、触媒には酸化鉄一酸化クロム触媒を用いた
。水性ガス転化反応装置から取出したガスを40°Cま
で冷却したところ、高炉ガスからはCO1%、CO□3
4%、N244%、N221%のガスを、そして転炉ガ
スからはCo  1%、co250%、Nz 9%、8
240%のガスをそれぞれ得た。
After dust removal, these gases were desulfurized, and 200% steam was added to carry out a water gas conversion reaction at 400''C. At that time, an iron oxide chromium monoxide catalyst was used as a catalyst.Water gas When the gas taken out from the conversion reactor was cooled to 40°C, 1% CO and 3 CO□3 were detected from the blast furnace gas.
4%, N2 44%, N2 21% gas, and from converter gas Co 1%, co2 50%, Nz 9%, 8
240% of gas was obtained in each case.

海水を入れた水槽を圧力容器内に設置し、該水槽の上部
には上部が閉で下部が開放された容器を配置した。この
圧力容器を深さ500mの海水圧に相当する圧力を加え
、上記のガスを圧入して水槽の底部から微気泡として吹
出させた。上記容器に採取されたガスを減圧弁を経由し
て圧力容器外に取出しその成分を分析したところ、コー
クス炉燃焼排ガス由来の場合には、CO□1%、N29
9%、高炉ガス由来の場合にはCO1%、N232%、
N267%、そして転炉ガス由来の場合には、C02%
、8279%、N218%、CO□ 1%であった。
A water tank containing seawater was placed in a pressure vessel, and a container with a closed top and an open bottom was placed above the water tank. A pressure equivalent to seawater pressure at a depth of 500 m was applied to this pressure vessel, and the above gas was pressurized and blown out as microbubbles from the bottom of the water tank. When the gas collected in the above container was taken out of the pressure container via a pressure reducing valve and its components were analyzed, it was found that it was derived from coke oven combustion exhaust gas, CO□1%, N29
9%, if derived from blast furnace gas, CO1%, N232%,
N267% and, if derived from converter gas, C02%
, 8279%, N2 18%, and CO□ 1%.

実施例2 Co 32%、coz 44%、N21%、N211%
、H2O12%を含む溶融還元炉ガス及びC070%、
CO□15%、N215%を含む溶融還元炉からの溶銑
を製鋼した転炉ガスを実施例1と同様に処理してCO2
%、8294%、COz 2%、Nz2%のガス及びG
o 2%、8279%、CO□ 1%、N218%のガ
スをそれぞれ得た。
Example 2 Co 32%, coz 44%, N21%, N211%
, smelting reduction furnace gas containing 12% H2O and 70% C0,
Converter gas produced by making steel from hot metal from a smelting reduction furnace containing 15% CO□ and 15% N2 was treated in the same manner as in Example 1 to reduce CO2.
%, 8294%, COz 2%, Nz 2% gas and G
Gases containing 2% o, 8279%, 1% CO□, and 18% N2 were obtained, respectively.

〔発明の効果〕〔Effect of the invention〕

本発明により銑鉄プロセスから排出される炭酸ガスの大
気への放散量を大幅に削減して地球温暖化を防止する一
助とすることができる。また、これらの排ガス中の水素
、一酸化炭素等の有用ガスを回収して有効利用すること
ができる。
The present invention can significantly reduce the amount of carbon dioxide gas emitted from the pig iron process into the atmosphere, thereby helping to prevent global warming. Further, useful gases such as hydrogen and carbon monoxide in these exhaust gases can be recovered and used effectively.

Claims (3)

【特許請求の範囲】[Claims] (1)製鉄プロセスから排出される炭酸ガス及び一酸化
炭素を含有するガスを水性ガス転化反応させ、あるいは
させずに深海に圧入することを特徴とする製鉄方法
(1) A steel manufacturing method characterized by injecting gas containing carbon dioxide and carbon monoxide discharged from the iron manufacturing process into the deep sea with or without subjecting it to a water gas conversion reaction.
(2)深海に下部に海水が流通可能な開放部を有する容
器を設置し、前記のガスを該容器の下部に圧入して容器
上部に集まったガスを採取することを特徴とする請求項
(1)に記載の製鉄方法
(2) A container having an opening at the bottom through which seawater can flow is installed in the deep sea, the gas is pressurized into the bottom of the container, and the gas collected at the top of the container is collected. Iron manufacturing method described in 1)
(3)製鉄プロセスから排出される一酸化炭素含有ガス
が酸素高炉ガス、溶融還元炉ガス又は転炉ガスである請
求項(1)及び(2)に記載の製鉄方法
(3) The iron manufacturing method according to claims (1) and (2), wherein the carbon monoxide-containing gas discharged from the iron manufacturing process is oxygen blast furnace gas, smelting reduction furnace gas, or converter gas.
JP2036301A 1990-02-19 1990-02-19 Manufacture of iron slightly discharging carbon dioxide Pending JPH03242240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2036301A JPH03242240A (en) 1990-02-19 1990-02-19 Manufacture of iron slightly discharging carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2036301A JPH03242240A (en) 1990-02-19 1990-02-19 Manufacture of iron slightly discharging carbon dioxide

Publications (1)

Publication Number Publication Date
JPH03242240A true JPH03242240A (en) 1991-10-29

Family

ID=12465998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2036301A Pending JPH03242240A (en) 1990-02-19 1990-02-19 Manufacture of iron slightly discharging carbon dioxide

Country Status (1)

Country Link
JP (1) JPH03242240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922902B2 (en) 2003-10-30 2011-04-12 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module, hollow fiber membrane module unit, and water treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7922902B2 (en) 2003-10-30 2011-04-12 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module, hollow fiber membrane module unit, and water treatment method
US8075773B2 (en) 2003-10-30 2011-12-13 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module, hollow fiber membrane module unit, and water treatment method
US8636904B2 (en) 2003-10-30 2014-01-28 Mitsubishi Rayon Co., Ltd. Hollow fiber membrane module, hollow fiber membrane module unit, and water treatment method

Similar Documents

Publication Publication Date Title
US20220235426A1 (en) Method and system for producing steel or molten-iron-containing materials with reduced emissions
US9567215B2 (en) Method for producing hydrogen and/or other gases from steel plant wastes and waste heat
GB1068897A (en) Process for the reduction of metal oxides
WO2019150204A1 (en) Nitrogen-free pig iron smelting technology with oxygen and carbon dioxide blown into a blast furnace
US4392886A (en) Method of recovering CO-rich exhaust gas in refining of metal
JPH03242240A (en) Manufacture of iron slightly discharging carbon dioxide
US3985520A (en) Gasification process and apparatus
US4370161A (en) Ore reduction using calcium oxide desulfurization
JPS61130779A (en) Manufacture of mixed gas and plant therefor
KR20200136909A (en) Control method of offgas composition in metal smelting apparatus
US3404957A (en) Ammonia synthesis
AU750751B2 (en) Process for the production of iron carbide from iron oxide using external sources of carbon monoxide
GR3029444T3 (en) Treatment of fly ash
CA1113251A (en) Method for cooling high-temperature reduced iron
JPH03242301A (en) Production of hydrogen
US4250157A (en) Method and apparatus for enriching the iron carbonyl content of a recycle gas stream
Khovavko et al. Obtaining of carbon-free iron powders by reduction method in conveyor furnaces with recirculation and regeneration of" green" hydrogen
JP2002212119A (en) Method for producing methanol from converter gas
CN114023176A (en) Scientific demonstration device and method for petroleum generation principle in earth depth
CA1077682A (en) Methods of desulphurizing fluid materials
AU1176399A (en) Method of manufacturing iron carbide
WO2023199254A1 (en) Process for the conversion of carbon dioxide into value-added products by means of a process of mechanochemical activation of industrial processing scraps
CN115650162A (en) Efficient recycling method for converter flue gas
JP2002241824A (en) Method for treating residue after extracting phthalic anhydride
Knieper Energy Savings With the Lurgi/Thyssen Process in Oxygen Steelmaking