JP2000063299A - Production of indene - Google Patents

Production of indene

Info

Publication number
JP2000063299A
JP2000063299A JP10247832A JP24783298A JP2000063299A JP 2000063299 A JP2000063299 A JP 2000063299A JP 10247832 A JP10247832 A JP 10247832A JP 24783298 A JP24783298 A JP 24783298A JP 2000063299 A JP2000063299 A JP 2000063299A
Authority
JP
Japan
Prior art keywords
indene
reaction
catalyst
thi
molybdenum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10247832A
Other languages
Japanese (ja)
Other versions
JP4119538B2 (en
Inventor
Yasuo Matsumura
泰男 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Petrochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Petrochemicals Co Ltd filed Critical Nippon Petrochemicals Co Ltd
Priority to JP24783298A priority Critical patent/JP4119538B2/en
Priority to US09/529,510 priority patent/US6380450B1/en
Priority to PCT/JP1999/004431 priority patent/WO2000010949A1/en
Priority to EP99938506A priority patent/EP1026137A4/en
Publication of JP2000063299A publication Critical patent/JP2000063299A/en
Application granted granted Critical
Publication of JP4119538B2 publication Critical patent/JP4119538B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/08One of the condensed rings being a six-membered aromatic ring the other ring being five-membered, e.g. indane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To economically synthesize indene from an inexpensive raw material with a simple reaction by dehydrogenating tetrahydroindene in the presence of a solid catalyst containing nickel and molybdenum oxide in gaseous phase at a high temperature. SOLUTION: Indene is produced by dehydrogenating tetrahydroindene in the presence of a solid catalyst containing nickel and molybdenum oxide (e.g. a catalyst composed of nickel and molybdenum oxide, for example nickel oxide and molybdenum oxide supported on a carrier such as alumina) at >=100 deg.C, preferably 300-600 deg.C more preferably 420-530 deg.C in gaseous phase under a pressure of normal pressure or below to 10 kg/cm2, preferably normal pressure or below to 2 kg/cm2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、透明で耐熱性の高
い樹脂原料、あるいはポリオレフィン重合用のシングル
サイト触媒の配位子の原料として工業的に有用なインデ
ンの新規な製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a novel method for industrially producing indene which is industrially useful as a transparent and highly heat-resistant resin material or a ligand material of a single-site catalyst for polyolefin polymerization. .

【0002】[0002]

【従来の技術】従来、各種のインデンの製造方法が提案
されている。コールタール留分からインデンを回収する
方法もあるが、コールタール留分にはベンゾニトリルあ
るいはベンゾフラン等の数多くの不純物が含まれてお
り、蒸留による分離回収方法では、沸点の近似したベン
ゾニトリルを分離して高純度のインデンを得ることは困
難である。コールタール留分中のベンゾニトリルを反応
させて分離することも提案されているが、工程数が増え
るため経済的には好ましくない。また、テトラヒドロイ
ンデン(以下「THI」と略す)あるいは置換THIを
コバルト・モリブデン酸化物触媒の存在下で脱水素して
インデンあるいは置換インデンを得る方法(米国特許
4,291,181号)も提案されている。この方法は純
度の高いインデン等が得られる利点があり、THIの転
化率は高いが、コバルト・モリブデン酸化物触媒では収
率が低く、更に触媒の活性低下が著しいという欠点があ
る。
2. Description of the Related Art Conventionally, various indene manufacturing methods have been proposed. There is also a method of recovering indene from the coal tar fraction, but the coal tar fraction contains many impurities such as benzonitrile and benzofuran, and the separation and recovery method by distillation separates benzonitrile having a similar boiling point. It is difficult to obtain high-purity indene. Although it has been proposed to separate the benzonitrile in the coal tar fraction by reaction, it is economically not preferable because the number of steps increases. Also proposed is a method of dehydrogenating tetrahydroindene (hereinafter abbreviated as "THI") or substituted THI in the presence of a cobalt molybdenum oxide catalyst to obtain indene or substituted indene (US Pat. No. 4,291,181). ing. This method has an advantage that indene or the like with high purity can be obtained, and the THI conversion is high, but the cobalt-molybdenum oxide catalyst has a drawback that the yield is low and the activity of the catalyst is significantly lowered.

【0003】[0003]

【発明が開発しようとする課題】本発明は、上記のよう
な事情に鑑み、安価な原料から簡単な反応でインデンを
経済的に合成する方法を提供することを目的とする。
In view of the above circumstances, it is an object of the present invention to provide a method for economically synthesizing indene from an inexpensive raw material by a simple reaction.

【0004】[0004]

【課題を解決するための手段】本発明の第1は、テトラ
ヒドロインデンを、ニッケルおよびモリブデンの酸化物
を含む固体触媒の存在下に100℃以上の温度において
気相で脱水素することからなるインデンの製造法に関す
るものである。本発明の第2は、本発明の第1におい
て、脱水素を420℃から530℃の温度範囲で行うイ
ンデンの製造法に関する。本発明の第3は、本発明の第
1において、脱水素を常圧以下から10kg/cm2の圧力範
囲で行うインデンの製造法に関する。本発明の方法は、
THIの転化率が高く、またインデンの収率も高く、更
に触媒の活性低下が少ないという特徴を有する。以下、
本発明を更に説明する。
The first aspect of the present invention is the indene dehydrogenation of tetrahydroindene in the gas phase in the presence of a solid catalyst containing oxides of nickel and molybdenum at temperatures above 100 ° C. Of the manufacturing method of. A second aspect of the present invention relates to the method for producing indene according to the first aspect of the present invention, in which dehydrogenation is performed in the temperature range of 420 ° C to 530 ° C. A third aspect of the present invention relates to the method for producing indene according to the first aspect of the present invention, in which dehydrogenation is performed at a pressure range from atmospheric pressure to 10 kg / cm 2 . The method of the present invention is
It has the characteristics that the conversion rate of THI is high, the yield of indene is high, and the activity of the catalyst is not significantly lowered. Less than,
The present invention will be further described.

【0005】本発明に用いるTHIは、いずれの製造方
法によるものでもよい。例えば1,3−ブタジエン(以
下「ブタジエン」と略す)とジシクロペンタジエン(以
下「DCPD」と略す)あるいはシクロペンタジエン
(以下「CPD」と略す)とのディールス−アルダー反
応で合成することができる。このディールス−アルダー
反応は、1モルのブタジエンと1/2モルのDCPDあ
るいは1モルのCPDを加熱することより進行する。反
応は酸等の触媒を用いて促進することができるが、通常
は加熱だけで十分である。反応温度は70〜270℃で
ある。回収した留分にはTHIの他に、DCPD、メチ
ルテトラヒドロインデン、あるいはノルボルネン型オレ
フィンであるエチリデンノルボルネンやDCPDとCP
Dとのディールス−アルダー付加物等の、THIより沸
点の高い不純物を含むことがある。本発明の方法におい
ては、原料とするTHIの純度は50%以上が好まし
く、精留等により純度90%以上にすることが更に好ま
しい。
The THI used in the present invention may be produced by any manufacturing method. For example, it can be synthesized by the Diels-Alder reaction of 1,3-butadiene (hereinafter abbreviated as “butadiene”) and dicyclopentadiene (hereinafter abbreviated as “DCPD”) or cyclopentadiene (hereinafter abbreviated as “CPD”). This Diels-Alder reaction proceeds by heating 1 mol of butadiene and 1/2 mol of DCPD or 1 mol of CPD. The reaction can be promoted by using a catalyst such as an acid, but heating is usually sufficient. The reaction temperature is 70 to 270 ° C. In addition to THI, the collected fractions include DCPD, methyltetrahydroindene, or norbornene type olefin such as ethylidene norbornene, DCPD and CP.
Impurities having a boiling point higher than THI, such as a Diels-Alder adduct with D, may be contained. In the method of the present invention, the purity of THI as a raw material is preferably 50% or more, and more preferably 90% or more by rectification or the like.

【0006】また、ビニルノルボルネンは、100℃程
度に加熱することにより、ニッケルおよびモリブデンの
酸化物を含む固体触媒の存在下において容易にTHIに
異性化させることができる。したがって、ビニルノルボ
ルネンも本発明のインデン製造のための原料として用い
ることができる。なお、ビニルノルボルネンは、ブタジ
エンとDCPDあるいはCPDとのディールス−アルダ
ー反応により合成することができる。すなわち、ビニル
ノルボルネンを別途に一旦THIに異性化させた後、こ
れを原料として用いることもできるし、また本発明の反
応下においてTHIに異性化する限り、あらかじめ異性
化させることなくビニルノルボルネンを直接脱水素の反
応系内に供給し、これを原料とすることもできる。した
がって、本発明の方法においてはTHIとビニルノルボ
ルネンの混合物を原料とすることもできる。
Further, vinyl norbornene can be easily isomerized to THI in the presence of a solid catalyst containing oxides of nickel and molybdenum by heating to about 100 ° C. Therefore, vinyl norbornene can also be used as a raw material for producing the indene of the present invention. Vinyl norbornene can be synthesized by the Diels-Alder reaction between butadiene and DCPD or CPD. That is, it is possible to separately isomerize vinyl norbornene to THI and then use this as a raw material. Further, as long as it is isomerized to THI in the reaction of the present invention, vinyl norbornene is directly isomerized without being previously isomerized. It may be supplied into the dehydrogenation reaction system and used as a raw material. Therefore, in the method of the present invention, a mixture of THI and vinyl norbornene can be used as a raw material.

【0007】脱水素のため本発明において用いる固体触
媒は、ニッケルおよびモリブデンの酸化物からなるもの
である。例えば、酸化ニッケルおよび酸化モリブデンを
適宜の担体に担持させた固体触媒を用いることができ
る。触媒担体はアルミナ、シリカ、シリカアルミナ等か
ら適宜に選択できるが、通常はアルミナ担体を用いるこ
とが好ましい。担持量は、酸化ニッケルとして0.5〜
10重量%および酸化モリブデンとして3〜20重量%
の範囲であり、更に好ましくは酸化ニッケル1〜5重量
%および酸化モリブデン5〜16重量%の範囲である。
例えば、炭化水素の水添や脱硫に用いられる市販の酸化
ニッケルおよび酸化モリブデンを含むアルミナ担体触媒
の中から適宜に選択して用いることができる。触媒は、
通常、硫化処理あるいは還元処理等の前処理を行う必要
はなく、そのまま使用することができる。しかしなが
ら、必要に応じ適宜にこれらの前処理を行ってもよい。
The solid catalyst used in the present invention for dehydrogenation consists of nickel and molybdenum oxides. For example, a solid catalyst in which nickel oxide and molybdenum oxide are supported on an appropriate carrier can be used. The catalyst carrier can be appropriately selected from alumina, silica, silica-alumina and the like, but it is usually preferable to use an alumina carrier. The supported amount is 0.5 to 0.5 as nickel oxide.
10% by weight and 3 to 20% by weight as molybdenum oxide
And more preferably 1 to 5% by weight of nickel oxide and 5 to 16% by weight of molybdenum oxide.
For example, it can be appropriately selected and used from commercially available alumina carrier catalysts containing nickel oxide and molybdenum oxide used for hydrogenation and desulfurization of hydrocarbons. The catalyst is
Usually, it is not necessary to perform a pretreatment such as a sulfurating treatment or a reducing treatment, and the product can be used as it is. However, these pretreatments may be appropriately performed as needed.

【0008】脱水素の反応温度は100℃以上、好まし
くは300〜600℃、更に好ましくは420〜530
℃の範囲から、触媒と原料の接触時間、原料と希釈剤の
希釈モル比などに応じて適宜に選択することができる。
反応温度が100℃より低いと、目的とする脱水素の反
応速度が小さいため経済的に好ましくない。また、反応
温度が高くなり過ぎると、脱水素反応のみならずTHI
の逆ディールス−アルダー反応によるブタジエンやCP
Dへの分解反応が急速に高まり、選択率が著しく低下す
るばかりでなく、触媒の活性低下が著しく、したがって
工業的な生産には適さない。
The reaction temperature for dehydrogenation is 100 ° C. or higher, preferably 300 to 600 ° C., more preferably 420 to 530.
It can be appropriately selected from the range of ° C according to the contact time between the catalyst and the raw material, the dilution molar ratio of the raw material and the diluent, and the like.
When the reaction temperature is lower than 100 ° C, the desired dehydrogenation reaction rate is low, which is economically unfavorable. If the reaction temperature becomes too high, not only the dehydrogenation reaction but also the THI
Butadiene and CP by reverse Diels-Alder reaction of
Not only is the decomposition reaction into D rapidly increased, the selectivity is significantly reduced, but also the activity of the catalyst is significantly reduced, and therefore it is not suitable for industrial production.

【0009】ここで、反応系内で発生した水素を除去し
て反応を促進する目的で、ベンゼン、テトラリン、ニト
ロベンゼン、桂皮酸、ベンゾフェノンなどの水素受容体
を適宜の割合で反応系に添加する。また、二酸化炭素あ
るいは少量の酸素を反応流中に通じることにより、脱水
素反応で生じた水素を除くこともできる。
Here, for the purpose of removing hydrogen generated in the reaction system and promoting the reaction, hydrogen acceptors such as benzene, tetralin, nitrobenzene, cinnamic acid, and benzophenone are added to the reaction system at an appropriate ratio. Further, hydrogen generated by the dehydrogenation reaction can be removed by passing carbon dioxide or a small amount of oxygen into the reaction stream.

【0010】本発明における反応により生成したインデ
ンは重合性が高いため、反応槽内をインデン濃度の高い
状態で高温に保持すると、その一部が重合あるいは二量
化して損失となる。これを避けるためには、不活性ガ
ス、例えば窒素、ヘリウム、アルゴン、スチーム等を反
応流に同伴させて原料濃度を希釈することが有効であ
る。経済性および取扱いの容易さからスチームを使用す
ることが好ましい。不活性ガスによる希釈倍率に特に制
限はないが、原料THIに対するモル比が1以上あれば
十分である。更に好ましくは20以上である。希釈倍率
の上限は特に制限されないが、過大に希釈することは不
経済である。通常は1000以下とする。
Since the indene produced by the reaction in the present invention has a high polymerizability, if the reaction vessel is kept at a high temperature with a high indene concentration, a part of it is polymerized or dimerized, resulting in a loss. In order to avoid this, it is effective to dilute the raw material concentration by entraining an inert gas such as nitrogen, helium, argon or steam in the reaction stream. It is preferable to use steam because of economy and ease of handling. The dilution ratio with an inert gas is not particularly limited, but it is sufficient if the molar ratio to the raw material THI is 1 or more. More preferably, it is 20 or more. The upper limit of the dilution ratio is not particularly limited, but excessive dilution is uneconomical. Usually, it is 1000 or less.

【0011】反応形式は固定床、移動床、流動床のいず
れでもよい。原料THIは気相で触媒と接触しなければ
ならない。すなわち、反応を液相で行うと、原料あるい
は生成物の重合や二量化により収率が低下するほかに、
触媒表面におけるカーボンの析出により触媒寿命が著し
く低下する。したがって、反応温度、圧力等は気相を維
持し得るように選択する。
The reaction system may be a fixed bed, a moving bed or a fluidized bed. The raw THI must contact the catalyst in the gas phase. That is, when the reaction is carried out in the liquid phase, the yield is decreased due to the polymerization or dimerization of the raw materials or products, and
Precipitation of carbon on the surface of the catalyst significantly shortens the catalyst life. Therefore, the reaction temperature, pressure, etc. are selected so that the gas phase can be maintained.

【0012】反応圧力は原料あるいは生成物が気化し得
る範囲であれば特に制限はないが、通常は常圧以下から
10kg/cm2、好ましくは常圧以下から2kg/cm2の範囲で
ある。
The reaction pressure is not particularly limited as long as it can vaporize the raw material or the product, but is usually from normal pressure to 10 kg / cm 2 , preferably from normal pressure to 2 kg / cm 2 .

【0013】原料と触媒との接触時間は0.005〜2
0秒、好ましくは0.01〜10秒、更に好ましくは0.
1〜3秒の範囲である。接触時間が0.005秒より短い
と反応率が低いため好ましくない。また、20秒より長
いと、生成したインデンが重合し選択率が低下するばか
りでなく、重合生成物により反応器およびその下流の熱
交換器が閉塞することがある。反応原料の液空間速度
(LHSV)は、0.01〜10hr-1の範囲から選択す
ることができる。
The contact time between the raw material and the catalyst is 0.005-2.
0 seconds, preferably 0.01 to 10 seconds, more preferably 0.0.
It is in the range of 1 to 3 seconds. If the contact time is shorter than 0.005 seconds, the reaction rate is low, which is not preferable. If it is longer than 20 seconds, the produced indene is polymerized to lower the selectivity, and the polymerization product may block the reactor and the heat exchanger downstream thereof. The liquid hourly space velocity (LHSV) of the reaction raw material can be selected from the range of 0.01 to 10 hr −1 .

【0014】本発明における反応では、触媒を長時間使
用するとコーキング等により次第に反応活性が低下する
ことがあるが、例えば500℃程度の高温で空気等によ
りデコーキングを行うことにより、初期の反応活性を回
復することができる。
In the reaction of the present invention, when the catalyst is used for a long period of time, the reaction activity may gradually decrease due to coking or the like. However, by performing decoking with air or the like at a high temperature of about 500 ° C., the initial reaction activity can be reduced. Can be recovered.

【0015】反応槽から流出したインデンを含むガスに
は、インデンおよびび未反応THIの他、THIから水
素1分子が脱水素されたインダンが多量に含まれ、その
他ブタジエン、CPD、ベンゼン、トルエン、キシレ
ン、DCPD等も僅かに含まれる。反応槽を出たインデ
ンを含むガスは急速に冷却液化される。必要に応じ、上
記ガスを炭化水素等の吸収液に通して回収してもよい。
The gas containing indene flowing out from the reaction tank contains indene, unreacted THI, and a large amount of indane obtained by dehydrogenating one molecule of hydrogen from THI, and other butadiene, CPD, benzene, toluene, A small amount of xylene, DCPD, etc. is also included. The gas containing indene that has left the reaction tank is rapidly cooled and liquefied. If necessary, the above gas may be collected by passing through an absorbing liquid such as hydrocarbon.

【0016】希釈剤にスチームを用いた場合には、水と
油分を分離した後、油分について必要に応じ蒸留を行
い、高純度の目的生成物を回収することができる。イン
デンは熱的に不安定なので、減圧蒸留等の高温を用いな
い方法で回収しなければならない。例えば、減圧蒸留に
より回収する場合は、蒸留釜の温度が140℃以下にな
るような減圧度で蒸留を行うことにより、インデンの熱
重合による損失を低減することができる。また、反応液
にBHTあるいはTBC等の重合防止剤を加えて蒸留す
ることにより重合による損失を低減することもできる。
When steam is used as the diluent, the water and oil components are separated, and then the oil components are distilled, if necessary, to recover a high-purity target product. Since indene is thermally unstable, it must be recovered by a method that does not use high temperature, such as vacuum distillation. For example, in the case of recovery by vacuum distillation, the loss due to thermal polymerization of indene can be reduced by carrying out distillation at a vacuum degree such that the temperature of the distillation pot becomes 140 ° C. or lower. Further, the loss due to polymerization can be reduced by adding a polymerization inhibitor such as BHT or TBC to the reaction solution and distilling it.

【0017】[0017]

【発明の実施の形態】実施例により本発明を更に説明す
る。以下に記載の「%」は重量%である。
The present invention will be further described by way of examples. "%" Described below is% by weight.

【実施例】<実施例1>酸化ニッケル/酸化モリブデン
触媒(商品名:CDS−DM5CT、触媒化成工業(株)
製)の粒度を16〜20メッシュに調整し、その25m
lを内径12mm×長さ1mのステンレス鋼管に充填し
た。THIの流量を22.3g/hr、水の流量を72ml/hr
として、予熱管を経由して反応温度500℃および常
圧下で触媒層に通した。触媒との接触時間は0.66秒
である。反応ガスを常温まで冷却し、ガスおよび水を分
離した後、有機層の重量を計測し、ガスクロマトグラフ
ィー(GC)によりインデン、THI、ブタジエンおよ
びCPD等の濃度を分析した。通油開始後1、2、3、
5、6および24時間後の流出油の分析結果を表1に示
す。
[Examples] <Example 1> Nickel oxide / molybdenum oxide catalyst (trade name: CDS-DM5CT, Catalyst Kasei Kogyo Co., Ltd.)
25m
1 was filled in a stainless steel tube having an inner diameter of 12 mm and a length of 1 m. THI flow rate 22.3g / hr, water flow rate 72ml / hr
As the above, the catalyst layer was passed through the preheating tube at a reaction temperature of 500 ° C. and normal pressure. The contact time with the catalyst is 0.66 seconds. The reaction gas was cooled to room temperature, the gas and water were separated, the weight of the organic layer was measured, and the concentrations of indene, THI, butadiene, CPD and the like were analyzed by gas chromatography (GC). After the start of oiling 1, 2, 3,
Table 1 shows the analysis results of the spilled oil after 5, 6 and 24 hours.

【0018】得られた有機層をヘリパックを充填した蒸
留塔で減圧蒸留を行い、10torrの減圧下で沸点60.
4〜62.5℃の留分を得た。GC分析の結果、この留
分にはインデン99.1%のほかにインダン0.9%が含
まれていた。
The organic layer thus obtained was subjected to vacuum distillation in a distillation column packed with a helipack, and the boiling point was 60.60 under a reduced pressure of 10 torr.
A distillate of 4 to 62.5 ° C was obtained. As a result of GC analysis, this fraction contained 0.9% of indane in addition to 99.1% of indene.

【0019】<実施例2>反応温度を480℃、および
水の流量を36g/hr とした以外は、実施例1と同様に
反応を行い、運転開始から2時間後の試料について分析
を行った。分析結果を表1に示す。
Example 2 The reaction was carried out in the same manner as in Example 1 except that the reaction temperature was 480 ° C. and the flow rate of water was 36 g / hr, and samples were analyzed 2 hours after the start of operation. . The analysis results are shown in Table 1.

【0020】<比較例1>触媒として酸化コバルト/酸
化モリブデン触媒(商品名:G−51B、日産ガードラ
ー触媒(株)製)を用いる以外は実施例1と同様に反応を
行った。通油開始後1、2、3、4、5および6時間後
の分析結果を表1に示す。
Comparative Example 1 A reaction was carried out in the same manner as in Example 1 except that a cobalt oxide / molybdenum oxide catalyst (trade name: G-51B, manufactured by Nissan Gardler Catalyst Co., Ltd.) was used as the catalyst. Table 1 shows the analysis results 1, 2, 3, 4, 5 and 6 hours after the start of oil passage.

【0021】<比較例2、3>反応温度をそれぞれ55
0℃、400℃とする以外は実施例1と同様に反応を行
い、運転開始から2時間後の試料について分析を行っ
た。分析結果を表1に示す。
<Comparative Examples 2 and 3> Reaction temperatures of 55
The reaction was performed in the same manner as in Example 1 except that the temperature was set to 0 ° C. and 400 ° C., and the sample 2 hours after the start of operation was analyzed. The analysis results are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【発明の効果】本発明の方法によれば、透明で耐熱性の
高い樹脂原料、あるいはポリオレフィン重合用のシング
ルサイト触媒の配位子の原料として有用なインデンを得
ることができ、安価な原料から簡単な反応工程により高
純度のインデンを製造し得る点が特に有利である。
According to the method of the present invention, indene useful as a transparent and highly heat-resistant resin raw material or a raw material for a ligand of a single-site catalyst for polyolefin polymerization can be obtained. It is particularly advantageous that highly pure indene can be produced by a simple reaction process.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 テトラヒドロインデンを、ニッケルおよ
びモリブデンの酸化物を含む固体触媒の存在下に100
℃以上の温度において気相で脱水素することからなるイ
ンデンの製造法。
1. Tetrahydroindene at 100 in the presence of a solid catalyst containing oxides of nickel and molybdenum.
A method for producing indene, which comprises dehydrogenating in a gas phase at a temperature of ℃ or higher.
【請求項2】 前記脱水素を420℃から530℃の温
度範囲で行う請求項1に記載のインデンの製造法。
2. The method for producing indene according to claim 1, wherein the dehydrogenation is performed in a temperature range of 420 ° C. to 530 ° C.
【請求項3】 前記脱水素を常圧以下から10kg/cm2
圧力範囲で行う請求項1に記載のインデンの製造法。
3. The method for producing indene according to claim 1, wherein the dehydrogenation is carried out in a pressure range from atmospheric pressure to 10 kg / cm 2 .
JP24783298A 1998-08-18 1998-08-18 Inden production method Expired - Fee Related JP4119538B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24783298A JP4119538B2 (en) 1998-08-18 1998-08-18 Inden production method
US09/529,510 US6380450B1 (en) 1998-08-18 1999-08-18 Process for producing indene
PCT/JP1999/004431 WO2000010949A1 (en) 1998-08-18 1999-08-18 Process for producing indene
EP99938506A EP1026137A4 (en) 1998-08-18 1999-08-18 Process for producing indene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24783298A JP4119538B2 (en) 1998-08-18 1998-08-18 Inden production method

Publications (2)

Publication Number Publication Date
JP2000063299A true JP2000063299A (en) 2000-02-29
JP4119538B2 JP4119538B2 (en) 2008-07-16

Family

ID=17169349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24783298A Expired - Fee Related JP4119538B2 (en) 1998-08-18 1998-08-18 Inden production method

Country Status (1)

Country Link
JP (1) JP4119538B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081889A (en) * 2001-09-11 2003-03-19 Nippon Petrochemicals Co Ltd METHOD FOR PRODUCING 1,4-METHANO-1,4,4a,9a- TETRAHYDROFLUORENE
JP2013133293A (en) * 2011-12-26 2013-07-08 Waseda Univ Method for producing indane and/or indene
WO2019176248A1 (en) 2018-03-13 2019-09-19 Jxtgエネルギー株式会社 Method for producing indene
WO2019208281A1 (en) 2018-04-27 2019-10-31 Jxtgエネルギー株式会社 Method for producing indene
WO2020105711A1 (en) * 2018-11-22 2020-05-28 Jxtgエネルギー株式会社 Indene composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003081889A (en) * 2001-09-11 2003-03-19 Nippon Petrochemicals Co Ltd METHOD FOR PRODUCING 1,4-METHANO-1,4,4a,9a- TETRAHYDROFLUORENE
JP2013133293A (en) * 2011-12-26 2013-07-08 Waseda Univ Method for producing indane and/or indene
WO2019176248A1 (en) 2018-03-13 2019-09-19 Jxtgエネルギー株式会社 Method for producing indene
US11117849B2 (en) 2018-03-13 2021-09-14 Eneos Corporation Method for producing indene
WO2019208281A1 (en) 2018-04-27 2019-10-31 Jxtgエネルギー株式会社 Method for producing indene
US11286219B2 (en) 2018-04-27 2022-03-29 Eneos Corporation Method for producing indene
WO2020105711A1 (en) * 2018-11-22 2020-05-28 Jxtgエネルギー株式会社 Indene composition
JP2020083810A (en) * 2018-11-22 2020-06-04 Jxtgエネルギー株式会社 Indene composition
CN113039171A (en) * 2018-11-22 2021-06-25 引能仕株式会社 Indene composition
US11377405B2 (en) 2018-11-22 2022-07-05 Eneos Corporation Indene composition
JP7278060B2 (en) 2018-11-22 2023-05-19 Eneos株式会社 indene composition

Also Published As

Publication number Publication date
JP4119538B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
US3965206A (en) Production of stilbene and styrene
TWI324591B (en) Preparation of butadiene from n-butane
NO171632B (en) PROCEDURE FOR SELECTIVE PREPARATION OF PARAFFINIC HYDROCARBONS
US3692859A (en) Hydrogenation of oxidative dehydrogenation by-product
US3671603A (en) Butene recovery
WO2000029358A1 (en) Use of catalytic distillation to produce cyclopentane or cyclopentene
JP4119538B2 (en) Inden production method
JPH02290831A (en) Production of alkyl methacrylate
JP4159664B2 (en) Inden production method
US6380450B1 (en) Process for producing indene
JP2011098923A (en) Method for producing propylene
JPH0133455B2 (en)
EP0002048B1 (en) Process for the preparation of 2,3- dihydrodicyclopentadiene from dicyclopentadiene and cyclopentene
EP2895447A1 (en) Method for the manufacture of aromatic hydrocarbons
JP2001220359A (en) Method for producing indane
JP2982845B2 (en) Method for producing dimethylnaphthalene
JP2001181217A (en) Dicyclopentadiene and method for purifying the same
US7902405B2 (en) Process for production of 2,6-dimethyl-1-naphthaldehyde
JPH0899911A (en) Production of cyclopentadienes
RU2126783C1 (en) Dimethylnaphthalene production process
JP2005298394A (en) Method for producing 2-butene
Lindner et al. Recovery of Isoprene from a C5-Hydrocarbon Mixture []
JP3761943B2 (en) Method for producing cyclopentadiene
EP0043631B1 (en) Process for the preparation of a 6-alkyl-valerolactone
JP2002302460A (en) Method for producing exo-tetrahydrodicyclopentadiene and catalyst for isomerization reaction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees