JP2005298394A - Method for producing 2-butene - Google Patents

Method for producing 2-butene Download PDF

Info

Publication number
JP2005298394A
JP2005298394A JP2004115799A JP2004115799A JP2005298394A JP 2005298394 A JP2005298394 A JP 2005298394A JP 2004115799 A JP2004115799 A JP 2004115799A JP 2004115799 A JP2004115799 A JP 2004115799A JP 2005298394 A JP2005298394 A JP 2005298394A
Authority
JP
Japan
Prior art keywords
butene
reaction
catalyst
hydrogen
isomerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004115799A
Other languages
Japanese (ja)
Other versions
JP4523791B2 (en
Inventor
Shinji Miyamoto
真二 宮本
Takashi Nakagawa
貴史 中川
Naoya Kono
直弥 河野
Hideki Sato
秀樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2004115799A priority Critical patent/JP4523791B2/en
Publication of JP2005298394A publication Critical patent/JP2005298394A/en
Application granted granted Critical
Publication of JP4523791B2 publication Critical patent/JP4523791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably and efficiently produce high-purity 2-butene used as a raw material for various chemicals in high yield by isomerizing 1-butene. <P>SOLUTION: An n-butene-containing hydrocarbon containing the 1-butene is brought into contact with a noble metal-containing catalyst in the presence of hydrogen to isomerize the 1-butene into the 2-butene. In the process, the hydrogen is fed in an amount of 0.001-1 mol% based on the n-butene to carry out the reaction in the vapor phase. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は2−ブテンを製造する方法に関する。さらに詳しくは、本発明は、1−ブテンを含むn−ブテン含有炭化水素、好ましくはC4炭化水素留分を貴金属含有触媒に接触させ、その中の1−ブテンを異性化して2−ブテンを製造するに際し、該触媒に硫黄処理などの特殊な処理を施すことなく、1−ブテンを効果的に異性化し、2−ブテンを高収率で安定して製造する方法に関するものである。   The present invention relates to a process for producing 2-butene. More specifically, the present invention provides n-butene-containing hydrocarbons containing 1-butene, preferably a C4 hydrocarbon fraction, in contact with a noble metal-containing catalyst, and isomerizing 1-butene therein to produce 2-butene. In this case, the present invention relates to a method for effectively isomerizing 1-butene and stably producing 2-butene in a high yield without subjecting the catalyst to special treatment such as sulfur treatment.

従来、1−ブテン含有C4炭化水素留分は、たとえば石油留分のクラッキングなどにより製造されている。該C4炭化水素留分中の1−ブテンを異性化して得られる2−ブテンは、各種化学品の原料として有用な化合物である。
その主なものとして、2−ブテンとエチレンの不均化によるプロピレンの製造や、2−ブテンの水和による2−ブタノールの製造、あるいは自動車用トロイダル式CVT用のトラクションオイル基油の中間体である2,3−ジメチルビシクロ[2.2.1]ヘプト−2−エンの製造等が挙げられる(例えば、特許文献1〜2を参照)。
これら製造において、多くの場合2−ブテンはリサイクル使用されるが、2−ブテン中にn−ブタンが混入するとリサイクルにより濃縮し反応性を低下あるいはブローによる2−ブテン原単位の低下を招くため、高純度の2−ブテンが求められている。
Conventionally, 1-butene-containing C4 hydrocarbon fractions are produced, for example, by cracking petroleum fractions. 2-butene obtained by isomerizing 1-butene in the C4 hydrocarbon fraction is a useful compound as a raw material for various chemicals.
Mainly, it is an intermediate for the production of propylene by disproportionation of 2-butene and ethylene, the production of 2-butanol by hydration of 2-butene, or the traction oil base oil for toroidal CVT for automobiles. Examples include production of 2,3-dimethylbicyclo [2.2.1] hept-2-ene (see, for example, Patent Documents 1 and 2).
In these productions, 2-butene is often recycled, but when n-butane is mixed in 2-butene, it concentrates by recycling and lowers the reactivity or lowers the 2-butene basic unit by blowing. There is a need for high purity 2-butene.

2−ブテンを製造する方法としては、1−ブテンを異性化して2−ブテンとし、蒸留精製する方法が公知である。そして、1−ブテンを異性化して2−ブテンを得る反応としては、酸性触媒、塩基性触媒、固体酸触媒、固体塩基触媒、水素化触媒等を用いる方法が多く知られている。中でも水素化触媒を用いる方法は重質化等の副反応が少なく不純物の混入が少ないため広く用いられている。   As a method for producing 2-butene, a method in which 1-butene is isomerized to 2-butene and purified by distillation is known. As a reaction for isomerizing 1-butene to obtain 2-butene, many methods using an acidic catalyst, a basic catalyst, a solid acid catalyst, a solid base catalyst, a hydrogenation catalyst, and the like are known. Among them, the method using a hydrogenation catalyst is widely used because there are few side reactions such as heaviness and few impurities are mixed.

この水素化触媒により異性化を行う方法では、触媒の活性発現のために水素の供給が不可欠であるが、同時にブテンの水素化によるノルマルブタンの副生を伴う。ノルマルブタンは2−ブテンとの分離が困難であり、2−ブテンの純度を下げるという欠点を有する。
水素化に対する2−ブテンへの異性化の選択性を上げるため、水素化触媒を硫黄化合物で被毒する方法が知られている。 例えば、硫黄処理したPd/アルミナ等の水素化触媒に、1−ブテン含有炭化水素を、水素の存在下に接触させて1−ブテンを2−ブテンに異性化し、2−ブテンを製造する方法が知られている(例えば、特許文献3〜4を参照)。
しかしながら、この場合、パラジウム含有触媒を用いる毎にこの硫黄処理が必要であり、相当に煩雑である。また、触媒コストが上がり、触媒被毒処理の際に有害な硫黄化合物を取り扱う等の問題がある。
また、これらの異性化に際しては、硫黄化合物を水素等に希釈して硫黄処理されるが、異性化は一般に液相反応で行われており、異性化反応が遅くなるために相対的に2−ブテンの選択率が低下して収率が低下することや、相当量の水素を高圧で使用し、硫黄含有触媒を加圧下で扱うことなどから、その経済的負担が大きいことなどが課題として挙げられる。
In this isomerization method using a hydrogenation catalyst, supply of hydrogen is indispensable for the activity of the catalyst, but at the same time, it involves normal by-product of butane hydrogenation. Normal butane is difficult to separate from 2-butene and has the disadvantage of reducing the purity of 2-butene.
In order to increase the selectivity of isomerization to 2-butene over hydrogenation, a method of poisoning a hydrogenation catalyst with a sulfur compound is known. For example, a process for producing 2-butene by contacting a hydrogenation catalyst such as sulfur-treated Pd / alumina with a 1-butene-containing hydrocarbon in the presence of hydrogen to isomerize 1-butene to 2-butene. It is known (see, for example, Patent Documents 3 to 4).
However, in this case, every time the palladium-containing catalyst is used, this sulfur treatment is necessary, which is considerably complicated. In addition, the catalyst cost increases, and there are problems such as handling harmful sulfur compounds during catalyst poisoning treatment.
In the isomerization, the sulfur compound is diluted with hydrogen or the like and treated with sulfur. However, the isomerization is generally performed by a liquid phase reaction, and the isomerization reaction is slowed. Issues such as reduced butene selectivity resulting in lower yields, and the use of a substantial amount of hydrogen at high pressures and the handling of sulfur-containing catalysts under pressure, resulting in a large economic burden. It is done.

特公平7−103387号公報Japanese Examined Patent Publication No. 7-103387 特開2000−17280号公報JP 2000-17280 A 特公昭47−48362号公報Japanese Patent Publication No. 47-48362 特公昭60−54934号公報Japanese Patent Publication No. 60-54934

本発明は、以上のような状況下で、各種化学品の原料として用いられる高純度の2−ブテンを、1−ブテンの異性化により、高収率で、安定して、効率良く製造することを目的とするものである。   Under the circumstances as described above, the present invention is capable of producing high-purity 2-butene used as a raw material for various chemical products in a high yield, stably and efficiently by isomerization of 1-butene. It is intended.

本発明者は、前記目的を達成するために鋭意研究を重ねた結果、1−ブテンを含むn−ブテン含有炭化水素から2−ブテンを製造する方法において,貴金属含有触媒に予め硫黄被毒等の特殊な処理を施すことなく、1-ブテンから2-ブテンへの異性化を、気相反応で、水素量を厳密に制御しつつ行うことで、n−ブタンの副生を抑制され、高純度の2-ブテンを、高収率で安定して、効率良く製造することができることを見出し、本発明に到達した。   As a result of intensive studies to achieve the above object, the inventor of the present invention, in a method for producing 2-butene from an n-butene-containing hydrocarbon containing 1-butene, previously prepared a precious metal-containing catalyst such as sulfur poisoning. By performing the isomerization from 1-butene to 2-butene by gas phase reaction while strictly controlling the amount of hydrogen without any special treatment, the by-product of n-butane is suppressed and high purity is achieved. It was found that 2-butene can be stably and efficiently produced in a high yield, and the present invention has been achieved.

すなわち、本発明は、以下の2−ブテン製造方法を提供するものである。
(1)、 1−ブテンを含むn−ブテン含有炭化水素を、水素の存在下に貴金属含有触媒に接触させ、該1−ブテンを2−ブテンに異性化するに際し、水素をn−ブテンに対して、0.001〜1モル%の割合で供給し、気相で反応を行うことを特徴とする2−ブテン製造方法。
(2)、 1−ブテンを含むn−ブテン含有炭化水素源として、C4含有炭化水素留分を用いる(1)の2−ブテン製造方法。
(3)、 異性化の反応温度が−10〜200℃であり、反応圧力が−0.09〜4MPaGである(1)又は(2)の2−ブテン製造方法。
(4)、 貴金属含有触媒が、パラジウムを含有する触媒である(1)〜(3)いずれかの2−ブテン製造方法。
(5)、 貴金属含有触媒が、γ−アルミナ、シリカアルミナ、珪藻土および活性炭から選ばれた少なくとも一種の担体に、パラジウムを0.001〜1質量%担持してなる触媒である(4)の2−ブテン製造方法。
(6)、触媒を予め硫黄処理せずに異性化反応に供する(1)〜(5)いずれかの2−ブテン製造方法。
That is, the present invention provides the following 2-butene production method.
(1) When an n-butene-containing hydrocarbon containing 1-butene is brought into contact with a noble metal-containing catalyst in the presence of hydrogen and the 1-butene is isomerized to 2-butene, hydrogen is converted to n-butene. The 2-butene production method is characterized in that the reaction is carried out in the gas phase by supplying 0.001-1 mol%.
(2) The 2-butene production method according to (1), wherein a C4-containing hydrocarbon fraction is used as the n-butene-containing hydrocarbon source containing 1-butene.
(3) The method for producing 2-butene according to (1) or (2), wherein the reaction temperature of isomerization is −10 to 200 ° C. and the reaction pressure is −0.09 to 4 MPaG.
(4) The 2-butene production method according to any one of (1) to (3), wherein the noble metal-containing catalyst is a catalyst containing palladium.
(5) The noble metal-containing catalyst is a catalyst obtained by supporting 0.001 to 1% by mass of palladium on at least one carrier selected from γ-alumina, silica alumina, diatomaceous earth and activated carbon (2) in (4) -Butene production method.
(6) The 2-butene production method according to any one of (1) to (5), wherein the catalyst is subjected to an isomerization reaction without being subjected to sulfur treatment in advance.

本発明の2−ブテン製造方法によれば、1−ブテンを異性化し生成した2−ブテンを蒸留により精製する際に分離困難なn−ブタンの副生が抑制されるので、高純度の2−ブテンが高収率に製造することができる。
また、貴金属含有触媒に予め硫黄被毒等の特殊な処理を施す必要が無いので、起動時の煩雑な操作が不要となり、触媒コストが低下し、触媒被毒処理の際に有害な硫黄化合物を取り扱う等の問題が解消される。
さらに、水素量を厳密に制御しつつ気相で異性化を行うことから、水素使用量が減少し、n−ブテンの水素化による損失が削減され、高純度の2−ブテンを高収率で安定して製造することができる。
According to the 2-butene production method of the present invention, by-product formation of n-butane which is difficult to separate when the 2-butene produced by isomerizing 1-butene is purified by distillation is suppressed. Butene can be produced in high yield.
In addition, no special treatment such as sulfur poisoning is required for the precious metal-containing catalyst in advance, which eliminates the need for complicated operations at start-up, reduces catalyst costs, and removes harmful sulfur compounds during catalyst poisoning treatment. Problems such as handling are resolved.
Furthermore, since isomerization is carried out in the gas phase while strictly controlling the amount of hydrogen, the amount of hydrogen used is reduced, loss due to hydrogenation of n-butene is reduced, and high-purity 2-butene is produced in a high yield. It can be manufactured stably.

本発明において2−ブテンはtrans−2−ブテンとcis−2−ブテンとを含むものであり、n−ブテンは1−ブテンとこれらの2−ブテンとを含むものである。本発明における原料の1−ブテンを含むn−ブテン含有炭化水素としては、1−ブテン含有C4炭化水素留分が好適に用いられる。
本発明の2−ブテン製造方法におけるフローは特に限定されないが、代表的なフローを図1に示す。 図1において、2−ブテン製造の原料に好ましく用いられる1−ブテン含有C4炭化水素留分は、異性化に用いられる水素と共に異性化反応器に供給され、貴金属含有触媒により1−ブテンから2−ブテンへの異性化反応が行われる。反応生成物は2−ブテン精製塔に送られ、蒸留により1−ブテン成分と2−ブテン成分に分離される。
2−ブテン製造の原料に用いられる1−ブテン含有C4炭化水素留分に含まれる各成分の沸点を表1に示す。
In the present invention, 2-butene contains trans-2-butene and cis-2-butene, and n-butene contains 1-butene and these 2-butenes. As the n-butene-containing hydrocarbon containing 1-butene as a raw material in the present invention, a 1-butene-containing C4 hydrocarbon fraction is preferably used.
The flow in the 2-butene production method of the present invention is not particularly limited, but a typical flow is shown in FIG. In FIG. 1, a 1-butene-containing C4 hydrocarbon fraction preferably used as a raw material for 2-butene production is supplied to an isomerization reactor together with hydrogen used for isomerization, and is converted from 1-butene to 2- Isomerization reaction to butene is carried out. The reaction product is sent to a 2-butene purification tower and separated into a 1-butene component and a 2-butene component by distillation.
Table 1 shows the boiling points of the components contained in the 1-butene-containing C4 hydrocarbon fraction used as a raw material for 2-butene production.

Figure 2005298394
Figure 2005298394

表1から明らかなようにn−ブタンは2−ブテンと沸点が近く蒸留分離が困難であることと、反応においてn−ブタンの生成を抑制する効果を活かすことを考慮すると、原料のC4炭化水素留分中のn−ブタン含有量は、n−ブテンに対して1質量%以下であることが望ましい。
C4炭化水素留分中の他の成分については、イソブタンは、2−ブテンと蒸留分離が容易であるため、含まれていても支障はない(表1参照)。イソブテン、ブタジエン等含まれていても支障はないが、n−ブテンよりも優先的に水素化されて水素を消費するため、その分の水素量の追加が必要となる。 イソブテンおよびブタジエンは、水素化によりそれぞれイソブタンとn−ブテンとなる。
As apparent from Table 1, n-butane has a boiling point close to that of 2-butene and is difficult to separate by distillation, and taking into account the effect of suppressing the formation of n-butane in the reaction, C4 hydrocarbon as a raw material The n-butane content in the fraction is desirably 1% by mass or less based on n-butene.
As for other components in the C4 hydrocarbon fraction, isobutane can be easily separated from 2-butene by distillation, so that even if it is contained, there is no problem (see Table 1). Even if isobutene, butadiene, or the like is contained, there is no problem, but hydrogen is consumed preferentially over n-butene and consumes hydrogen. Therefore, an additional amount of hydrogen is required. Isobutene and butadiene become isobutane and n-butene, respectively, by hydrogenation.

本発明の2−ブテン製造方法の原料に用いられるC4炭化水素留分中には、C2,C3炭化水素留分、あるいはC5よりも高沸点の炭化水素留分については混入していても蒸留生成により除去できるため支障はないが、高沸点留分が混入する場合は反応時に気相となる反応条件を選ぶ必要がある。気相で反応を行うことで、2−ブテンの選択率が高くなる。
C4炭化水素留分中に不純物として含まれる硫黄化合物(メルカプタン類、スルフィド類)については、硫黄分として10質量ppm以下であることが好ましい。10質量ppmを越える場合は、触媒活性の低下を防止するために硫黄分を除去することが好ましく、硫黄分の除去法としてはモレキュラーシーブ13X等を用いる方法が挙げられる。あるいは、触媒の活性低下を見越して触媒量を多くすることで対処することもできる。
In the C4 hydrocarbon fraction used as a raw material for the 2-butene production method of the present invention, a C2, C3 hydrocarbon fraction, or a hydrocarbon fraction having a boiling point higher than C5 is distilled even if it is mixed. However, when high boiling fractions are mixed, it is necessary to select reaction conditions for forming a gas phase during the reaction. By performing the reaction in the gas phase, the selectivity of 2-butene increases.
About sulfur compounds (mercaptans, sulfides) contained as impurities in the C4 hydrocarbon fraction, the sulfur content is preferably 10 mass ppm or less. When it exceeds 10 ppm by mass, it is preferable to remove the sulfur content in order to prevent a decrease in the catalyst activity. Examples of the sulfur content removal method include a method using molecular sieve 13X or the like. Alternatively, it can be coped with by increasing the amount of the catalyst in anticipation of a decrease in the activity of the catalyst.

本発明の2−ブテン製造方法における異性化反応の触媒として貴金属含有触媒が用いられる。この貴金属としては周期表(長周期型)第10,11族金属のパラジウム、金、白金などが挙げられるが、特にパラジウムが好ましい。
本発明の2−ブテン製造方法においては、予め硫黄被毒等の特殊な処理を行っていない貴金属含有触媒を触媒として直接使用することができる。 硫黄被毒処理を行わないことで、有害な硫黄物質を使用する必要がなくなるというメリットがある。
異性化触媒には、パラジウムなどの貴金属は活性化処理を行った単体で使用することもできるが、γ−アルミナ、シリカアルミナ、珪藻土、活性炭等に貴金属を担持した触媒が通常に使用される。1−ブテンから2−ブテンへの反応は非常に速い反応であるので通常金属量は少量でよいことと、固定床反応器等で使用する際に取り扱いが容易であることから、担持触媒が好適に用いられる。
前述のように貴金属の中でもパラジウムが本発明の異性化反応に適しており、取扱い等の面でパラジウム/アルミナが優れている。パラジウムの担持量は、反応速度、選択率等から、担体に対して0.001〜1.0質量%が好ましく、0.01〜0.5質量%が特に好ましい。
A noble metal-containing catalyst is used as a catalyst for the isomerization reaction in the 2-butene production method of the present invention. Examples of the noble metal include palladium, gold, platinum and the like of the periodic table (long-period type) Group 10 and 11 metals, and palladium is particularly preferable.
In the 2-butene production method of the present invention, a noble metal-containing catalyst which has not been subjected to special treatment such as sulfur poisoning can be directly used as a catalyst. By not performing the sulfur poisoning treatment, there is an advantage that it is not necessary to use harmful sulfur substances.
As the isomerization catalyst, a noble metal such as palladium can be used alone, but a catalyst having a noble metal supported on γ-alumina, silica alumina, diatomaceous earth, activated carbon or the like is usually used. Since the reaction from 1-butene to 2-butene is a very fast reaction, the amount of metal is usually small, and it is easy to handle when used in a fixed bed reactor or the like, so a supported catalyst is suitable. Used for.
As described above, among the noble metals, palladium is suitable for the isomerization reaction of the present invention, and palladium / alumina is excellent in terms of handling. The supported amount of palladium is preferably 0.001 to 1.0% by mass, particularly preferably 0.01 to 0.5% by mass, based on the reaction rate, selectivity, and the like.

異性化反応の温度は−10〜200℃が好ましく、0〜150℃が特に好ましい。低温においては水素化反応が遅くなり、n−ブタンの生成量が減少するので、2−ブテンの選択率が高くなる。−10℃以上とすることにより、必要とする反応率が得られ、また、200℃以下とすることにより、1−ブテンと2−ブテンの平衡反応が2−ブテン側に偏るため2−ブテンへの転化率が上がり生産性が向上する。
異性化反応の圧力は−0.09〜4MPaGが好ましく、0〜1.0MPaGが特に好ましい。本発明においては異性化反応が気相で行われる。従って圧力は反応温度を考慮して気相となる条件とすることが必要である。反応器内の状態を液相とすると異性化反応が遅くなり、2−ブテンの選択率が大幅に低下するので、液相となる条件は回避しなければならない。気相では反応圧力を低くすると、水素化反応が遅くなるので2−ブテンの選択率が向上するが、異性化反応の反応率が低下する。異性化反応の圧力は、反応器の仕様や反応後の2−ブテン精製蒸留を考慮して、十分な選択率を得ることができる経済的な条件を選定する。圧力の上限はtrans−2−ブテンの臨界圧力程度である。
The temperature of the isomerization reaction is preferably -10 to 200 ° C, particularly preferably 0 to 150 ° C. At low temperatures, the hydrogenation reaction becomes slow and the amount of n-butane produced decreases, so that the selectivity for 2-butene increases. By setting the temperature to -10 ° C or higher, the required reaction rate can be obtained, and by setting the temperature to 200 ° C or lower, the equilibrium reaction between 1-butene and 2-butene is biased toward the 2-butene side. The conversion rate increases and productivity improves.
The pressure of the isomerization reaction is preferably −0.09 to 4 MPaG, particularly preferably 0 to 1.0 MPaG. In the present invention, the isomerization reaction is carried out in the gas phase. Therefore, it is necessary to set the pressure to a gas phase condition in consideration of the reaction temperature. If the state in the reactor is the liquid phase, the isomerization reaction is slowed and the selectivity for 2-butene is greatly reduced, so the conditions for the liquid phase must be avoided. When the reaction pressure is lowered in the gas phase, the hydrogenation reaction is slowed, so that the selectivity of 2-butene is improved, but the reaction rate of the isomerization reaction is lowered. The pressure of the isomerization reaction is selected in consideration of the specifications of the reactor and the 2-butene purification distillation after the reaction, and economical conditions capable of obtaining a sufficient selectivity. The upper limit of the pressure is about the critical pressure of trans-2-butene.

異性化反応における水素使用量は、原料の1−ブテンを含むn−ブテン含有炭化水素中のn−ブテン(1−ブテン+2−ブテン)量に対して0.001〜1.000モル%、好ましくは0.001〜0.500モル%であり、最適なモル比で厳密に調整することが重要である。水素量が少ない程、水素化反応によるn−ブタン生成量が少なくなるが、水素がないと異性化反応が進行しなくなる。また、原料中にイソブテン、1,3−ブタンジエン等n−ブテンよりも水素化されやすい成分が入っている場合は、それらにより消費される分の水素を追加する必要がある。
異性化反応器における原料の1−ブテンを含むn−ブテン含有炭化水素の導入量は、WHSVが0.1〜5000h-1程度であり、他の条件や触媒の活性低下を考慮して経済的な条件を選定する。
反応形式は、固定床管型断熱反応器、固定床管型等温反応器、流動床反応器、連続攪拌槽型反応器、回分式反応器等、いかなる反応器の形式も採用できるが、気相で反応を行う点と装置が簡便になる点から、固定床管型反応器が特に好ましい。また、固定床で行う場合はアップフロー、ダウンフローどちらでも良く、流れ方向は制限されない。
The amount of hydrogen used in the isomerization reaction is 0.001 to 1.000 mol%, preferably based on the amount of n-butene (1-butene + 2-butene) in the n-butene-containing hydrocarbon containing 1-butene as a raw material. Is 0.001 to 0.500 mol%, and it is important to strictly adjust at an optimal molar ratio. The smaller the amount of hydrogen, the smaller the amount of n-butane produced by the hydrogenation reaction, but the isomerization reaction will not proceed without hydrogen. Moreover, when the raw material contains components that are more easily hydrogenated than n-butene such as isobutene and 1,3-butanediene, it is necessary to add hydrogen for the amount consumed by them.
The introduction amount of the n-butene-containing hydrocarbon containing 1-butene as the raw material in the isomerization reactor is about 0.1 to 5000 h −1 for WHSV, which is economical in consideration of other conditions and a decrease in the activity of the catalyst. Select appropriate conditions.
The reaction format may be any reactor type such as a fixed bed tube type adiabatic reactor, a fixed bed tube type isothermal reactor, a fluidized bed reactor, a continuous stirred tank reactor, a batch reactor, etc. A fixed bed tube reactor is particularly preferred from the viewpoint of carrying out the reaction and the simplicity of the apparatus. Moreover, when performing on a fixed bed, either an upflow or a downflow may be sufficient, and a flow direction is not restrict | limited.

以上のようにして1−ブテンを含むn−ブテン含有炭化水素を異性化すれば、1−ブテンは2−ブテンに転化される。表1からも明らかなように、2−ブテンの沸点は1−ブテンの沸点に比べて高沸点側にあり、従来1−ブテンと沸点が非常に近接し、通常の蒸留では事実上分離不可能とされていたイソブテン等の不純物との沸点差が大きくなるため、通常の蒸留で容易に不純物が分離され、高純度の2−ブテンが得られる。この蒸留は通常の蒸留で充分であるが、必要に応じて含水フルフラール等を用いる抽出蒸留を用いても良い。蒸留装置としては、公知の充填塔や多孔板塔などを用いる。蒸留塔の大きさ、段数、還流比、温度、圧力等の蒸留条件は、最も経済的な値が適宜決定される。2−ブテンは蒸留塔の塔底留分として得られ、塔頂留分中には未反応の1−ブテンの他にイソブテン、イソブタン等の不純物が含まれる。原料としてC5留分等が入っている場合には、除去塔を用いてそれらを除去することができる。   If n-butene-containing hydrocarbons containing 1-butene are isomerized as described above, 1-butene is converted to 2-butene. As apparent from Table 1, the boiling point of 2-butene is higher than that of 1-butene, the boiling point is very close to that of conventional 1-butene, and practically impossible to separate by ordinary distillation. Since the difference in boiling point from impurities such as isobutene, which has been assumed to be large, is easily separated by ordinary distillation, high-purity 2-butene is obtained. For this distillation, ordinary distillation is sufficient, but extractive distillation using hydrous furfural or the like may be used as necessary. As the distillation apparatus, a known packed tower or a perforated plate tower is used. The most economical value of the distillation conditions such as the size of the distillation column, the number of stages, the reflux ratio, the temperature, and the pressure is appropriately determined. 2-Butene is obtained as a bottom fraction of a distillation column, and the top fraction contains impurities such as isobutene and isobutane in addition to unreacted 1-butene. When a C5 fraction or the like is contained as a raw material, they can be removed using a removal tower.

従来のC4炭化水素留分を異性化では、多量の水素を用いるので、副生するn−ブタン量が多くなり、n−ブタンが副生した場合、2−ブテン純度を上げようとすると塔頂からの蒸留ロスを増やすことになるため、原単位が低下し、また蒸留塔も大きくなる。また、塔頂留分をリサイクル使用すると、この副生したn−ブタンが濃縮される。n−ブタンの分離が容易でないため塔頂留分をブローするが、この際に2−ブテンもロスし原単位を低下させることになる。
本発明の2−ブテン製造方法においては、副生したn−ブタン量が塔底留分に含まれて2−ブテンの純度を低下させることになるが、水素使用量を厳密に調整するので、n−ブタンの副生量が極めて少なく、高純度の2−ブテンが得られる。
また、本発明の2−ブテン製造方法においては、n−ブタンが塔頂留分中に殆ど含まないので、塔頂留分をリサイクルして原料のC4炭化水素留分と共に異性化反応に供することができる。これにより塔頂留分中に含まれる1−ブテンが異性化され、2−ブテンの収率が向上する。
従って、本発明により高純度の2−ブテンを高収率で安定して製造することができる。
なお、原料にイソブタン等が含まれる場合には、除去塔を用いてそれらを除去したり、塔頂からイソブタン等を抜き出してサイドカットで1−ブテンリッチな留分を抜き出すこともできる。
In the isomerization of the conventional C4 hydrocarbon fraction, a large amount of hydrogen is used, so that the amount of n-butane produced as a by-product increases. This increases the distillation loss from the wastewater, so that the basic unit is reduced and the distillation column is also increased. Further, when the tower top fraction is recycled, this by-product n-butane is concentrated. Since the separation of n-butane is not easy, the top fraction is blown. At this time, 2-butene is lost and the basic unit is reduced.
In the 2-butene production method of the present invention, the amount of by-produced n-butane is contained in the bottom fraction to reduce the purity of 2-butene, but the amount of hydrogen used is strictly adjusted. The amount of by-produced n-butane is extremely small, and highly pure 2-butene is obtained.
In the 2-butene production method of the present invention, since n-butane is hardly contained in the tower top fraction, the tower top fraction is recycled and used for the isomerization reaction together with the raw material C4 hydrocarbon fraction. Can do. Thereby, 1-butene contained in the column top fraction is isomerized, and the yield of 2-butene is improved.
Therefore, according to the present invention, high-purity 2-butene can be stably produced with high yield.
In addition, when isobutane etc. are contained in a raw material, they can be removed using a removal tower, or isobutane etc. can be extracted from the tower top and a 1-butene rich fraction can be extracted by side cut.

次に、本発明を実施例及び比較例により更に具体的に説明するが、本発明はこれらの実施例等によって限定されるものではない。
なお、以下の実施例及び比較例において、反応器には内径10mm,長さ300mmのステンレス鋼製反応管を用い、該反応管に0.1質量%パラジウム/アルミナ触媒(粒径1〜2mm)を4.5g(触媒層長85mm)充填した。該触媒の前処理として、常圧、80℃で、水素を1.8NL/hrで2時間供給し、触媒の活性化を行った。異性化反応の原料には、1−ブテン99.57モル%、trans-2−ブテン0.21モル%、cis-2−ブテン0.17モル%、(n−ブテンとして99.95モル%)、n−ブタン0.05モル%のC4炭化水素留分を用いた。反応成績は、反応生成物を採取してガスクロマトグラフィーにより分析することにより求めた。
EXAMPLES Next, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited by these Examples.
In the following Examples and Comparative Examples, a stainless steel reaction tube having an inner diameter of 10 mm and a length of 300 mm was used as a reactor, and 0.1% by mass palladium / alumina catalyst (particle diameter of 1 to 2 mm) was used in the reaction tube. Was filled with 4.5 g (catalyst layer length: 85 mm). As a pretreatment of the catalyst, hydrogen was supplied at 1.8 NL / hr for 2 hours at 80 ° C. under normal pressure to activate the catalyst. The raw materials for the isomerization reaction include 1-butene 99.57 mol%, trans-2-butene 0.21 mol%, cis-2-butene 0.17 mol% (99.95 mol% as n-butene) , N-butane 0.05 mol% C4 hydrocarbon fraction was used. The reaction results were obtained by collecting the reaction products and analyzing them by gas chromatography.

実施例1
原料のC4炭化水素留分を66ml/hr,水素をC4炭化水素留分中のn−ブテンに対して0.43モル%として、反応器に連続供給し、反応温度80℃,反応圧力0.8MPaGで、気相の異性化反応を行った。その結果、反応成績は、1−ブテン転化率が85.4%,2−ブテン選択率が99.53%,n−ブタン選択率が0.47%であった。
Example 1
The raw material C4 hydrocarbon fraction was 66 ml / hr, hydrogen was 0.43 mol% with respect to n-butene in the C4 hydrocarbon fraction, and was continuously fed to the reactor. The reaction temperature was 80 ° C., the reaction pressure was 0. A gas phase isomerization reaction was performed at 8 MPaG. As a result, the reaction results showed that the 1-butene conversion was 85.4%, the 2-butene selectivity was 99.53%, and the n-butane selectivity was 0.47%.

実施例2
原料のC4炭化水素留分を33ml/hr,水素をC4炭化水素留分中のn−ブテンに対して0.07モル%として、反応器に連続供給し、反応温度80℃,反応圧力0.3MPaGで、気相の異性化反応を行った。その結果、反応成績は、1−ブテン転化率が60.1%,2−ブテン選択率が99.92%,n−ブタン選択率が0.08%であった。
Example 2
The raw material C4 hydrocarbon fraction was 33 ml / hr, hydrogen was 0.07 mol% with respect to n-butene in the C4 hydrocarbon fraction, and continuously fed to the reactor. The reaction temperature was 80 ° C., the reaction pressure was 0. A gas phase isomerization reaction was performed at 3 MPaG. As a result, the reaction results were as follows: 1-butene conversion was 60.1%, 2-butene selectivity was 99.92%, and n-butane selectivity was 0.08%.

実施例3
原料のC4炭化水素留分を33ml/hr,水素をC4炭化水素留分中のn−ブテンに対して0.07モル%として、反応器に連続供給し、反応温度50℃,反応圧力0.3MPaGで、気相の異性化反応を行った。その結果、反応成績は、1−ブテン転化率が59.0%,2−ブテン選択率が99.93%,n−ブタン選択率が0.07%であった。
Example 3
The raw material C4 hydrocarbon fraction was 33 ml / hr, hydrogen was 0.07 mol% with respect to n-butene in the C4 hydrocarbon fraction, and was continuously fed to the reactor. A gas phase isomerization reaction was performed at 3 MPaG. As a result, the reaction results were as follows: 1-butene conversion was 59.0%, 2-butene selectivity was 99.93%, and n-butane selectivity was 0.07%.

実施例4
原料のC4炭化水素留分を66ml/hr,水素をC4炭化水素留分中のn−ブテンに対して0.14モル%として、反応器に連続供給し、反応温度10℃,反応圧力は0MPaG(常圧)で、気相の異性化反応を行った。その結果、反応成績は、1−ブテン転化率が31.4%,2−ブテン選択率が99.82%,n−ブタン選択率が0.18%であった。
Example 4
The raw material C4 hydrocarbon fraction was 66 ml / hr, hydrogen was 0.14 mol% with respect to n-butene in the C4 hydrocarbon fraction, and was continuously fed to the reactor. The reaction temperature was 10 ° C. and the reaction pressure was 0 MPaG. The gas phase isomerization reaction was carried out at (normal pressure). As a result, the reaction results were as follows: 1-butene conversion was 31.4%, 2-butene selectivity was 99.82%, and n-butane selectivity was 0.18%.

比較例1
原料のC4炭化水素留分を66ml/hr,水素をC4炭化水素留分中のn−ブテンに対して3.00モル%として、反応器に連続供給し、反応温度80℃,反応圧力は0.8MPaGで気相の異性化反応を行った。その結果、反応成績は、1−ブテン転化率が88.3%,2−ブテン選択率が96.95%,n−ブタン選択率が3.05%であった。
水素量を厳密に調整せずに多く使用すると、n−ブタン選択率が増加して2−ブテン選択率が低下し、高純度の2−ブテンを得ることが困難になることが分かる。
Comparative Example 1
The raw material C4 hydrocarbon fraction was 66 ml / hr, hydrogen was 3.00 mol% with respect to n-butene in the C4 hydrocarbon fraction, and was continuously fed to the reactor. The reaction temperature was 80 ° C. and the reaction pressure was 0. The gas phase isomerization reaction was performed at .8 MPaG. As a result, the reaction results were as follows: 1-butene conversion was 88.3%, 2-butene selectivity was 96.95%, and n-butane selectivity was 3.05%.
It can be seen that when a large amount of hydrogen is used without strictly adjusting, the n-butane selectivity increases, the 2-butene selectivity decreases, and it becomes difficult to obtain high-purity 2-butene.

比較例2
原料のC4炭化水素留分を66ml/hr,水素をC4炭化水素留分中のn−ブテンに対して0.43モル%として、反応器に連続供給し、反応温度80℃,反応圧力は2.0MPaGで液相の異性化反応を行った。その結果、反応成績は、1−ブテン転化率が24.4%,2−ブテン選択率が98.36%,n−ブタン選択率が1.64%であった。
液相で反応するとn−ブタンは供給した水素量に相当する量が生成するが、異性化反応が遅くなるため相対的に2−ブテン選択率が低下することが分かる。
以下に実施例及び比較例における反応条件と反応成績を示す。
Comparative Example 2
The raw material C4 hydrocarbon fraction was 66 ml / hr, hydrogen was 0.43 mol% with respect to n-butene in the C4 hydrocarbon fraction, and was continuously fed to the reactor. The reaction temperature was 80 ° C. and the reaction pressure was 2 Liquid phase isomerization reaction was performed at 0.0 MPaG. As a result, the reaction results were as follows: 1-butene conversion was 24.4%, 2-butene selectivity was 98.36%, and n-butane selectivity was 1.64%.
When reacted in the liquid phase, n-butane is produced in an amount corresponding to the amount of hydrogen supplied, but it can be seen that the 2-butene selectivity is relatively lowered due to the slow isomerization reaction.
The reaction conditions and reaction results in Examples and Comparative Examples are shown below.

Figure 2005298394
Figure 2005298394

本発明の2−ブテン製造方法における代表的なフローを示す。The typical flow in the 2-butene manufacturing method of this invention is shown.

Claims (6)

1−ブテンを含むn−ブテン含有炭化水素を、水素の存在下に貴金属含有触媒に接触させ、該1−ブテンを2−ブテンに異性化するに際し、水素をn−ブテンに対して、0.001〜1モル%の割合で供給し、気相で反応を行うことを特徴とする2−ブテン製造方法。   When the n-butene-containing hydrocarbon containing 1-butene is brought into contact with a noble metal-containing catalyst in the presence of hydrogen and the 1-butene is isomerized to 2-butene, the hydrogen is reduced to 0. A 2-butene production method, wherein the reaction is carried out in a gas phase by supplying 001 to 1 mol%. 1−ブテンを含むn−ブテン含有炭化水素源として、C4含有炭化水素留分を用いる請求項1に記載の2−ブテン製造方法。   The method for producing 2-butene according to claim 1, wherein a C4-containing hydrocarbon fraction is used as the n-butene-containing hydrocarbon source containing 1-butene. 異性化の反応温度が−10〜200℃であり、反応圧力が−0.09〜4MPaGである請求項1又は2に記載の2−ブテン製造方法。   The method for producing 2-butene according to claim 1 or 2, wherein the reaction temperature for isomerization is -10 to 200 ° C and the reaction pressure is -0.09 to 4 MPaG. 貴金属含有触媒が、パラジウムを含有する触媒である請求項1〜3のいずれかに記載の2−ブテン製造方法。   The method for producing 2-butene according to any one of claims 1 to 3, wherein the noble metal-containing catalyst is a catalyst containing palladium. 貴金属含有触媒が、γ−アルミナ、シリカアルミナ、珪藻土および活性炭から選ばれた少なくとも一種の担体に、パラジウムを0.001〜1質量%担持してなる触媒である請求項4に記載の2−ブテン製造方法。   The 2-butene according to claim 4, wherein the noble metal-containing catalyst is a catalyst obtained by supporting 0.001 to 1% by mass of palladium on at least one carrier selected from γ-alumina, silica alumina, diatomaceous earth and activated carbon. Production method. 触媒を予め硫黄処理せずに異性化反応に供する請求項1〜5のいずれかに記載の2−ブテン製造方法。

The 2-butene production method according to any one of claims 1 to 5, wherein the catalyst is subjected to an isomerization reaction without being subjected to sulfur treatment in advance.

JP2004115799A 2004-04-09 2004-04-09 2-Butene production method Expired - Fee Related JP4523791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004115799A JP4523791B2 (en) 2004-04-09 2004-04-09 2-Butene production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004115799A JP4523791B2 (en) 2004-04-09 2004-04-09 2-Butene production method

Publications (2)

Publication Number Publication Date
JP2005298394A true JP2005298394A (en) 2005-10-27
JP4523791B2 JP4523791B2 (en) 2010-08-11

Family

ID=35330375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004115799A Expired - Fee Related JP4523791B2 (en) 2004-04-09 2004-04-09 2-Butene production method

Country Status (1)

Country Link
JP (1) JP4523791B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538555A (en) * 2005-04-15 2008-10-30 エービービー ルマス グローバル インコーポレイテッド Double bond hydroisomerization of butene
JP2013523741A (en) * 2010-03-30 2013-06-17 ユーオーピー エルエルシー Conversion of acyclic symmetric olefins to high and low carbon olefin products.
WO2013118832A1 (en) * 2012-02-09 2013-08-15 三井化学株式会社 Process for manufacturing olefin

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640618A (en) * 1979-08-21 1981-04-16 Inst Francais Du Petrole Usage of c4 olefin fraction
JPS595129A (en) * 1982-06-08 1984-01-12 エクソン・リサ−チ・アンド・エンヂニアリング・コムパニ− Isomerization of butene-1 to butene-2 in isobutylene
JPS63284137A (en) * 1987-04-22 1988-11-21 アンスティテュ・フランセ・デュ・ペトロール Isomerization of 1-butene to 2-butene in c4 hydrocarbon fraction containing butadiene and sulfur compounds
JPS6461434A (en) * 1987-08-31 1989-03-08 Tonen Sekiyukagaku Kk Method for isomerizing butene-1 contained in isobutylene to butene-2
JPH0769939A (en) * 1993-07-30 1995-03-14 Inst Fr Petrole Isomerization of external olefin into internal olefin performed simultaneously with hydrogenation of diolefin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5640618A (en) * 1979-08-21 1981-04-16 Inst Francais Du Petrole Usage of c4 olefin fraction
JPS595129A (en) * 1982-06-08 1984-01-12 エクソン・リサ−チ・アンド・エンヂニアリング・コムパニ− Isomerization of butene-1 to butene-2 in isobutylene
JPS63284137A (en) * 1987-04-22 1988-11-21 アンスティテュ・フランセ・デュ・ペトロール Isomerization of 1-butene to 2-butene in c4 hydrocarbon fraction containing butadiene and sulfur compounds
JPS6461434A (en) * 1987-08-31 1989-03-08 Tonen Sekiyukagaku Kk Method for isomerizing butene-1 contained in isobutylene to butene-2
JPH0769939A (en) * 1993-07-30 1995-03-14 Inst Fr Petrole Isomerization of external olefin into internal olefin performed simultaneously with hydrogenation of diolefin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008538555A (en) * 2005-04-15 2008-10-30 エービービー ルマス グローバル インコーポレイテッド Double bond hydroisomerization of butene
JP2013523741A (en) * 2010-03-30 2013-06-17 ユーオーピー エルエルシー Conversion of acyclic symmetric olefins to high and low carbon olefin products.
WO2013118832A1 (en) * 2012-02-09 2013-08-15 三井化学株式会社 Process for manufacturing olefin
JPWO2013118832A1 (en) * 2012-02-09 2015-05-11 三井化学株式会社 Olefin production method

Also Published As

Publication number Publication date
JP4523791B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP5385606B2 (en) Double bond hydroisomerization of butene
KR100937080B1 (en) Double bond hydroisomerization of butenes
US6916448B2 (en) Process for selective production of propylene from hydrocarbon fractions with four carbon atoms
JP4860688B2 (en) Double bond hydroisomerization method
JP4079776B2 (en) Methods for producing chain alpha olefins and ethylene
US6686510B2 (en) Production of high-purity isobutene and propylene from hydrocarbon fractions with four carbon atoms
JP5463860B2 (en) Propylene production method
JPS63190835A (en) Improvement for selective hydrogenation of acetylenes
KR20080007369A (en) Improved double bond hydroisomerization process
JP3224444B2 (en) Method for selective hydrogenation of diolefins
US5905178A (en) Removal of α-methyl styrene from cumene
TWI592395B (en) A more energy efficient c5 hydrogenation process
JP4523791B2 (en) 2-Butene production method
CA2257454A1 (en) Process for obtaining 1-butene
RU2649574C2 (en) Method of selective hydrogenization
JP2011098923A (en) Method for producing propylene
CN1575268A (en) Hydroisomerisation of olefins comprising between 4 and 6 carbon atoms
JP4537002B2 (en) Production method for obtaining high molecular weight olefin in high yield from low molecular weight olefin
EP4061791A1 (en) Conversion of propylene to ethylene

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees