JPH03240740A - Method for purifying dicyclopentadiene - Google Patents

Method for purifying dicyclopentadiene

Info

Publication number
JPH03240740A
JPH03240740A JP2035563A JP3556390A JPH03240740A JP H03240740 A JPH03240740 A JP H03240740A JP 2035563 A JP2035563 A JP 2035563A JP 3556390 A JP3556390 A JP 3556390A JP H03240740 A JPH03240740 A JP H03240740A
Authority
JP
Japan
Prior art keywords
activated clay
dcpd
alumina
dicyclopentadiene
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2035563A
Other languages
Japanese (ja)
Other versions
JP2819178B2 (en
Inventor
Osamu Ogawa
修 小川
Hironaka Wada
和田 裕仲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP2035563A priority Critical patent/JP2819178B2/en
Publication of JPH03240740A publication Critical patent/JPH03240740A/en
Application granted granted Critical
Publication of JP2819178B2 publication Critical patent/JP2819178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To readily purify crude dicyclopentadiene at a low cost by bringing the crude dicyclopentadiene into contact with activated clay having a specified silica/alumina ratio, specific surface area and solid acid content, distilling the resultant substance and removing a heavy fraction. CONSTITUTION:Crude dicyclopentadiene is brought into contact with specific activated clay at about 30 deg.C and then distilled to remove a heavy fraction. Thereby, high-purity dicyclopentadiene useful as a raw material for a reaction injection molding method using a metathetic catalyst is obtained. Activated clay having 7-15 silica/alumina weight ratio, >=300m<2>/g specific surface area, >=0.5mmol/g solid acid content expressed in terms of the total acid points having a Hammett acidity function (H0) of <=+4.8 and <=0.2mmol/g solid acid content expressed in terms of strong acid points having an H0 of <=-5. 6 is preferred as the activated clay. The distillation is preferably carried out in an atmosphere of an inert gas under reduced pressure.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はジシクロペンタジェン(以下rDCPD」とい
う)の精製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for purifying dicyclopentadiene (hereinafter referred to as rDCPD).

本発明の方法により精製されたDCPDは、特にメタセ
シス触媒を用いる反応射出成形法(Reaction 
Injection Molding、以下rRI M
Jという〉の原料として好適である。
DCPD purified by the method of the present invention can be produced by reaction injection molding using a metathesis catalyst.
Injection Molding, hereinafter referred to as rRIM
It is suitable as a raw material for

[従来の技術] 従来、RIM法はポリウレタン樹脂の製造に用いられて
いたが、近年DCPDを原料としてタングステン化合物
やモリブデン化合物と有機アルミニウム化合物からなる
メタセシス触媒を用いてRIM法により重合架橋させ、
成形物を得る方法が注目されている。
[Prior art] Conventionally, the RIM method has been used to produce polyurethane resins, but in recent years, DCPD has been used as a raw material to polymerize and crosslink by the RIM method using a metathesis catalyst consisting of a tungsten compound, a molybdenum compound, and an organoaluminum compound.
The method of obtaining molded products is attracting attention.

その際に使用する原料のDCPDは、高純度のものが必
要であり、通常市販されているDCPDでは精製度が不
充分で、重合架橋反応が滑らかに進行しない。また、極
端な場合には反応が起こらないこともある。
The raw material DCPD used in this case needs to be of high purity, and normally commercially available DCPD has an insufficient degree of purification and does not allow the polymerization and crosslinking reaction to proceed smoothly. Furthermore, in extreme cases, no reaction may occur.

例えば、米国特許第4,584,425号および同第4
,748,216号公報に記載されているように、市販
の最高純度の97%DCPDでも、RIM法の原料とし
てはなお精製度が不充分であると言われている。これは
、DCPDに含まれる微量の不純物が重合を阻害するた
めであると考えられ、これらの重合を阻害する不純物を
予め除去して精製する必要がある。
For example, U.S. Pat.
, 748,216, it is said that even the commercially available highest purity 97% DCPD is still insufficiently purified as a raw material for the RIM method. This is thought to be because trace amounts of impurities contained in DCPD inhibit polymerization, and it is necessary to remove these impurities that inhibit polymerization in advance for purification.

このための精製方法として、例えば、DCPDを蒸留し
た後、モレキュラーシーブやアルミナ等の吸着剤で吸着
処理する方法(米国特許第4,584.425号および
同第4,748,216号)がある。
As a purification method for this purpose, for example, there is a method of distilling DCPD and then adsorbing it with an adsorbent such as molecular sieve or alumina (US Pat. No. 4,584.425 and US Pat. No. 4,748,216). .

この方法は、容易に人手できる純度95%程度のDCP
Dを用いる場合、蒸留収率が低く、吸着処理で生じた重
質化成分がそのまま精製品中に残存するなど純度の面に
問題がある。
This method uses DCP with a purity of about 95%, which can be easily done manually.
When D is used, there are problems in terms of purity, such as low distillation yield and heavy components generated in the adsorption treatment remaining in the purified product.

また、DCPDを水酸化ナトリウム水溶液等のアルカリ
性物質と接触させ、水洗した後に蒸留あるいはモレキュ
ラーシーブや合成ゼオライトによって脱水する精製方法
がある。この方法では、大量のアルカリ廃水を生じ、処
理費用がかかり、また、到達純度も96%程度と低い。
Further, there is a purification method in which DCPD is brought into contact with an alkaline substance such as an aqueous sodium hydroxide solution, washed with water, and then dehydrated by distillation or molecular sieve or synthetic zeolite. This method generates a large amount of alkaline waste water, is expensive to treat, and achieves a low purity of about 96%.

[発明が解決しようとする課題] 本発明者は、高純度のDCPDを工業的に容易に得る方
法を鋭意探索した結果、活性白土で粗DCPDを処理し
、しかる後に蒸留によって重質分を除去する方法が極め
て効果的であることを見出し、本発明を完成したもので
ある。
[Problems to be Solved by the Invention] As a result of earnestly searching for a method to industrially easily obtain high-purity DCPD, the present inventor treated crude DCPD with activated clay, and then removed heavy components by distillation. The present invention was completed based on the discovery that this method is extremely effective.

[課題を解決するための手段] 本発明は、不純物を含む粗DCPDを活性白土と接触さ
せ、しかる後に蒸留により重質留分を除去することを特
徴とする、DCPDの精製方法を提供するものである。
[Means for Solving the Problems] The present invention provides a method for purifying DCPD, which comprises bringing crude DCPD containing impurities into contact with activated clay, and then removing a heavy fraction by distillation. It is.

すなわち、本発明の特徴は、粗DCPDを活性白土と接
触させることと、接触処理後に蒸留することの2つの要
件から成り立っている。
That is, the features of the present invention consist of two requirements: bringing crude DCPD into contact with activated clay and distilling it after the contact treatment.

本発明の方法において用いられる粗DCPDは、通常、
炭化水素の熱分解、例えば、エチレン系低級オレフィン
製造のためのナフサの熱分解によって得られるDCPD
、あるいはその熱分解で得られる炭素数5の留分中に含
まれるシクロペンタジェン(以下rCPDJという)を
三量化させ、蒸留分離して得られるものである。このよ
うにして得られたDCPDは、通常、エンド異性体とエ
キソ異性体との混合物であり、両者を合わせて95%前
後の純度である。
The crude DCPD used in the method of the present invention is usually
DCPD obtained by thermal cracking of hydrocarbons, for example naphtha for the production of ethylene-based lower olefins
Alternatively, it is obtained by trimerizing cyclopentadiene (hereinafter referred to as rCPDJ) contained in a fraction having 5 carbon atoms obtained by thermal decomposition thereof, and separating it by distillation. The DCPD thus obtained is usually a mixture of endo and exo isomers, and the purity of both is around 95% in total.

本発明では、まず粗DCPDを活性白土と接触させる。In the present invention, crude DCPD is first brought into contact with activated clay.

使用する活性白土は、シリカとアルミナとを主要構成成
分とし、これに鉄、マグネシウム等を含むモンモリロナ
イト系の粘土鉱物である酸性白土を硫酸等の鉱酸で処理
し、アルミナ、鉄、マグネシウム等の一部を溶出させた
もので、処理条件によって、それぞれ異なったシリカお
よびアルミナの構成比、比表面積(Ig当りの表面積)
あるいは表面酸性度を持つものが得られる。本発明の方
法において使用する活性白土としては、これらの何れを
も使用できるが、主要構成成分のシリカのアルミナに対
する含有比率が重量比で7〜15の範囲にあるもの、1
グラム当りの比表面積が300012以上のもの、ある
いは固体酸量がハメット酸関数(■。)+4.8以下の
全酸点で0,5mmo 17g以上であり、かつ−5,
6以下の強酸点で0、2 mmol/g以下であるもの
が特に有効である。
The activated clay to be used has silica and alumina as its main components, and the acid clay, which is a montmorillonite clay mineral containing iron, magnesium, etc., is treated with mineral acids such as sulfuric acid to form alumina, iron, magnesium, etc. A portion of it is eluted, and the composition ratio of silica and alumina and specific surface area (surface area per Ig) vary depending on the processing conditions.
Alternatively, one with surface acidity can be obtained. Any of these activated clays can be used as the activated clay used in the method of the present invention, but those whose content ratio of silica as a main component to alumina is in the range of 7 to 15 by weight, 1
The specific surface area per gram is 300012 or more, or the amount of solid acid is 0.5 mmo 17 g or more at total acid points of Hammett acid function (■.) + 4.8 or less, and -5,
Particularly effective are those having strong acid points of 6 or less and 0.2 mmol/g or less.

さらに、シリカのアルミナに対する含有比率が重量比で
7〜15の範囲で、同時に1グラム当りの比表面積が3
0On+2以上であるもの、あるいはこれに加えて固体
酸量がハメット酸関数(H,)+4.8以下の全酸点て
0.5 ma+ol/g以上であり、かつ−5,6以下
の強酸点でO12mmol/g以下であるものがさらに
有効である。
Furthermore, the content ratio of silica to alumina is in the range of 7 to 15 by weight, and at the same time the specific surface area per gram is 3.
0On+2 or more, or in addition to this, solid acid content is Hammett acid function (H,) +4.8 or less, total acid points are 0.5 ma+ol/g or more, and -5,6 or less strong acid points It is even more effective to have an O of 12 mmol/g or less.

本発明の処理方法は、適宜の槽中に粗DCPDと共に活
性白土を投入し、攪拌後濾別する方法(バッチ法)でも
よく、また、予め反応管中に活性白土を充填しておき、
流通式で処理してもよい(連続法)。バッチ法で行なう
場合は、予め脱水した活性白土をDCPDに対して1重
量%以上、好ましくは5〜20重量%投入し、常圧で、
好ましくは窒素等の不活性気体の雰囲気下で、1〜10
時間攪拌処理する。活性白土の脱水は、例えば120〜
Zoo℃の温度で2時間加熱する程度でよい。
The treatment method of the present invention may be a method (batch method) in which activated clay is charged together with crude DCPD into a suitable tank, stirred, and then filtered.
It may be processed using a flow method (continuous method). When carrying out the batch method, 1% or more by weight, preferably 5 to 20% by weight, of activated clay that has been dehydrated in advance is added to DCPD, and the mixture is heated at normal pressure.
1 to 10, preferably in an atmosphere of an inert gas such as nitrogen.
Stir for an hour. Dehydration of activated clay is, for example, 120~
It is sufficient to heat the mixture at a temperature of Zoo°C for 2 hours.

処理温度は、液相で扱う関係上、粗DCPDの融点より
、も高くすることが必要である。純粋なりCPDの融点
は34℃であるが、市販の粗DCPDは不純物を含むの
で、通常20℃台である。一方、処理温度が50℃を越
えると、一部のDCPDの解重合や不必要な重合が起こ
るので好ましくない。従って、20℃〜50℃の間、特
に30℃付近で処理を行なうことが好ましい。
The treatment temperature needs to be higher than the melting point of crude DCPD since it is handled in a liquid phase. The melting point of pure CPD is 34°C, but since commercially available crude DCPD contains impurities, it is usually in the 20°C range. On the other hand, if the treatment temperature exceeds 50° C., depolymerization or unnecessary polymerization of some DCPD may occur, which is not preferable. Therefore, it is preferable to perform the treatment at a temperature between 20°C and 50°C, particularly around 30°C.

活性白土処理の結果としては、必ずしも重合を阻害する
不純物(以下「重合阻害物質」という)か吸着除去され
る訳ではない。重合阻害物質の多くは、活性白土の触媒
作用により、重合等の化学変化を受けて重質化し、DC
PD中に存在している。このため、活性白土処理のみで
は効果か不充分であり、処理後に蒸留により重質分を除
去する必要がある。
As a result of activated clay treatment, impurities that inhibit polymerization (hereinafter referred to as "polymerization inhibitors") are not necessarily removed by adsorption. Many of the polymerization inhibitors undergo chemical changes such as polymerization due to the catalytic action of activated clay and become heavier, resulting in DC
Exists in PD. For this reason, activated clay treatment alone is insufficiently effective, and it is necessary to remove heavy components by distillation after treatment.

このことは後記の実施例において詳述するが、第1図に
示すように、活性白土処理を行なったDCPDの重質分
および中抜留分は、未処理の同留分に較へて速やかに重
合し、重合阻害物質は大幅に減少することを示している
。一方、重質留分は、10倍に稀釈しても重合せず、ま
た重合阻害物質か大幅に増加していることは明らかであ
る。
This will be explained in detail in the Examples below, but as shown in Figure 1, the heavy fraction and hollow fraction of DCPD treated with activated clay are more rapidly absorbed than the untreated fraction. This shows that the amount of polymerization inhibitors is significantly reduced. On the other hand, it is clear that the heavy fraction did not polymerize even if it was diluted 10 times, and the amount of polymerization inhibitors increased significantly.

重合阻害物質は、第1図から分かるように、軽質留分中
にも一部含まれるので、高度な精製が必要な場合は軽質
留分も留去することが好ましい。
As can be seen from FIG. 1, polymerization inhibitors are partially contained in the light fraction, so if a high degree of purification is required, it is preferable to distill off the light fraction as well.

重合阻害物質の化学構造は確認されていないが、活性白
土処理は炭化水素不純物を重質化する作用もある。例え
ば、後記の実施例において説明する第3表に示すように
、活性白土処理の前後においてDCPDの純度は余り変
化しないが、c9〜C11炭化水素などの沸点がDCP
Dに近い炭化水素の不純物が選択的に減少し、その代わ
りに重質不純物が増加していることから分かる。これら
のC9〜C0炭化水素不純物が重合を阻害するとは限ら
ないが、これらは沸点がDCPDに近いために、通常、
蒸留で分解することは困難である。
Although the chemical structure of the polymerization inhibitor has not been confirmed, activated clay treatment also has the effect of making hydrocarbon impurities heavier. For example, as shown in Table 3, which will be explained in Examples below, the purity of DCPD does not change much before and after activated clay treatment, but the boiling point of C9 to C11 hydrocarbons is lower than DCP.
This can be seen from the fact that hydrocarbon impurities near D are selectively reduced, and heavy impurities are increased instead. Although these C9-C0 hydrocarbon impurities do not necessarily inhibit polymerization, their boiling point is close to DCPD, so they usually
It is difficult to break down by distillation.

しかし、活性白土処理によって一部が重質化する結果、
それらを簡単に蒸留分離できるようになる。
However, as a result of the activated clay treatment, some parts become heavier,
They can be easily separated by distillation.

他の固体酸、例えばアルミナでは、第4表に示されるよ
うに、このような炭化水素の組成変化は生じない。
With other solid acids, such as alumina, such changes in hydrocarbon composition do not occur, as shown in Table 4.

上記ように、活性白土処理の後に蒸留を行なうことが肝
要であり、従来の技術で行なわれるように、先に蒸留を
行なうことによっては目的を達成することができない。
As mentioned above, it is essential to carry out the distillation after the activated clay treatment, and the objective cannot be achieved by carrying out the distillation first, as is done in the prior art.

蒸留条件は、蒸留中の加熱に伴う分解反応や酸化反応を
防止する目的で、窒素等の不活性気体の雰囲気下で、し
かも減圧下で行なうことが望ましい。蒸留の際に、酸化
防止剤、例えば、2.6−ジーt−ブチルフェノール(
BHT)等を100〜10000ppa+添加すること
も可能である。例えば、段数20段相当の充填式精留塔
で、還流比2〜50、圧力20 mdgの窒素雰囲気下
で、B)ITを11000pp添加して蒸留する場合、
重質分および重質分の各10%を除去することによって
、約80%の蒸留収率で99%以上の高純度DCPDが
得られる。重質分を除く理由は、第1図に示すように、
この留分にも若干の重合阻害物質が含まれているからで
ある。
Regarding the distillation conditions, it is preferable to carry out the distillation under an atmosphere of an inert gas such as nitrogen and under reduced pressure in order to prevent decomposition reactions and oxidation reactions caused by heating during distillation. During the distillation, antioxidants, such as 2,6-di-tert-butylphenol (
It is also possible to add 100 to 10,000 ppa+ of BHT) or the like. For example, when distilling with a packed rectification column equivalent to 20 plates in a nitrogen atmosphere with a reflux ratio of 2 to 50 and a pressure of 20 mdg, with the addition of 11,000 pp of B) IT,
By removing 10% each of the heavy fraction and the heavy fraction, high purity DCPD of 99% or more can be obtained with a distillation yield of about 80%. The reason for excluding heavy components is as shown in Figure 1.
This is because this fraction also contains some polymerization inhibitors.

[発明の効果] 本発明の方法によれば、RIMJl[料に適する高度に
精製されたDCPDを、工業的に、容易に、しかも安価
に得ることができる。すなわち、活性白土処理により重
合阻害物質が重質化するため、その後に蒸留を行なうこ
とによって、蒸留による精製効果が高まり、容易に精製
度の高いDCPDを得ることができる。
[Effects of the Invention] According to the method of the present invention, highly purified DCPD suitable for RIMJ1 can be obtained industrially, easily, and at low cost. That is, since the polymerization-inhibiting substance is made heavier by the activated clay treatment, the subsequent distillation increases the purification effect of the distillation, making it possible to easily obtain highly purified DCPD.

[実施例] 以下に実施例を挙げて本発明をさらに具体的に説明する
が、これに先立ち、実施例にて用いた分析方法および精
製度の評価方法について説明する。
[Example] The present invention will be described in more detail with reference to Examples below. Prior to this, the analytical method and method for evaluating the degree of purification used in the Example will be described.

〈ガスクロマトグラフィーによる純度測定方法〉OV−
101キヤピラリーカラム(50m)を用い、90〜2
50℃で分析した。
<Purity measurement method using gas chromatography> OV-
Using a 101 capillary column (50 m), 90-2
The analysis was performed at 50°C.

く精製度の評価方法〉 米国特許第4,584,425号記載の方法に従い重合
遅延時間によって評価した。
Evaluation method of purity degree> Evaluation was made by polymerization delay time according to the method described in US Pat. No. 4,584,425.

タングステンへフサクロリド(WCI6) 20 g/
トルエン60m1の溶液に、パラ−t−ブチルフェノー
ル8.2g/トルエン30m1溶液を加え、WCI。
Tungsten hexachloride (WCI6) 20 g/
A solution of 8.2 g of para-t-butylphenol/30 ml of toluene was added to a solution of 60 ml of toluene, and WCI was applied.

とパラ−t−ブチルフェノールとの反応によって発生す
る塩化水素()ICI)を窒素で追い出し、0.1Mタ
ングステン触媒液とした。この触媒液5mlにDCPD
lomlおよびベンゾニトリル0.07m1を加えて、
0.033M触媒/DCPD溶液とした(以下「A液」
という)。別にDCPD8.6mlにイソプロピルエー
テル0.1 ll1l、 1.0 Mジエチルアルミニ
ウムクロリド(Et2Al(1:l/ D CP D溶
液0.36m1を混合し、活性化剤/DCPD溶液とし
た(以下「B液」という)。
Hydrogen chloride (ICI) generated by the reaction between the reactant and para-t-butylphenol was removed with nitrogen to obtain a 0.1M tungsten catalyst solution. Add DCPD to 5 ml of this catalyst solution.
add loml and 0.07ml benzonitrile,
A 0.033M catalyst/DCPD solution (hereinafter referred to as "Liquid A")
). Separately, 0.1 ml of isopropyl ether and 0.36 ml of 1.0 M diethylaluminum chloride (Et2Al (1:l/D CP D solution) were mixed with 8.6 ml of DCPD to obtain an activator/DCPD solution (hereinafter referred to as "Liquid B"). ).

Ail、1mlおよびB液8.9mlを25℃で混合し
、激しく攪拌すると、短時間の誘導期間の後に激しく発
熱し、固体の重合物を生じた。この重合開始迄の時間(
秒)を測定し重合遅延時間とした。
1 ml of Ail and 8.9 ml of solution B were mixed at 25° C. and stirred vigorously, resulting in a strong exotherm after a short induction period and a solid polymer. Time until the start of this polymerization (
seconds) was measured and defined as the polymerization delay time.

DCPDの精製度が高いと、重合が速やかに行なわれる
ため重合遅延時間が短い。従って、重合遅延時間の短い
もの程精製度が高く、RIM原料として優れている。
When the degree of purification of DCPD is high, polymerization occurs quickly and the polymerization delay time is short. Therefore, the shorter the polymerization delay time, the higher the degree of purification and the better the RIM raw material.

〈実施例1〉 容11Jiのガラス製フラスコに、ナフサ分解で得られ
た粗DCPD (純度94.4%)500g、150℃
で2時間加熱乾燥した活性白土A(シリカ79,5%、
アルミナ9.6%;シリカとアルミナの重量比8.3;
Ig当りの比表面積305IT12;ハメット酸関数(
H0) +4.8以下の全酸点の量0、87 mmol
/g、同一5.6以下の強酸点の量0.17mmol/
g) 50 gを添加し、30℃で3時間攪拌処理した
。この間、温度は30℃から36℃に上昇した。処理後
、活性白土Aを濾別して濾液407gを得た。濾液にB
HTloooppmを酸化防止剤として添加し、圧力2
0 lllmHgの窒素雰囲気下で単蒸留を行ない、重
質分20%および重質分30%を除去した中抜留分50
%を得た。このようにして得た精製DCPD (中抜留
分)の重合遅延時間は第1表に示すように21秒であっ
た。
<Example 1> 500 g of crude DCPD (purity 94.4%) obtained by naphtha decomposition was placed in a glass flask with a volume of 11 Ji at 150°C.
Activated clay A (silica 79.5%,
Alumina 9.6%; silica to alumina weight ratio 8.3;
Specific surface area per Ig 305IT12; Hammett acid function (
H0) Amount of total acid points below +4.8 0, 87 mmol
/g, amount of strong acid points of the same 5.6 or less 0.17 mmol/
g) 50 g was added and stirred at 30°C for 3 hours. During this time, the temperature rose from 30°C to 36°C. After the treatment, activated clay A was separated by filtration to obtain 407 g of filtrate. B to the filtrate
Add HTloooppm as antioxidant and pressure 2
Simple distillation was carried out under a nitrogen atmosphere of 0 lllmHg to remove 20% and 30% of heavy fractions.
I got %. The polymerization delay time of the thus obtained purified DCPD (hollow fraction) was 21 seconds as shown in Table 1.

〈実施例2〉 前記活性白土Aの代わりに活性白土B(シリカ68.5
%、アルミナ17.0%;シリカとアルミナの重量比4
.0;Ig当りの比表面積100I02)を用いて実施
例1と同様な処理を繰り返した。その結果を第1表に示
す。固体の重合物が得られ、重合遅延時間は40秒であ
った。
<Example 2> Activated clay B (silica 68.5
%, alumina 17.0%; weight ratio of silica and alumina 4
.. The same treatment as in Example 1 was repeated using 0; specific surface area per Ig of 100I02). The results are shown in Table 1. A solid polymer was obtained, and the polymerization delay time was 40 seconds.

〈実施例3〉 前記活性白土Aの代わりに活性白土C(シリカ76.7
%、アルミナ11.2%ニジリカとアルミナの重量比6
.8.1g当りの比表面積240m2)を用いて実施例
1と同様な処理を繰り返した。その結果を第1表に示す
。固体の重合物が得られ、重合遅延時間は64秒であっ
た。
<Example 3> Activated clay C (silica 76.7
%, alumina 11.2% Nijirica and alumina weight ratio 6
.. The same treatment as in Example 1 was repeated using a specific surface area of 8.1 g (240 m2). The results are shown in Table 1. A solid polymer was obtained, and the polymerization delay time was 64 seconds.

〈実施例4〉 前記活性白土Aの代わりに活性白土D(シリカ85.4
%、アルミナ2.8%;シリカとアルミナの重量比30
.5;Ig当りの比表面積220m2)を用いて実施例
1と同様な処理を繰り返した。その結果を第1表に示す
。固体の重合物が得られ、重合遅延時間は60秒であっ
た。
<Example 4> Activated clay D (silica 85.4
%, alumina 2.8%; weight ratio of silica and alumina 30
.. 5; Specific surface area per Ig: 220 m2) The same treatment as in Example 1 was repeated. The results are shown in Table 1. A solid polymer was obtained, and the polymerization delay time was 60 seconds.

〈実施例5〉 前記活性白土Aの代わりに活性白土E(ハメット酸関数
(H0)+4.8以下の全酸点の量は0.95mmol
/g、−556以下の強酸点の量は0.33 mmol
/g)を用いて実施例1と同様な処理を繰り返した。
<Example 5> Activated clay E was used instead of activated clay A (the amount of total acid sites with Hammett acid function (H0) + 4.8 or less was 0.95 mmol).
/g, the amount of strong acid points below -556 is 0.33 mmol
The same process as in Example 1 was repeated using 1/g).

その結果を第2表に示す。固体の重合物が得られ重合遅
延時間は52秒であった。
The results are shown in Table 2. A solid polymer was obtained and the polymerization delay time was 52 seconds.

〈実施例6〉 前記活性白土Aの代わりに活性白土F(ハメット酸関数
(■。)+4.8以下の全酸点の量は1.00ma+o
l/g、−5,6以下の強酸点の量は0.40 mmo
l/g)を用いて実施例1と同様な処理を繰り返した。
<Example 6> Activated clay F was used instead of activated clay A (the amount of total acid sites with Hammett acid function (■.) + 4.8 or less was 1.00 ma + o
l/g, the amount of strong acid points below -5,6 is 0.40 mmo
The same process as in Example 1 was repeated using 1/g).

その結果を第2表に示す。固体の重合物か得られ重合遅
延時間は64秒であった。
The results are shown in Table 2. A solid polymer was obtained and the polymerization delay time was 64 seconds.

〈比較例1〉 実施例1に用いた粗DCPD自体の重合遅延時間を求め
たか、粗DCPDは重合せず重合遅延時間は得られなか
った。
<Comparative Example 1> Either the polymerization delay time of the crude DCPD itself used in Example 1 was determined, or the crude DCPD did not polymerize and no polymerization delay time was obtained.

く比較例2〉 実施例1の処理において、蒸留を先に行ない、続いて活
性白土処理を行ない、その後には蒸留を行なわなかった
。活性白土処理を行なっても重合せず、重合遅延時間は
得られなかった。
Comparative Example 2> In the treatment of Example 1, distillation was performed first, followed by activated clay treatment, and then no distillation was performed. Even with activated clay treatment, polymerization did not occur and no polymerization delay time was obtained.

〈比較例3〉 前記活性白土Aの代わりにモレキュラーシーブ13Xを
用いて、実施例1と同様な処理を繰り返した。その結果
を第1表に示す。処理DCPDは重合したが、重合遅延
時間は43秒であった。
<Comparative Example 3> The same treatment as in Example 1 was repeated using Molecular Sieve 13X instead of the activated clay A. The results are shown in Table 1. The treated DCPD polymerized, but the polymerization delay time was 43 seconds.

く比較例4〉 活性白土Aの代わりに合成シリカ・アルミナ(シリカ8
%、アルミナ90%)を用いて実施例1と同様な処理を
繰り返した。その結果を第1表に示す。処理DCPDは
重合はしたが重合遅延時間は66秒であった。
Comparative Example 4> Instead of activated clay A, synthetic silica/alumina (Silica 8
%, alumina 90%) was repeated. The results are shown in Table 1. Although the treated DCPD polymerized, the polymerization delay time was 66 seconds.

く比較例5〉 比較例2で活性白土Aの代わりにモレキュラーシーブ1
3Xを用いた。この場合、重合したが、重合遅延時間は
65秒と長かった。
Comparative Example 5> In Comparative Example 2, Molecular Sieve 1 was used instead of activated clay A.
3X was used. In this case, polymerization occurred, but the polymerization delay time was as long as 65 seconds.

〈実施例7〉 実施例1で活性白土Aによる処理を行なったDCPDを
、段数20段相当の充填式精留塔で還流比10、圧力2
0 mmHgの窒素雰囲気下で、BHTを11000p
p1添加して蒸留し、重質分および重質分基10%を除
去した結果、80%の蒸留収率で、第3表に示すように
99%以上の高純度のDCPDが得られた。
<Example 7> The DCPD treated with activated clay A in Example 1 was processed in a packed rectification column with 20 plates at a reflux ratio of 10 and a pressure of 2.
BHT was heated at 11000p under a nitrogen atmosphere of 0 mmHg.
As a result of adding p1 and distilling to remove 10% of heavy components and heavy fraction groups, DCPD with a high purity of 99% or more was obtained with a distillation yield of 80% as shown in Table 3.

く比較例6〉 実施例7における活性白土処理を行なわずにDCPDを
蒸留した結果を同じく第3表に示す。
Comparative Example 6> The results of distilling DCPD without performing the activated clay treatment in Example 7 are also shown in Table 3.

この場合、活性白土処理を行なった場合に較べて純度が
低く、重合遅延時間も長い。
In this case, the purity is lower and the polymerization delay time is longer than when activated clay treatment is performed.

く参考例1〉 実施例1における活性白土Aによる処理前後のDCPD
 (蒸留前)のガスクロマトグラフィー分析結果を第3
表に示す。活性白土処理により、沸点がDCPD近傍に
あり、蒸留による分離が困難な不純物が減少し、代わり
に蒸留分離が容易な重質分が増加していることが分かる
Reference Example 1 DCPD before and after treatment with activated clay A in Example 1
The results of gas chromatography analysis (before distillation) were
Shown in the table. It can be seen that by the activated clay treatment, impurities whose boiling points are near DCPD and are difficult to separate by distillation are reduced, and instead, heavy components, which are easy to separate by distillation, are increased.

く参考例2〉 実施例1の活性白土Aの代わりにアルミナA(メルク社
製酸性アルミナ90、pH4)を用い、処理前後のDC
PD (蒸留前)のガスクロマトグラフィー分析結果を
第4表に示す。第3表に示した活性白土の場合と異なり
、組成変化が殆どない。
Reference Example 2> Alumina A (acidic alumina 90 manufactured by Merck & Co., Ltd., pH 4) was used instead of activated clay A in Example 1, and the DC before and after treatment was
Table 4 shows the results of gas chromatography analysis of PD (before distillation). Unlike the case of activated clay shown in Table 3, there is almost no change in composition.

〈参考例3〉 アルミナB(メルク社製塩基性アルミナ、pH9)を用
いて参考例2と同様な処理を行なった。第4表に示した
通り組成変化が殆どない。
<Reference Example 3> The same treatment as in Reference Example 2 was performed using alumina B (basic alumina manufactured by Merck & Co., pH 9). As shown in Table 4, there is almost no change in composition.

く参考例4〉 実施例1で活性白土Aによる処理を行なったDCPDを
蒸留して10留分に分け、各留分を実施例7で得られた
高純度DCPD (重合遅延時間20秒)で10倍に稀
釈し、それぞれの重合遅延時間を求めた。その結果を第
1図に示す。
Reference Example 4> DCPD treated with activated clay A in Example 1 was distilled and divided into 10 fractions, and each fraction was distilled with the high purity DCPD obtained in Example 7 (polymerization delay time 20 seconds). It was diluted 10 times and the polymerization delay time of each was determined. The results are shown in FIG.

活性白土処理を行なわない場合に較べ、軽質および中間
留分における重合遅延時間が短く、重合阻害物質が減少
していることが分かる。一方、最重質留分は10倍に稀
釈したにも拘らず、なお重合せず、重合阻害物質が大幅
に増加している。
It can be seen that the polymerization delay time in light and middle distillates is shorter and the amount of polymerization inhibitors is reduced compared to the case where activated clay treatment is not performed. On the other hand, even though the heaviest fraction was diluted 10 times, it still did not polymerize and the amount of polymerization inhibitors increased significantly.

く参考例5〉 活性白土処理前の粗DCPDについて、参考例4と同様
な処理を行なった。その結果を第1図に併記する。試料
を稀釈しているので差は少ないが、活性白土処理品と較
べ、重質分を除き、−様に重合遅延時間が長いことが分
かる。
Reference Example 5 The same treatment as in Reference Example 4 was performed on the crude DCPD before the activated clay treatment. The results are also shown in Figure 1. Although there is little difference because the sample is diluted, it can be seen that the polymerization delay time is longer compared to the activated clay treated product except for heavy components.

第4表 アルミナ処理によるDCPDの組成変化Table 4 Composition change of DCPD due to alumina treatment

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、参考例4および5において説明した留分毎の
重合阻害物質の分布を示すグラフである。
FIG. 1 is a graph showing the distribution of polymerization inhibitors for each fraction explained in Reference Examples 4 and 5.

Claims (6)

【特許請求の範囲】[Claims] (1)不純物を含む粗ジシクロペンタジエンを活性白土
と接触させた後に、蒸留により重質留分を除去すること
を特徴とするジシクロペンタジエンの精製方法。
(1) A method for purifying dicyclopentadiene, which comprises bringing crude dicyclopentadiene containing impurities into contact with activated clay, and then removing a heavy fraction by distillation.
(2)前記活性白土の、シリカのアルミナに対する含有
比率が重量比で7〜15の範囲にある請求項1記載のジ
シクロペンタジエンの精製方法。
(2) The method for purifying dicyclopentadiene according to claim 1, wherein the content ratio of silica to alumina in the activated clay is in the range of 7 to 15 by weight.
(3)前記活性白土の1グラム当りの比表面積が300
平方メートル以上である請求項1記載のジシクロペンタ
ジエンの精製方法。
(3) The specific surface area per gram of the activated clay is 300
The method for purifying dicyclopentadiene according to claim 1, wherein the area is at least square meter.
(4)前記活性白土の固体酸量が、ハメット酸関数(H
_0)+4.8以下の全酸点で0.5mmol/g以上
であり、かつ−5.6以下の強酸点で0.2mmol/
g以下である請求項1記載のジシクロペンタジエンの精
製方法。
(4) The amount of solid acid in the activated clay is determined by the Hammett acid function (H
_0) 0.5 mmol/g or more at total acid points below +4.8, and 0.2 mmol/g at strong acid points below -5.6
2. The method for purifying dicyclopentadiene according to claim 1, wherein the amount of dicyclopentadiene is less than g.
(5)前記活性白土のシリカのアルミナに対する含有比
率が、重量比で7〜15の範囲にあり、かつ1グラム当
りの比表面積が300平方メートル以上である請求項1
記載のジシクロペンタジエンの精製方法。
(5) The content ratio of silica to alumina in the activated clay is in the range of 7 to 15 by weight, and the specific surface area per gram is 300 square meters or more.
The described method for purifying dicyclopentadiene.
(6)前記活性白土のシリカのアルミナに対する含有比
率が、重量比で7〜15の範囲にあり、1グラム当りの
比表面積が300平方メートル以上であり、かつ固体酸
量がハメット酸関数(H_0)+4.8以下の全酸点で
0.5mmol/g以上で、−5.6以下の強酸点で0
.2mmol/g以下である請求項1記載のジシクロペ
ンタジエンの精製方法。
(6) The content ratio of silica to alumina in the activated clay is in the range of 7 to 15 by weight, the specific surface area per gram is 300 square meters or more, and the amount of solid acid is Hammett acid function (H_0) 0.5 mmol/g or more at total acid points below +4.8, 0 at strong acid points below -5.6
.. The method for purifying dicyclopentadiene according to claim 1, wherein the concentration is 2 mmol/g or less.
JP2035563A 1990-02-16 1990-02-16 Purification method of dicyclopentadiene Expired - Fee Related JP2819178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2035563A JP2819178B2 (en) 1990-02-16 1990-02-16 Purification method of dicyclopentadiene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035563A JP2819178B2 (en) 1990-02-16 1990-02-16 Purification method of dicyclopentadiene

Publications (2)

Publication Number Publication Date
JPH03240740A true JPH03240740A (en) 1991-10-28
JP2819178B2 JP2819178B2 (en) 1998-10-30

Family

ID=12445217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035563A Expired - Fee Related JP2819178B2 (en) 1990-02-16 1990-02-16 Purification method of dicyclopentadiene

Country Status (1)

Country Link
JP (1) JP2819178B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529739A2 (en) * 1991-08-29 1993-03-03 Shell Internationale Researchmaatschappij B.V. Cycloolefin purification method
JP2005145855A (en) * 2003-11-13 2005-06-09 Mitsui Chemicals Inc Cyclic olefin composition and method for producing cyclic olefin polymer
JP2005314642A (en) * 2003-11-10 2005-11-10 Mitsui Chemicals Inc Non-conjugate cyclic diene, non-conjugate cyclic diene composition, and process for production of non-conjugate cyclic diene polymer
WO2010073841A1 (en) * 2008-12-26 2010-07-01 新日本石油株式会社 Method for refining dicyclopentadiene
JP2010155784A (en) * 2008-12-26 2010-07-15 Nippon Oil Corp Method for purifying dicyclopentadiene

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529739A2 (en) * 1991-08-29 1993-03-03 Shell Internationale Researchmaatschappij B.V. Cycloolefin purification method
JP2005314642A (en) * 2003-11-10 2005-11-10 Mitsui Chemicals Inc Non-conjugate cyclic diene, non-conjugate cyclic diene composition, and process for production of non-conjugate cyclic diene polymer
JP2005145855A (en) * 2003-11-13 2005-06-09 Mitsui Chemicals Inc Cyclic olefin composition and method for producing cyclic olefin polymer
WO2010073841A1 (en) * 2008-12-26 2010-07-01 新日本石油株式会社 Method for refining dicyclopentadiene
JP2010155784A (en) * 2008-12-26 2010-07-15 Nippon Oil Corp Method for purifying dicyclopentadiene
US9242909B2 (en) 2008-12-26 2016-01-26 Jx Nippon Oil & Energy Corporation Method for refining dicyclopentadiene
US9783469B2 (en) 2008-12-26 2017-10-10 Jx Nippon Oil & Energy Corporation Method for refining dicyclopentadiene

Also Published As

Publication number Publication date
JP2819178B2 (en) 1998-10-30

Similar Documents

Publication Publication Date Title
US3442958A (en) Purification of phenol
US4390742A (en) Reduction of cyclopentadiene from isoprene streams
US6489527B1 (en) Process for improving purity of para-xylene product
JPH03240740A (en) Method for purifying dicyclopentadiene
JPH0832642B2 (en) Purification method of dicyclopentadiene
US5502184A (en) Process for producing ε -caprolactam
JPH03240741A (en) Purification of dicyclopentadiene using solid acid
CA2353743A1 (en) Hydrocarbon purification system regeneration
US4392004A (en) Reduction of cyclopentadiene from isoprene streams
JP4863186B2 (en) Process for producing olefin polymer
US2626967A (en) Deodorization of monoaryl substituted alkanes
CN1639090A (en) Method for the production of cyclohexanol from benzole
KR101875986B1 (en) Method for producing 1,3-dimethyladamantane
JPH03133937A (en) Production of propylene
JPH0196140A (en) Purification of dicyclopentadiene
EP2895447A1 (en) Method for the manufacture of aromatic hydrocarbons
US4792420A (en) Purification of carboxylic acid anhydrides
JP2000063299A (en) Production of indene
RU2176648C2 (en) Method of regeneration of return solvent in process for preparing synthetic rubbers
JP2628107B2 (en) Method for improving the purity of р-xylene product
US4438289A (en) Reduction of cyclopentadiene from isoprene streams
Gassman et al. Vinylcyclopropane rearrangement of ethyl 6-ethenylbicyclo [3.1. 0] hexane-1-acetate
JPS60204733A (en) Synthesis and purification of diisopropenylbenzene
RU2068833C1 (en) Method of cyclopentadiene synthesis
RU2209217C1 (en) Hexane solvent preparation method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees