JPH03241701A - Resistor composition - Google Patents

Resistor composition

Info

Publication number
JPH03241701A
JPH03241701A JP9039190A JP3919090A JPH03241701A JP H03241701 A JPH03241701 A JP H03241701A JP 9039190 A JP9039190 A JP 9039190A JP 3919090 A JP3919090 A JP 3919090A JP H03241701 A JPH03241701 A JP H03241701A
Authority
JP
Japan
Prior art keywords
weight
resistor
parts
paste
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9039190A
Other languages
Japanese (ja)
Inventor
Wakichi Tsukamoto
塚本 和吉
Hiroshi Takagi
洋 鷹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP9039190A priority Critical patent/JPH03241701A/en
Publication of JPH03241701A publication Critical patent/JPH03241701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To ensure a resistance temperature coefficient by allowing a title composition to contain NiO, Cu, and specific glass. CONSTITUTION:A title composition contains 40-70 pts by weight NiO, 5-40 parts by weight Cu, and 5-50 pts by weight glass represented by a general formula a Li2O+bRO+cB2O3+(100-a-b-c) SiO2 (where R is at least one kind selected among Ng, Ca, Sr, and Ba, and a-c are molar %.) with a-c satisfying conditions: 0<=a<=20, 10<=b<55, and 0<=c<40. A resistor material containing said composition as paste is printed on an insulator ceramics green sheet and calcined in the non-oxidative atmosphere. Hereby, a thick resistor with a resistance temperature coefficient ranging within + or -300ppm/C can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は抵抗体組成物に関し、特にたとえば非酸化雰
囲気中で焼成することによって、厚膜抵抗体またはこれ
に類似の抵抗体を形成することができる、抵抗体組成物
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a resistor composition, and particularly to a resistor composition for forming a thick film resistor or similar resistor by firing in a non-oxidizing atmosphere, for example. The present invention relates to a resistor composition that can be used.

(従来技術) 従来の抵抗体組成物としては、たとえばNiOと、L 
it O,B20x 、S ioz 、RO(RはMg
、Ca、Sr、Baの中から選ばれる1種類)などで構
成されるガラスとを含むものがあった。
(Prior Art) Conventional resistor compositions include, for example, NiO and L
it O, B20x, Sioz, RO (R is Mg
, Ca, Sr, and Ba).

このような抵抗体組成物を用いたセラミクスグリーンシ
ートに卑金属である銅の導体ペーストを塗布し、NiO
とガラスを含む抵抗体ペーストを塗布したものを非酸化
雰囲気中で焼成する方法がある。このようにすることに
よって、厚膜導体と厚膜抵抗体とを同時に形成した多層
セラミクス回路基板を得ることができる。
A conductive paste of copper, which is a base metal, is applied to a ceramic green sheet using such a resistor composition, and NiO
There is a method of applying a resistor paste containing glass and sintering it in a non-oxidizing atmosphere. By doing so, it is possible to obtain a multilayer ceramic circuit board in which a thick film conductor and a thick film resistor are formed simultaneously.

(発明が解決しようとする課題) しかしながら、このような抵抗体組成物を用いた厚膜抵
抗体では、抵抗温度係数が数千ppm/’Cと大きい。
(Problems to be Solved by the Invention) However, a thick film resistor using such a resistor composition has a large resistance temperature coefficient of several thousand ppm/'C.

それゆえに、この発明の主たる目的は、非酸化雰囲気中
で焼成して抵抗体を形成することができ、かつ抵抗温度
係数が±300 ppm/ ”C以内の抵抗体を得るこ
とができる、抵抗体組成物を提供することである。
Therefore, the main object of the present invention is to develop a resistor which can be fired in a non-oxidizing atmosphere to form a resistor and which has a temperature coefficient of resistance within ±300 ppm/''C. An object of the present invention is to provide a composition.

(課題を解決するための手段) この発明は、NiOが40〜70重量部と、CUが5〜
40重量部と、一般式がaLi20+bRO+CB20
s + (100−a−b−c)Si20 (ただし、
RはMg、Ca、Sr、Baの中から選ばれる少なくと
も1種類、a、bおよびCはモル%)で表され、a、b
およびCが、それぞれ、0≦aく20.10≦bく55
.0≦C<40の範囲にあるガラスを5〜50重量部と
を含む、抵抗体組成物である。
(Means for Solving the Problems) In the present invention, NiO is 40 to 70 parts by weight and CU is 5 to 70 parts by weight.
40 parts by weight and the general formula is aLi20+bRO+CB20
s + (100-a-b-c)Si20 (however,
R is at least one type selected from Mg, Ca, Sr, and Ba, a, b, and C are mol%), and a, b
and C are 0≦a×20.10≦b×55, respectively.
.. A resistor composition containing 5 to 50 parts by weight of glass in the range of 0≦C<40.

(発明の効果) この発明の抵抗体組成物をペースト状にした抵抗体材料
を絶縁体セラミクスからなるグリーンシート上に印刷し
、非酸化雰囲気中で焼成すれば、抵抗温度係数が±30
0 ppm/ ’c以内の厚膜抵抗体を得ることができ
る。したがって、卑金属である銅の導体ペーストによる
厚膜導体の形成と同時に、抵抗変化率の小さい厚膜抵抗
体を形成することができる。
(Effects of the Invention) If a resistor material made of the resistor composition of this invention in paste form is printed on a green sheet made of insulating ceramics and fired in a non-oxidizing atmosphere, the temperature coefficient of resistance will be ±30.
It is possible to obtain a thick film resistor of less than 0 ppm/'c. Therefore, a thick film resistor with a small resistance change rate can be formed simultaneously with the formation of a thick film conductor using conductor paste of copper, which is a base metal.

この発明の上述の目的、その他の目的、特徴および利点
は、図面を参照して行う以下の実施例の詳細な説明から
一層明らかとなろう。
The above objects, other objects, features and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.

(実施例) まず、ガラスの原料として、二酸化珪素(SiO□)、
酸化ホウ素(B203 ) 、炭酸リチウム(L i 
z C03)およびアルカリ土類金属の炭酸塩を準備し
た。これらの原料を表1に示す割合となるように秤量し
、ボールミルで16時間混式混合した後、蒸発乾燥して
混合粉末を得た。得られた混合粉末をアルミナ製のるつ
ぼに入れて1300℃で1時間放置し、急冷してガラス
化した。そして、200メソシユの篩を通過するように
ボールミルを用いて粉砕し、ガラス粉末を得た。
(Example) First, silicon dioxide (SiO□),
Boron oxide (B203), lithium carbonate (Li
z C03) and alkaline earth metal carbonates were prepared. These raw materials were weighed to have the proportions shown in Table 1, mixed in a ball mill for 16 hours, and then evaporated to dryness to obtain a mixed powder. The obtained mixed powder was placed in an alumina crucible and left at 1300° C. for 1 hour, then rapidly cooled and vitrified. Then, the powder was ground using a ball mill so as to pass through a 200 mesh sieve to obtain a glass powder.

次に、200メソシユの篩を通過するように粉砕した銅
粉末と、同じく200メソシユの篩を通過するように粉
砕した酸化ニッケル粉末(NiO)を準備した。
Next, a copper powder pulverized so as to pass through a 200 mesos sieve and a nickel oxide powder (NiO) also pulverized so as to pass through a 200 mesos sieve were prepared.

得られたガラス粉末、酸化ニッケル粉末および銅粉末を
表1に示す重量部となるように秤量し、ボールミルで4
時間湿式混合した後、蒸発乾燥してガラス粉末と酸化ニ
ッケル粉末と銅粉末との混合粉末を得た。また、有機結
合剤としてのエチルセルロース10重量部を溶剤として
のブチルカルピトール90重量部に溶かしたものからな
る有機バインダ溶液を準備した。そして、ガラス粉末と
酸化ニッケル粉末と銅粉末との混合粉末100重量部に
有機バインダ溶液25重量部を加えて、3本ロールミル
で混練して抵抗体ペーストを得た。
The obtained glass powder, nickel oxide powder, and copper powder were weighed to the weight parts shown in Table 1, and were milled in a ball mill.
After wet mixing for a period of time, the mixture was evaporated and dried to obtain a mixed powder of glass powder, nickel oxide powder, and copper powder. In addition, an organic binder solution was prepared in which 10 parts by weight of ethyl cellulose as an organic binder was dissolved in 90 parts by weight of butylcarpitol as a solvent. Then, 25 parts by weight of an organic binder solution was added to 100 parts by weight of a mixed powder of glass powder, nickel oxide powder, and copper powder, and the mixture was kneaded in a three-roll mill to obtain a resistor paste.

一方、上述の抵抗体ペーストを印刷するためのグリーン
シートを次の方法で作製した。まず、酸化珪素55重量
部、酸化バリウム30重量部、酸化アルミニウム5重量
部、酸化ホウ素5重量部。
On the other hand, a green sheet for printing the above-mentioned resistor paste was produced by the following method. First, 55 parts by weight of silicon oxide, 30 parts by weight of barium oxide, 5 parts by weight of aluminum oxide, and 5 parts by weight of boron oxide.

酸化カルシウム5重量部からなるセラミクス原料粉末、
アクリル系バインダおよび有機溶剤としてのトルエンを
準備した。これらの材料を秤量してボールミルで24時
間混合した後脱泡処理し、ドクターブレッド法によって
厚さ200μmのグリーンシートを作製した。そして、
このグリーンシートから20mmX20u+のグリーン
シート片を切り抜いた。
Ceramics raw material powder consisting of 5 parts by weight of calcium oxide,
An acrylic binder and toluene as an organic solvent were prepared. These materials were weighed and mixed in a ball mill for 24 hours, followed by defoaming treatment, and a green sheet with a thickness of 200 μm was produced by the doctor bread method. and,
A 20 mm x 20 u+ green sheet piece was cut out from this green sheet.

また、次のような方法で銅の導体ペーストを作製した。In addition, a copper conductor paste was produced by the following method.

まず、銅粉末と有機バインダ溶液とを準備した。有機バ
インダ溶液は、有機結合剤としてのエチルセルロース1
0重量部を溶剤としてのテレピン油90重量部に溶かし
て作製した。そして、銅粉末100重量部に有機バイン
ダ溶液25重量部を加えて、3本ロールミルで混練して
導体ペーストを得た。
First, copper powder and an organic binder solution were prepared. The organic binder solution contains ethyl cellulose 1 as an organic binder.
It was prepared by dissolving 0 parts by weight in 90 parts by weight of turpentine oil as a solvent. Then, 25 parts by weight of an organic binder solution was added to 100 parts by weight of copper powder, and the mixture was kneaded in a three-roll mill to obtain a conductor paste.

次に、第1図に示すように、グリーンシート片10の一
方主面上に、間隔を隔てて2つの導体ペースト12を印
刷した。この2つの導体ペースト12は、200メツシ
ユのスクリーンを用いて印刷し、120℃で5分間乾燥
した。その後、一部分が2つの導体ペースト12に重な
るように、グリーンシート片10上に抵抗体ペースト1
4を印刷した。抵抗体ペースト14は、200メツシユ
のスクリーンを用いて印刷し、120℃で5分間乾燥し
た。なお、抵抗体ペースト14の導体ペースト12に重
なっていない部分の大きさは411×6璽lであり、厚
さは20μmである。
Next, as shown in FIG. 1, two conductor pastes 12 were printed on one main surface of the green sheet piece 10 at an interval. These two conductive pastes 12 were printed using a 200 mesh screen and dried at 120° C. for 5 minutes. Thereafter, the resistor paste 1 is placed on the green sheet piece 10 so that a portion overlaps the two conductor pastes 12.
4 was printed. The resistor paste 14 was printed using a 200 mesh screen and dried at 120° C. for 5 minutes. The size of the portion of the resistor paste 14 that does not overlap the conductor paste 12 is 411×6 squares, and the thickness is 20 μm.

さらに、第2図に示すように、グリーンシート片10の
上に別のグリーンシート片16を積層し、80℃、  
400 kg/cn!で熱圧着して化ユニットを形成し
た。この化ユニットのグリーンシート片16の導体ペー
スト12に対応する部分に、スルーホール18を形成し
た。そして、スルーホール18の内壁とグリーンシート
片16のスルーホール18周辺部に導体ペーストを20
0メソシユのスクリーンで印刷し、電極パッド20を形
成した。
Furthermore, as shown in FIG. 2, another green sheet piece 16 is laminated on top of the green sheet piece 10, and
400 kg/cn! A composite unit was formed by thermocompression bonding. A through hole 18 was formed in a portion of the green sheet piece 16 of this conversion unit corresponding to the conductive paste 12. Then, apply 20 ml of conductive paste to the inner wall of the through hole 18 and the periphery of the through hole 18 on the green sheet piece 16.
The electrode pads 20 were formed by printing with a 0 mesh screen.

このようにして、得られた化ユニットをN2およびH,
Oの混合ガスを用いて電気炉中で940〜1020℃で
2時間焼成し、厚膜抵抗体を内蔵したセラミクス基板を
作製した。そして、25℃におけるセラミクス基板内の
抵抗体の抵抗値をデジタルマルチメークで測定し、抵抗
体の焼成後の寸法からシート抵抗を算出して表2に示し
た。
In this way, the obtained unit is combined with N2 and H,
The ceramic substrate was baked at 940 to 1020° C. for 2 hours using a mixed gas of O in an electric furnace to produce a ceramic substrate with a built-in thick film resistor. Then, the resistance value of the resistor in the ceramic substrate at 25° C. was measured by digital multi-make, and the sheet resistance was calculated from the dimensions of the resistor after firing, and is shown in Table 2.

また、−55℃〜+150℃におけるセラミクス基板内
の抵抗体の抵抗値をデジタルマルチメータで測定した。
Further, the resistance value of the resistor in the ceramic substrate was measured at −55° C. to +150° C. using a digital multimeter.

そして、その抵抗値と25℃での抵抗値とから抵抗温度
係数を算出して表2に示した。
Then, the temperature coefficient of resistance was calculated from the resistance value and the resistance value at 25° C. and is shown in Table 2.

次に、各成分の組成範囲を限定した理由について説明す
る。
Next, the reason for limiting the composition range of each component will be explained.

試料番号4に示すようにNiOが40重量部より少なく
なるか、あるいは試料番号1のようにNi0が70重量
部より多くなると、抵抗温度係数が+300 ppm/
 ’Cより大きくなる。
When NiO becomes less than 40 parts by weight as shown in sample number 4, or more than 70 parts by weight as shown in sample number 1, the temperature coefficient of resistance increases by +300 ppm/
'It will be larger than C.

また、試料番号8に示すようにCuが5重量部より少な
くなるか、あるいは試料番号5のようにCuが40重量
部より多くなっても、抵抗温度係数が+300 ppm
/ ’Cより大きくなる。
Furthermore, even if the Cu content is less than 5 parts by weight as shown in sample number 8, or more than 40 parts by weight as in sample number 5, the temperature coefficient of resistance is +300 ppm.
/' Becomes larger than C.

一方、試料番号12のように、ガラスの含有量が5重量
部より少ないと、抵抗体が緻密に焼結せず抵抗値が大き
くなりすぎる。他方、試料番号9のように、磁器半導体
に対するガラスの含有量が50重量部より多くなっても
、抵抗値が大きくなりすぎる。
On the other hand, when the glass content is less than 5 parts by weight, as in sample number 12, the resistor is not sintered densely and the resistance value becomes too large. On the other hand, as in Sample No. 9, even if the content of glass in the ceramic semiconductor exceeds 50 parts by weight, the resistance value becomes too large.

さらに、ガラスにおけるLizO成分、RO酸成分よび
B2O3成分の組成範囲a、bおよびCを限定した理由
について説明する。つまり、試料番号14のようにaが
20モル%以上になるか、試料番号28〜31のように
bが55モル%以上になるか、または試料番号34のよ
うにCが40モル%以上になると、抵抗値が大きくなり
すぎる。
Furthermore, the reason for limiting the composition ranges a, b, and C of the LizO component, RO acid component, and B2O3 component in the glass will be explained. In other words, a is 20 mol% or more as in sample number 14, b is 55 mol% or more as in sample numbers 28 to 31, or C is 40 mol% or more as in sample number 34. Then, the resistance value becomes too large.

また、試料番号20〜23のようにbが10モル%より
少ないと、抵抗体が緻密に焼結せず抵抗値が大きくなり
すぎる。
Moreover, when b is less than 10 mol % as in sample numbers 20 to 23, the resistor is not densely sintered and the resistance value becomes too large.

それに対して、この発明の抵抗体組成物を用いれば、非
酸化雰囲気中で焼成して抵抗体を形成することができ、
しかも、抵抗温度係数が±300ppIIl/℃以内の
抵抗体を得ることができる。
On the other hand, if the resistor composition of the present invention is used, a resistor can be formed by firing in a non-oxidizing atmosphere.
Furthermore, a resistor having a temperature coefficient of resistance of within ±300 ppII/° C. can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はグリーンシート片上に導体ペーストおよび抵抗
体ペーストを印刷した状態を示す斜視図である。 第2図はこの発明の抵抗体組成物を用いた抵抗体の抵抗
値を測定するために作製された化ユニットの斜視図であ
る。 図において、10および16はグリーンシート片、12
は導体ペースト、14は抵抗体ペースト、18はスルー
ホール、20は電極パッドを示す。
FIG. 1 is a perspective view showing a state in which conductor paste and resistor paste are printed on a piece of green sheet. FIG. 2 is a perspective view of a unit prepared for measuring the resistance value of a resistor using the resistor composition of the present invention. In the figure, 10 and 16 are green sheet pieces, 12
14 is a conductor paste, 14 is a resistor paste, 18 is a through hole, and 20 is an electrode pad.

Claims (1)

【特許請求の範囲】 NiOが40〜70重量部、 Cuが5〜40重量部、および 一般式がaLi_2O+bRO+cB_2O_3+(1
00−a−b−c)SiO_2(ただし、RはMg,C
a,Sr,Baの中から選ばれる少なくとも1種類、a
,bおよびcはモル%)で表され、a,bおよびcが、
それぞれ 0≦a<20 10≦b<55 0≦c<40 の範囲にあるガラスを5〜50重量部含む、抵抗体組成
物。
[Claims] NiO is 40 to 70 parts by weight, Cu is 5 to 40 parts by weight, and the general formula is aLi_2O+bRO+cB_2O_3+(1
00-a-b-c) SiO_2 (where R is Mg, C
At least one type selected from a, Sr, Ba, a
, b and c are expressed as mol%), and a, b and c are
A resistor composition containing 5 to 50 parts by weight of glass in the ranges of 0≦a<20, 10≦b<55, and 0≦c<40, respectively.
JP9039190A 1990-02-19 1990-02-19 Resistor composition Pending JPH03241701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9039190A JPH03241701A (en) 1990-02-19 1990-02-19 Resistor composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9039190A JPH03241701A (en) 1990-02-19 1990-02-19 Resistor composition

Publications (1)

Publication Number Publication Date
JPH03241701A true JPH03241701A (en) 1991-10-28

Family

ID=12546197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9039190A Pending JPH03241701A (en) 1990-02-19 1990-02-19 Resistor composition

Country Status (1)

Country Link
JP (1) JPH03241701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066475A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Mining Co Ltd Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066475A (en) * 2004-08-25 2006-03-09 Sumitomo Metal Mining Co Ltd Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor

Similar Documents

Publication Publication Date Title
JPH0821266B2 (en) Dielectric paste
JPH0740633B2 (en) Insulating layer composition
JPH03241701A (en) Resistor composition
JPH0488067A (en) Conductor paste
JPS63265858A (en) Low-temperature sintered ceramics composition for multi-layered substrate
JPH0418701A (en) Resistor composition
JPH0416551A (en) Low-temperature sintered porcelain composition
JPH03212902A (en) Resistor composition
JPH03126201A (en) Resistor composition
JPH03110802A (en) Resistor composition
JPH053423B2 (en)
JPS62128964A (en) Ceramic composition for low temperature burning
JP2600778B2 (en) Low temperature sintering porcelain composition for multilayer substrate
JPH0368485B2 (en)
JPS61122159A (en) Insulative ceramic composition
JPH051963B2 (en)
JPS62187159A (en) Low temperature sinterable ceramic composition for multi-layer substrate
JPS62132762A (en) Ceramic composition
JPS63185854A (en) Low temperature ceramic material
JPH0362286B2 (en)
JPS6235697A (en) Multilayer ceramic substrate for electric circuit
JPH0362281B2 (en)
JPH027161B2 (en)
JPS63213302A (en) Electric resistor and manufacture of the same
JPH024121B2 (en)