JPH03238394A - Room temperature nuclear fusion apparatus - Google Patents

Room temperature nuclear fusion apparatus

Info

Publication number
JPH03238394A
JPH03238394A JP2033902A JP3390290A JPH03238394A JP H03238394 A JPH03238394 A JP H03238394A JP 2033902 A JP2033902 A JP 2033902A JP 3390290 A JP3390290 A JP 3390290A JP H03238394 A JPH03238394 A JP H03238394A
Authority
JP
Japan
Prior art keywords
palladium
deuterium
nuclear fusion
globules
high pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033902A
Other languages
Japanese (ja)
Inventor
Hiroshige Yamada
廣成 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2033902A priority Critical patent/JPH03238394A/en
Publication of JPH03238394A publication Critical patent/JPH03238394A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To enhance the efficiency of nuclear fusion reaction and to generate electric power by room temp. nuclear fusion by irradiating the specific solid nuclear fusion fuel having deuterium infiltrated therein or adsorbed thereon and placed in a high pressure container with an electromagnetic wave. CONSTITUTION:In a nuclear fusion reactor, the path 2 of the circulation of a cooling material of a liquid metal is formed to the inner wall of a high pressure tank 1 and a window 3 for the irradiation with a laser beam is provided to the tank 1. The high pressure tank 1 is filled with high pressure deuterium gas 5 and the palladium globules 7 received in a cooling storage housing 4 can be supplied at any time. The palladium globules 7 have a diameter of several mm. By using palladium globules, the surface area thereof is increased to enhance the adsorption efficiency of the deuterium gas 5. The palladium globules 7 are received in the cooling storage housing 4 to accelerate the adsorption of deuterium. The palladium globules 7 are allowed to fall from a charging port 6 to be irradiated with a laser beam from the window at a predetermined position.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は常温核融合装置に関する。[Detailed description of the invention] [Industrial application fields] The present invention relates to a cold fusion device.

[従来の技術] バラジ−ニーム等の個体でできたアノード及びカソード
を重水素を含む電解液に浸して電流を流すか、または重
水素ガス中に放置することにより。
[Prior Art] An anode and a cathode made of a solid such as Balaji neem are immersed in an electrolyte containing deuterium and a current is applied thereto, or by being left in deuterium gas.

重水素をパラジュームに吸着させ、しかる後に放電を起
こさせることにより、核融合反応を起こすことが知られ
ている。(JAPANESE JOURNAL 0FA
PPLIED PHYSICS VOL、28.NO,
11,NOVEMBER,1989。
It is known that a nuclear fusion reaction can be caused by adsorbing deuterium on palladium and then causing an electric discharge. (JAPANESE JOURNAL 0FA
PPLIED PHYSICS VOL, 28. No,
11, NOVEMBER, 1989.

PP、L2017−L2020) [発明が解決しようとする課題] しかしながら、これまでのものは実験の域を出ず、核融
合反応の効率が低いので1発電用に用いることは困難で
ある。
PP, L2017-L2020) [Problems to be Solved by the Invention] However, the conventional methods have been limited to experiments, and the efficiency of the nuclear fusion reaction is low, so it is difficult to use them for single power generation.

従って1本発明の技術的課題は核融合反応の効率を高め
ることで、常温核融合を発電に利用することができるよ
うな常温核融合装置を提供することにある。
Therefore, one technical problem of the present invention is to provide a cold fusion device that can utilize cold fusion for power generation by increasing the efficiency of the nuclear fusion reaction.

[課題を解決するための手段] 本発明による常温核融合装置は、高圧容器と。[Means to solve the problem] The cold fusion device according to the present invention includes a high pressure vessel.

該高圧容器内におかれ重水素等を浸透または吸着させた
特定の個体による核融合燃料にレーザ等の電磁波を照射
する手段とを備えたことを特徴とする。
The present invention is characterized by comprising means for irradiating electromagnetic waves such as a laser to the nuclear fusion fuel made of a specific solid that is placed in the high-pressure container and has permeated or adsorbed deuterium or the like.

本発明によれば、また、前記高圧容器に高圧ガス状の核
融合燃料を封入したことを特徴とする常温核融合装置が
得られる。
According to the present invention, there is also obtained a cold fusion device characterized in that a high pressure gaseous fusion fuel is sealed in the high pressure container.

なお、前記特定の個体はパラジューム等により小球形状
にするのが良い。
Note that the specific individual is preferably shaped into a small sphere using palladium or the like.

本発明によれば更に、前記高圧容器内に前記特定の個体
を必要に応じて供給可能な格納庫を備え。
According to the present invention, the high-pressure container further includes a hangar capable of supplying the specific individual as needed.

該格納庫内を冷却するようにしたことを特徴とする常温
核融合装置が得られる。
A cold fusion device characterized in that the inside of the hangar is cooled is obtained.

前記電磁波照射手段としては、波長がサブミリ波より長
波長のレーザ照射手段を用いるのが良い。
As the electromagnetic wave irradiation means, it is preferable to use a laser irradiation means having a wavelength longer than submillimeter waves.

[作用] 常温核融合反応の効率を高めるには、核融合反応の反応
断面積を大きくする第1の方法と1重水素の特定個体1
例えばパラジュームへの吸着率を高める第2の方法とが
ある。
[Effect] In order to increase the efficiency of the cold fusion reaction, the first method is to increase the reaction cross section of the fusion reaction and the specific individual of deuterium 1.
For example, there is a second method of increasing the adsorption rate to palladium.

重水素を吸着した特定個体をレーザで照射すると、特定
個体中の重水素に急激に運動エネルギーが与えられ、核
融合反応の断面積が増加する。
When a specific individual that has adsorbed deuterium is irradiated with a laser, kinetic energy is suddenly given to the deuterium in the specific individual, increasing the cross-sectional area of the nuclear fusion reaction.

また、特定個体を高圧ガス状の核融合燃料(重水素ガス
)の雰囲気におくことで特定個体への重水素の吸着効率
が高められる。
Furthermore, by placing the specific individual in an atmosphere of high-pressure gaseous fusion fuel (deuterium gas), the efficiency of adsorption of deuterium onto the specific individual can be increased.

特定個体を小球形状とすることも重水素の吸着効率を高
める。
Making the specific individual into a small spherical shape also increases deuterium adsorption efficiency.

特定個体を冷却することも重水素の吸着効率を高めるよ
うに作用する。
Cooling a specific individual also acts to increase deuterium adsorption efficiency.

[実施例] 第1図を参照しながら1本発明による常温核融合炉につ
いて説明する。
[Example] A cold fusion reactor according to the present invention will be described with reference to FIG.

常温核融合炉は、高圧タンク1の内壁に液体金属による
冷却材の循環路2が形成され、レーザ照射のための窓3
を備えている。また、高圧タンク1内には、高圧の重水
素ガスが充填され、冷却格納庫4に格納されたパラジュ
ーム小球7が随時供給可能にされている。なお、冷却材
の循環系と熱交換系及び重水素ガスの加圧系については
図示を省略している。
A cold fusion reactor has a liquid metal coolant circulation path 2 formed on the inner wall of a high-pressure tank 1, and a window 3 for laser irradiation.
It is equipped with The high-pressure tank 1 is filled with high-pressure deuterium gas, and palladium pellets 7 stored in a cooling hangar 4 can be supplied at any time. Note that illustration of a coolant circulation system, a heat exchange system, and a deuterium gas pressurization system is omitted.

パラジューム小球7は直径数■の小球状(ペレット)を
している。小球にしたことにより表面積を増加させ重水
素ガスの吸着効率を上げた。このパラジューム小球7を
冷却格納庫4に入れ1重水素の吸着作用を促進する。こ
の冷却格納庫4は液体窒素により冷却されている。この
パラジューム小球7を投下口6より落下させ、所定の位
置7に来たときに窓3からレーザを照射する。レーザは
サブミリ波が適当であり、吸着した重水素ガスの加熱を
遺択的に行う。レーザのパワーは大きければそれだけ短
時間に核融合反応を行うことができる。又短時間であれ
ば、核融合により発生したα粒子を核融合の連鎖反応に
使用することができる。
The palladium pellets 7 are in the form of pellets with a diameter of several square meters. By making it into small spheres, the surface area was increased and the adsorption efficiency of deuterium gas was increased. The palladium pellets 7 are placed in the cooling hangar 4 to promote the adsorption of deuterium. This cooling hangar 4 is cooled with liquid nitrogen. This small palladium ball 7 is dropped from the drop-in port 6, and when it reaches a predetermined position 7, it is irradiated with a laser through the window 3. Submillimeter waves are appropriate for the laser, which selectively heats the adsorbed deuterium gas. The higher the power of the laser, the faster the fusion reaction can occur. Furthermore, for a short time, α particles generated by nuclear fusion can be used in a chain reaction of nuclear fusion.

なお、核融合燃料としては1重水素の他にトリチューム
等が考えられる。
In addition to deuterium, tritium and the like can be considered as nuclear fusion fuel.

[発明の効果] 以上のように核融合燃料を吸着させたパラジュムの小球
をレーザで照射することにより、常温核融合反応の効率
を上げることができる。パラジュームをペレット状にし
たことにより燃料の吸着効率を上げることができるのみ
ならず、さらにはペレットの連続的燃焼を可能にした。
[Effects of the Invention] As described above, by irradiating the palladium pellets adsorbed with fusion fuel with a laser, the efficiency of the cold fusion reaction can be increased. By making palladium into pellets, it was possible not only to increase the fuel adsorption efficiency, but also to make continuous combustion of the pellets possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は常温核融合炉の模式図である。 図中、1は高圧タンク、2は循環路、3は窓、4は冷却
格納庫、5は重水素ガス、7はパラジューム小球。
Figure 1 is a schematic diagram of a cold fusion reactor. In the figure, 1 is a high-pressure tank, 2 is a circulation path, 3 is a window, 4 is a cooling hangar, 5 is deuterium gas, and 7 is a palladium ball.

Claims (1)

【特許請求の範囲】 1)高圧容器と、該高圧容器内におかれ重水素等を浸透
または吸着させた特定の個体による核融合燃料にレーザ
等の電磁波を照射する手段とを備えたことを特徴とする
常温核融合装置。 2)前記高圧容器に高圧ガス状の核融合燃料を封入した
ことを特徴とする請求項1記載の常温核融合装置。 3)前記特定の個体をパラジューム等により小球形状に
したことを特徴とする請求項1記載の常温核融合装置。 4)前記高圧容器内に前記特定の個体を必要に応じて供
給可能な格納庫を備え、該格納庫内を冷却するようにし
たことを特徴とする請求項1記載の常温核融合装置。 5)前記電磁波照射手段として、波長がサブミリ波より
長波長のレーザ照射手段を用いることを特徴とする請求
項1記載の常温核融合装置。
[Scope of Claims] 1) A high-pressure container and means for irradiating electromagnetic waves such as a laser to fusion fuel produced by a specific individual that is placed in the high-pressure container and has permeated or adsorbed deuterium, etc. Characteristic cold fusion device. 2) The cold fusion device according to claim 1, wherein a high-pressure gaseous fusion fuel is sealed in the high-pressure container. 3) The cold fusion device according to claim 1, wherein the specific individual is made into a small sphere shape using palladium or the like. 4) The cold fusion device according to claim 1, wherein the high-pressure vessel includes a hangar that can supply the specific individual as needed, and the inside of the hangar is cooled. 5) The cold fusion device according to claim 1, wherein the electromagnetic wave irradiation means uses a laser irradiation means having a wavelength longer than submillimeter waves.
JP2033902A 1990-02-16 1990-02-16 Room temperature nuclear fusion apparatus Pending JPH03238394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033902A JPH03238394A (en) 1990-02-16 1990-02-16 Room temperature nuclear fusion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033902A JPH03238394A (en) 1990-02-16 1990-02-16 Room temperature nuclear fusion apparatus

Publications (1)

Publication Number Publication Date
JPH03238394A true JPH03238394A (en) 1991-10-24

Family

ID=12399451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033902A Pending JPH03238394A (en) 1990-02-16 1990-02-16 Room temperature nuclear fusion apparatus

Country Status (1)

Country Link
JP (1) JPH03238394A (en)

Similar Documents

Publication Publication Date Title
US20080123793A1 (en) Thermal power production device utilizing nanoscale confinement
US7700069B2 (en) Activation of metal hydrides
US3755073A (en) Hybrid laser plasma target - neutral beam injection fusion system
JPH0369501A (en) Hydrogen storage body and method for occluding hydrogen in the same
Gus' Kov et al. The laser greenhouse thermonuclear target with distributed absorption of laser energy
CA2153406A1 (en) Self-catalyzed nuclear fusion of lithium-6 and deuterium using alpha particles
CN110767325B (en) Method for realizing fusion reactor plasma core charging by using sandwich shot
Norimatsu et al. Conceptual design and issues of the laser inertial fusion test (LIFT) reactor—targets and chamber systems
JPH03238394A (en) Room temperature nuclear fusion apparatus
Gorodnichev et al. Impact of roughness on gas compression in inertial confinement fusion
US20080205572A1 (en) Apparatus and process for generating nuclear heat
Ragheb et al. Inertial Confinement Fusion
Holzrichter et al. Research with high-power short-wavelength lasers
Meyer-ter-Vehn et al. Inertial confinement fusion
JPH06222173A (en) Cold nuclear fusion apparatus
JPH05281379A (en) Fusion device
JPH0875882A (en) Thermal energy generating method and apparatus
Schultz et al. Inertial fusion target development for ignition and energy
Metz Fusion: Princeton Tokamak Proves a Principle
WO1993005516A1 (en) Producing heat from a solute and crystalline host material
JPH02275397A (en) Nuclear fusion apparatus
Metz Laser fusion: a new approach to thermonuclear power
KR et al. INERTIAL FUSION TARGET DEVELOPMENT FOR IGNITION AND ENERGY
Gus' kov et al. Twelfth European Conference on Interaction of Laser Radiation with Matter and Laser Fusion
JPH03105284A (en) Nuclear fusion apparatus