JPH03238307A - Outer-diameter measuring apparatus - Google Patents

Outer-diameter measuring apparatus

Info

Publication number
JPH03238307A
JPH03238307A JP3489590A JP3489590A JPH03238307A JP H03238307 A JPH03238307 A JP H03238307A JP 3489590 A JP3489590 A JP 3489590A JP 3489590 A JP3489590 A JP 3489590A JP H03238307 A JPH03238307 A JP H03238307A
Authority
JP
Japan
Prior art keywords
light
measured
parallel
outer diameter
parallel light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3489590A
Other languages
Japanese (ja)
Inventor
Masaru Terajima
寺島 優
Susumu Kobayashi
小林 獎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP3489590A priority Critical patent/JPH03238307A/en
Publication of JPH03238307A publication Critical patent/JPH03238307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure the very small diameter of the line of a material to be measured which is vibrated and running at a high speed, highly accurately at a high speed by synthesizing a plurality of beams, and making the distribution of light within the cross section of the beam constant. CONSTITUTION:Parallel light 4' is inputted into the side surface of a half prism 6 in the direction orthogonal to parallel light 4 and split into parallel light beams 41' and 42' at a slant surface 7. The radius of the major-axis beam, the radius of the minor-axis beam and the maximum intensity of the parallel light 4' are made equal to those of the parallel light 4. The parallel light beams 41 and 41' which are emitted in the same direction from the prism 6 become synthesized light 8. The incident angles of the parallel light beams 4 and 4' into the prism 6 are adjusted so that the optical axes of the parallel light beams 41 and 41' become parallel. The synthesized light 8 also becomes the parallel light in its optical-axis direction 21. A beam interval 46 between beam centers 47 and 47' of the parallel light beams 41 and 41' is arranged approximately equally with a beam radius 43. Then, the maximum light intensity of the synthesized light 8 becomes intensity 60 at the beam interval 46 of in a synthesizing direction 22. Thus, the intensity distribution can be made constant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は外径測定装置、特に高速走行する糸、ワイヤ等
の外径を非接触で測定する測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an outer diameter measuring device, and particularly to a measuring device that non-contactly measures the outer diameter of threads, wires, etc. running at high speed.

(従来の技術) 従来、非接触で外径を測定する方式には、レーザーマイ
クロメータ式、リニアセンサー式等がある。レーザーマ
イクロメータ式はレーザー光をポリゴンミラーとFθレ
ンズで走査集光して被測定物に照射し透過光をFθレン
ズで集光してセンサーで受光するもので、レーザー光の
走査速度を一定として被測定物により遮光された時間か
ら外径を測定する。リニアセンサー式は投光器により被
測定物を照射し、その透過光または反射光を集光レンズ
で集光し、リニアセンサーで受光する。リニアセンサー
は等間隔に幾つものセンサーが配列されており、被測定
物の遮光または反射の像を受光したセンサ一番地から外
径を測定する。
(Prior Art) Conventionally, methods for measuring the outer diameter without contact include a laser micrometer method, a linear sensor method, and the like. The laser micrometer type scans and focuses laser light using a polygon mirror and Fθ lens, irradiates it onto the object to be measured, and collects the transmitted light using an Fθ lens, which is then received by a sensor.The scanning speed of the laser light is kept constant. The outer diameter is measured from the time when light is blocked by the object to be measured. In the linear sensor type, a projector illuminates the object to be measured, and the transmitted or reflected light is collected by a condensing lens and received by a linear sensor. A linear sensor has a number of sensors arranged at equal intervals, and measures the outer diameter from the first sensor that receives a shielded or reflected image of the object to be measured.

又、特開昭55−37919号では、幅一定の平行光束
を被測定物に投射し、被測定物によって遮光される幅と
位置とを検出して被測定物の外径を測定する装置が開示
されている。
Furthermore, Japanese Patent Application Laid-Open No. 55-37919 discloses a device that measures the outer diameter of a measured object by projecting a parallel beam of constant width onto the measured object and detecting the width and position where the light is blocked by the measured object. Disclosed.

(発明が解決しようとする課題) 極細の線径を測定する場合、レーザーマイクロメータ式
はレーザーの集光スポットも微小にする必要があり、焦
点距離が短(焦点深度が短くなり被測定物を焦点深度内
に位置決めすることが必要となる。リニアセンサー式に
ついても集光レンズの焦点距離を短くする必要が生じ、
同様の問題がある。
(Problem to be solved by the invention) When measuring ultra-fine wire diameters, the laser micrometer type requires a very small focused laser spot, and the focal length is short (the depth of focus is short and the object to be measured is It is necessary to position within the depth of focus.Even with linear sensor type, it is necessary to shorten the focal length of the condenser lens.
I have a similar problem.

また、被測定物が高速に走行する場合、測定も高速に行
われる必要があるが、レーザーマイクロメータ式ではレ
ーザー光の走査を行う駆動装置に速度の制約があり、リ
ニアセンサー式では配列されたセンサーの読み出し速度
の制約があり、高速に測定することは困難となる。
In addition, if the object to be measured moves at high speed, the measurement must also be performed at high speed, but with the laser micrometer type, there is a speed limit on the drive device that scans the laser beam, and with the linear sensor type, the There are restrictions on the readout speed of the sensor, making it difficult to perform high-speed measurements.

更に、被測定物が振動しながら高速に走行し、かつ極細
の線径を測定する場合、振動による焦点外れを防ぎ、高
速測定することは非常に困難となる。
Furthermore, when the object to be measured travels at high speed while vibrating, and when measuring an extremely fine wire diameter, it is extremely difficult to prevent defocusing due to vibration and perform high-speed measurement.

又、平行光束の遮光量を検出する方式の装置において平
行光束としてレーザー光を用いると、良く知られている
ようにその光束断面内の光束強度分布はガウス分布をな
しており、被測定物による遮光位置によって同一外径で
ありながら遮光量に差異が生じることとなる。しかし、
高速走行する極細の線材の位置を特定させることは極め
て困難である。
In addition, when a laser beam is used as a parallel beam in a device that detects the amount of shading of a parallel beam, as is well known, the beam intensity distribution within the cross section of the beam forms a Gaussian distribution, which is dependent on the object to be measured. Depending on the light shielding position, there will be a difference in the amount of light shielding even though the outer diameter is the same. but,
It is extremely difficult to pinpoint the position of an extremely thin wire running at high speed.

本発明は前記した従来技術の欠点を解決し、極細で振動
しながら高速に走行する被測定物の線径を高速かつ高精
度に測定する外径測定装置の提供を目的とするものであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art and to provide an outer diameter measuring device that can quickly and accurately measure the wire diameter of an extremely thin object that is vibrating and traveling at high speed.

(課題を解決するための手段) 本発明は以上のような目的を達成するために、次のよう
な外径測定装置を提供するものである。
(Means for Solving the Problems) In order to achieve the above objects, the present invention provides the following outer diameter measuring device.

すなわち、断面外形が一定の平行光束とされたレーザー
ビームを高速走行する線状の被測定物による遮光量を検
出して外径を測定するに際し、2つ又はそれ以上の平行
光ビームを合成することによって被測定物の振動等によ
る変位方向のビーム断面内の光強度分布を一定としたこ
とを特徴とする。
In other words, two or more parallel light beams are combined when measuring the outer diameter by detecting the amount of light shielded by a linear object traveling at high speed on a parallel light beam with a constant cross-sectional outline. As a result, the light intensity distribution within the beam cross section in the direction of displacement due to vibration of the object to be measured is made constant.

更に又、レーザーの平行光を被測定物に照射し、その透
過光をセンサーにて受光し、外径を測定するに当って走
行する被測定物の透過光の時間変化を測定してその周波
数を弁別し径の値と微小欠陥を同時に測定するものであ
り、被測定物のエツジを2つの投光と受光センサーによ
り測定し、2つの受光センサーの値と受光センサーの間
隔を測定して幅の大きな被測定物を測定するものである
Furthermore, the object to be measured is irradiated with parallel light from a laser, the transmitted light is received by a sensor, and when measuring the outer diameter, the time change of the transmitted light of the object to be measured is measured and its frequency is determined. The edge of the object to be measured is measured using two light emitting and light receiving sensors, and the width is determined by measuring the values of the two light receiving sensors and the distance between the light receiving sensors. It is used to measure large objects to be measured.

(作用) ビーム断面内の強度分布がガウス分布しているレーザー
ビームも、これを適当に中心をずらして重畳することに
よって、合成光束の断面的強度分布を一定とすることが
できる。線材に直角な方向においては、高速走行に伴う
振動等によって位置ずれが生じるので、ビーム断面内の
この方向の光強度分布を一定にしておくことによって、
振動等による測定誤差が生じることを防止することがで
きる。
(Function) Even if laser beams have a Gaussian intensity distribution in the beam cross section, by appropriately shifting their centers and superimposing them, the cross-sectional intensity distribution of the combined beam can be made constant. In the direction perpendicular to the wire, positional displacement occurs due to vibrations caused by high-speed running, so by keeping the light intensity distribution in this direction within the beam cross section constant,
Measurement errors due to vibration etc. can be prevented.

これに対して、線状の被測定物の走行方向の位置、外径
はほぼ一定であるから、ビーム断面内の走行方向の光強
度分布はガウス分布のままでも問題は少な(、必要に応
じて絞りを掛ければ良い、線径の一部に外径の変化等の
微小欠陥がある場合には遮光量の変化が生じるが、走行
方向のビーム幅が小さい方がこのような微小欠陥による
遮光量の変化が検出値に鋭い変化を与えるので、その後
の信号処理に有利となるという効果も生じる。
On the other hand, since the position and outer diameter of the linear object in the running direction are almost constant, there are few problems even if the light intensity distribution in the running direction within the beam cross section remains a Gaussian distribution. If there is a small defect such as a change in the outer diameter in a part of the wire diameter, the amount of light blocking will change, but if the beam width in the running direction is small, the light blocking due to such a small defect can be reduced. Since the change in quantity gives a sharp change to the detected value, there is also the effect that it is advantageous for subsequent signal processing.

(実施例) 本発明は図面に示す実施例に基づいて説明すると、第2
図、第3図、第4図は各実施例に共通の説明図で、第5
図及び第6図はそれぞれ第2.3実施例、第7図は第4
実施例、第8.9図はそれぞれ第5.6実施例、第10
図は第7実施例、第11図は第8実施例を示す。
(Embodiment) The present invention will be explained based on the embodiment shown in the drawings.
Figure 3, Figure 4 are explanatory diagrams common to each embodiment, and Figure 5.
Fig. 6 and Fig. 6 are respectively the 2.3 embodiment and Fig. 7 is the 4th embodiment.
Example and Figure 8.9 are Example 5.6 and Figure 10, respectively.
The figure shows the seventh embodiment, and FIG. 11 shows the eighth embodiment.

第1図において、(1)はレーザー光源で(2)のコリ
メートレンズにより平行光(4)とされる。
In FIG. 1, (1) is a laser light source, which is converted into parallel light (4) by a collimating lens (2).

レーザー光源(1)はそれ自身平行光を出射するもので
も半導体レーザーのような発散光源でもよく、上記発散
光源の場合はコリメートレンズ(2)を用いて平行光(
4)とするが、このとき光軸を合わせてホルダーに固定
し、コリメートヘッド(3)を構成して、光軸合わせ等
の調整を容易とする。
The laser light source (1) may itself emit parallel light or may be a diverging light source such as a semiconductor laser. In the case of the above-mentioned diverging light source, a collimating lens (2) is used to emit parallel light (
4), at this time, the optical axes are aligned and fixed to a holder to form a collimating head (3) to facilitate adjustments such as alignment of the optical axes.

前記のレーザー光源(1)は出力が一定で安定するよう
センサー(28)でレーザー光源(1)の光出力を測定
し、APC回路(30)にフィードバックして駆動され
、半導体レーザーの場合センサー(28)は半導体レー
ザーの内部に内蔵されたものでもよい。〔第4図(a)
参照〕センサー(28)はレーザー光源(1)の光出力
を測定することができ、受光面に照射された受光量を受
光量に比例した出方電流に変換し出力するもので、例え
ばフォトダイオード、PINダイオード、フォトトラン
ジスタ、APDその他の受光素子を用いることができる
The laser light source (1) is driven by measuring the optical output of the laser light source (1) with a sensor (28) so that the output is constant and stable, and feeding it back to the APC circuit (30). 28) may be built inside the semiconductor laser. [Figure 4 (a)
Reference] The sensor (28) is capable of measuring the light output of the laser light source (1), converts the amount of light received on the light receiving surface into an output current proportional to the amount of received light, and outputs the output current, such as a photodiode. , PIN diode, phototransistor, APD, and other light receiving elements can be used.

APC回路(30)はレーザー光源(1)の光出力設定
値と前記レーザー光源(1)の光出力が等しくなるよう
、センサー(28)の値と光出力設定器との差を変換増
幅してレーザー光源(1)の駆動電流を自動調整するも
のである。
The APC circuit (30) converts and amplifies the difference between the value of the sensor (28) and the light output setting device so that the light output setting value of the laser light source (1) and the light output of the laser light source (1) are equal. The drive current of the laser light source (1) is automatically adjusted.

第2図において、前記した平行光(4)はその断面で2
次元方向の位置と光強度の分布はガウス分布をなしてお
り、ビーム中心(47)において最大光強度(44)に
なっており、最大光強度(44)に対して1/e”とな
る点とビーム中心(47)との間隔を長軸ビーム半径(
43)とする。
In Figure 2, the parallel light (4) mentioned above has a cross section of 2
The position in the dimensional direction and the distribution of light intensity form a Gaussian distribution, and the maximum light intensity (44) is at the beam center (47), and the point is 1/e'' with respect to the maximum light intensity (44). The distance between the beam center (47) and the major axis beam radius (
43).

レーザー光源(1)が半導体レーザーの場合、コリメー
トレンズ(2)を用いて平行光(4)とするとその断面
は楕円となり、この楕円の長軸ビーム半径が(43)で
あり、短軸ビーム半径が(48)である。
When the laser light source (1) is a semiconductor laser, when the collimating lens (2) is used to make parallel light (4), its cross section becomes an ellipse, and the major axis beam radius of this ellipse is (43), and the minor axis beam radius is (48).

第1図において、平行光(4°)は平行光(4)と直角
な方向からハーフプリズム(6)に直角に入射するよう
直角プリズム(5)により導かれる。該直角プリズム(
5)はコリメートヘッド(3°)をコリメートヘッド(
3)と同一方向に配置し、構成を簡素化し調整を容易と
するために用いる。
In FIG. 1, parallel light (4°) is guided by a right angle prism (5) from a direction perpendicular to the parallel light (4) so that it enters a half prism (6) at right angles. The right angle prism (
5) The collimating head (3°) is connected to the collimating head (3°).
3), and is used to simplify the configuration and facilitate adjustment.

(6)はハーフプリズムで直角プリズム2個で構成しそ
の斜面(7)に光透過鋺膜を付けたもので、該斜面(7
)で入射光をその入射方向と入射方向に直角な方向に一
定の比率で分割するものである。平行光(4)はハーフ
プリズム(6)の前面に対して直角に入射し、斜面(7
)で入射方向の平行光(41)と前記した入射方向に直
角な方向の平行光(42)に分割され、平行光(41)
と(42)のビーム半径は平行光(4)の長軸ビーム半
径(43)と短軸ビーム半径(48)に等しくなり〔第
2図(d)(e)(f)参照)、ハーフプリズム(6)
の分割比が1:1で入射光の最大光強度(44)に対し
一定の比率で分割されて、平行光(41)及び(42)
のビーム強度は等しい、〔第2図(e)(f)参照〕と
ころで、前記ハーフプリズム(6)は入射平行光の偏光
に係わらず、分割比が1:1となるものが良く、斜面(
7)のコーテイング膜は金属−誘電体ハイブリッドコー
ティング等で良い、ハーフプリズム(6)は後記する合
成光の一定光強度分布の幅より大きい寸法のものとし、
かつ合成光の一定光強度分布の幅がハーフプリズム(6
)の寸法内に入るよう配置する。
(6) is a half prism consisting of two right-angled prisms, and a light-transmitting film is attached to the slope (7).
) splits the incident light at a constant ratio in the direction of incidence and in the direction perpendicular to the direction of incidence. The parallel light (4) enters the front surface of the half prism (6) at right angles, and the parallel light (4) enters the front surface of the half prism (6) at right angles.
) into parallel light (41) in the incident direction and parallel light (42) in the direction perpendicular to the above-mentioned direction of incidence, and the parallel light (41)
The beam radius of and (42) is equal to the major axis beam radius (43) and minor axis beam radius (48) of the parallel light (4) [see Figure 2 (d), (e), and (f)], and the half prism (6)
The splitting ratio is 1:1, and the maximum light intensity (44) of the incident light is divided at a constant ratio, and parallel light (41) and (42) are generated.
By the way, the half prism (6) preferably has a division ratio of 1:1 regardless of the polarization of the incident parallel light.
The coating film in 7) may be a metal-dielectric hybrid coating, etc., and the half prism (6) has a dimension larger than the width of the constant light intensity distribution of the synthesized light, which will be described later.
And the width of the constant light intensity distribution of the combined light is half prism (6
) within the dimensions.

また、平行光(4°)は平行光(4)と直角な方向から
ハーフプリズム(6)の側面に直角に入射し、斜面(7
)でそれぞれ平行光(41’)及び(42”)に分割さ
れる。平行光(4′)は平行光(4)に対しその長軸ビ
ーム半径(43)及び短軸ビーム半径(48)と最大強
度(44)が等しくなるようにする。レーザー光源(1
)が半導体レーザーの場合、前記のビーム半径(43)
を等しくするため、放射角が等しく揃ったものを選定す
る。平行光(41”)の最大強度(44”)はその出力
を前記のAPC回路(3o)で調整し、平行光(4)の
最大光強度(44)と等しくするので、平行光(41°
)及び(42’)も平行光(41)及び(42)と同様
に長袖ビーム半径(43)と短軸ビーム半径(48)で
あり、同等の長さを有する。
In addition, the parallel light (4°) enters the side surface of the half prism (6) at right angles from the direction perpendicular to the parallel light (4), and
) into parallel beams (41') and (42''), respectively.Parallel beam (4') is divided into parallel beams (41') and (42'') by its major axis beam radius (43) and minor axis beam radius (48) with respect to parallel beam (4). The maximum intensities (44) are made equal.The laser light source (1
) is a semiconductor laser, the above beam radius (43)
In order to make them equal, select those with equal radiation angles. The maximum intensity (44") of the parallel light (41") is adjusted by the APC circuit (3o) mentioned above and made equal to the maximum light intensity (44) of the parallel light (4), so the parallel light (41
) and (42') also have a long sleeve beam radius (43) and a short axis beam radius (48), similar to the parallel beams (41) and (42), and have the same length.

前記のハーフプリズム(6)から同一方向に出射した平
行光(41)及び(41’)は合成光(8)となる。前
記の平行光(41)及び(41’)の光軸が平行となる
よう平行光(4)及び(4゛)はハーフプリズム(6)
への入射角を調整され、合成光(8)もその光軸方向(
21)に平行光となる。また、平行光(41)及び(4
1’)のビーム中心(47)及び(47’)のビーム間
隔(46)をビーム半径(43)にほぼ等しく配置すれ
ば、第2図(a)のように合成光(8)は合成方向(2
2)のビーム間隔(46)において最大光強度が(60
)のようになり、その強度分布を一定とすることができ
る。前記のように長袖ビーム半径(43)を合成方向(
22)にして合成すると、ビーム間隔(46)を広くと
れ有利である。平行光(41)及び(41°)の短軸ビ
ーム半径(48)は第2図(b)で図示しているように
合成方向(22)と直角な移動方向(23)に向き、こ
の方向にはガウス分布をしている。そして、最大光強度
が(45)のようになり、その頂点では強度分布がスリ
ット幅(26)の範囲で一定になっている。
The parallel lights (41) and (41') emitted in the same direction from the half prism (6) become a composite light (8). The parallel beams (4) and (4') are connected to a half prism (6) so that the optical axes of the parallel beams (41) and (41') are parallel.
The incident angle to the composite light (8) is adjusted, and the composite light (8) also has its optical axis direction (
21) becomes parallel light. In addition, parallel light (41) and (4
If the beam center (47) of 1') and the beam interval (46) of (47') are arranged approximately equal to the beam radius (43), the composite light (8) will be directed in the composite direction as shown in Figure 2 (a). (2
2), the maximum light intensity is (60) at the beam spacing (46).
), and the intensity distribution can be made constant. As mentioned above, the long sleeve beam radius (43) is set in the composite direction (
22) is advantageous because the beam spacing (46) can be widened. The short axis beam radius (48) of the parallel beams (41) and (41°) is oriented in the direction of movement (23) perpendicular to the synthesis direction (22), as shown in FIG. 2(b). has a Gaussian distribution. Then, the maximum light intensity becomes as shown in (45), and at the apex, the intensity distribution is constant within the range of the slit width (26).

第1図における(9)はレーザー光の吸収体でハーフプ
リズム(6)から出射する平行光(42)及び(42’
)を吸収し散乱しないようにするものである。
In Fig. 1, (9) is a laser beam absorber, which is the parallel beam (42) and (42') emitted from the half prism (6).
) to prevent it from being scattered.

(10)は光学ヘッドでコリメートヘッド(3)及び(
3′)、直角プリズム(5)、ハーフプリズム(6)、
スリット(13)及び(14) 、センサー(16) 
、フィルター(17)を各々光軸を合わせ固定し一体化
するものである。該光学ヘッド(10)の出射口(11
)から前記合成光(8)を被測定物(20)に投光照射
し、被測定物(20)の断面で遮光された光を入射口(
12)で受け、スリット(14)を通過した透過光(1
5)をセンサー(16)で受光し、その受光量から被測
定物(20)の投影面積や外径を測定する測定ヘッドで
ある。
(10) is an optical head, collimating head (3) and (
3'), right angle prism (5), half prism (6),
Slits (13) and (14), sensor (16)
, filters (17) are integrated by aligning their optical axes and fixing them. The output aperture (11) of the optical head (10)
), the composite light (8) is projected onto the object to be measured (20), and the light blocked by the cross section of the object to be measured (20) is transmitted to the entrance (
The transmitted light (1) received by the slit (12) and passed through the slit (14)
5) is a measurement head that receives light with a sensor (16) and measures the projected area and outer diameter of the object to be measured (20) from the amount of received light.

以上のような装置によりレーザーの平行光を被測定物に
照射し、その透過光をセンサーに受光して被測定物の外
径を測定することができるもので、2つの平行光を合成
し照射光のビーム光強度分布を一定とすることにより測
定範囲を拡大すると共に、被測定物は線材で高速走行に
よりその位置がブしても測定誤差が生じないようにする
ことができるものである。
The device described above can measure the outer diameter of the object by irradiating parallel laser light onto the object to be measured and receiving the transmitted light on the sensor. By keeping the light beam intensity distribution constant, the measurement range can be expanded, and measurement errors can be prevented even if the object to be measured is a wire and its position is blurred due to high-speed running.

次に、スリットによって検出感度を高めることができる
点について述べる。
Next, we will discuss how detection sensitivity can be increased by using slits.

スリット(13)は出射口(11)に取り付はスリット
長とスリット幅の開口部を合成光(8)が通過するもの
で、被測定物(20)による散乱光と外乱光がAPC回
路のセンサー(28)に入射しないようにするものであ
る。出射口(11)をスリット(13)のようにつくれ
ばスリット(13)は省略できる。
The slit (13) is attached to the exit port (11) so that the composite light (8) passes through the opening with the length and width of the slit, and the scattered light and disturbance light from the object to be measured (20) are removed from the APC circuit. This prevents the light from entering the sensor (28). If the exit port (11) is made like a slit (13), the slit (13) can be omitted.

スリット(14)は入射口(12)と測定用センサー(
16)の間に取り付け、開口部を透過光(15)が通過
するもので、被測定物(20)による散乱光と外乱光が
測定用のセンサー(16)に入射しないようにすると共
にセンサー(16)が受光する透過光(15)の光強度
分布が一定範囲を通過するものである。入射口(12)
をスリット(14)のようにつくればスリット(14)
は省略できるが、センサー(16)に洩れ込む散乱光と
外乱光を極力減少させるためには、前記実施例のように
入射口とスリットを別個に配置するのが望ましい。
The slit (14) is connected to the entrance port (12) and the measurement sensor (
16), the transmitted light (15) passes through the opening, and prevents scattered light and disturbance light from the object to be measured (20) from entering the measurement sensor (16). The light intensity distribution of the transmitted light (15) received by 16) passes through a certain range. Inlet port (12)
If you make it like slit (14), slit (14)
Although this can be omitted, in order to reduce as much as possible the scattered light and disturbance light that leak into the sensor (16), it is desirable to arrange the entrance port and the slit separately as in the previous embodiment.

何れにしても出射口(11)と入射口(12)とは、本
来内部保護のためのハウジングと光を通すための窓であ
るが、出射口(11)をスリット(13)と同一寸法に
、また入射口(12)をスリット(14)と同一寸法に
つくればスリットが2個づつあることになり、洩れ散乱
光を防止することができるし、スリット1個づつでよい
場合に出射口(11) 、入射口(12)をスリットの
寸法にすればスリン) (13)(14)を省略できる
In any case, the exit port (11) and the entrance port (12) are originally a housing for internal protection and a window for passing light, but the exit port (11) is made to have the same dimensions as the slit (13). Also, if the entrance port (12) is made to have the same dimensions as the slit (14), there will be two slits each, which can prevent leakage and scattered light. 11) If the entrance port (12) is made to have the size of a slit, the sulins (13) and (14) can be omitted.

しかして、前記のスリット(14)のスリット長(25
)をビーム間隔(46)以下とし、スリット幅(26)
をビーム半径(4日)より十分短(する〔第2図(a)
(b)参照〕。前記の合成光(8)の被測定物の移動方
向(23)でビーム中心(47)とスリット幅(26)
の中心を合わせスリット長(25)をビーム間隔(46
)以内に入るようスリット(14)を配置すれば、スリ
ット長(25)を通過する透過光(15)は第2図(a
)の最大光強度(60)のように一定の強度分布となり
、スリット幅(26)を通過する透過光(15)は、第
2図(b)のようにビーム中心(47)付近のガウス分
布が最大光強度(45)に対して変化が小さくほぼ一定
で最大光強度(45)とみなせ、スリン) (14)を
通過する透過光(15)は一定の強度分布となる。
Therefore, the slit length (25
) is less than or equal to the beam spacing (46), and the slit width (26)
is sufficiently shorter than the beam radius (4 days) [Figure 2 (a)
(b)]. The beam center (47) and slit width (26) of the composite light (8) in the direction of movement of the object to be measured (23)
Align the center of the slit length (25) with the beam spacing (46
), the transmitted light (15) passing through the slit length (25) will be as shown in Figure 2 (a).
) has a constant intensity distribution, such as the maximum light intensity (60), and the transmitted light (15) passing through the slit width (26) has a Gaussian distribution near the beam center (47) as shown in Figure 2 (b). The change is small with respect to the maximum light intensity (45), and it can be regarded as the maximum light intensity (45), and the transmitted light (15) passing through Surin (14) has a constant intensity distribution.

センサー(工6)は受光面に照射された受光量を受光量
に比例した出力電流(31)に変換し出力するもので、
例えばフォトダイオード、PINダイオード、フォトト
ランジスタ、APDその他の受光素子を用いることがで
きる。高速に測定をする場合、PINダイオード、AP
D等の応答性の良いものを用いる。
The sensor (6) converts the amount of light received on the light receiving surface into an output current (31) proportional to the amount of light received, and outputs it.
For example, a photodiode, PIN diode, phototransistor, APD, or other light receiving element can be used. For high-speed measurements, PIN diode, AP
Use one with good responsiveness such as D.

センサー(16)は測定精度を良くするため、受光面の
各部分において受光量に対する出力電流(31)が一定
であるものが良い。第4図(b)においてセンサー(1
6)の出力電流(31)はプリアンプ(32)で変換増
幅して出力電流(31)に比例した電圧信号(33)と
する、前記のようにして電圧信号(33)を測定して受
光量を求めることができる。前記合成光(8)を被測定
物(20)に投光照射し被測定物(20)の断面で遮光
された光をセンサー(16)で受光するとき、遮光され
た面積の遮光量を電圧信号(33)の変化値(29) 
 (第3図(d)参照〕で指示計(34)に指示すれば
、遮光量及び被測定物(20)の外径を求めることがで
きる。
In order to improve measurement accuracy, the sensor (16) preferably has a constant output current (31) in each part of the light receiving surface relative to the amount of light received. In FIG. 4(b), the sensor (1
The output current (31) in step 6) is converted and amplified by the preamplifier (32) to produce a voltage signal (33) proportional to the output current (31).The voltage signal (33) is measured as described above to determine the amount of light received. can be found. When the composite light (8) is projected onto the object to be measured (20) and the light blocked by the cross section of the object to be measured (20) is received by the sensor (16), the amount of light blocking of the area of the object to be measured is determined by the voltage. Change value (29) of signal (33)
By instructing the indicator (34) (see FIG. 3(d)), the amount of light shielding and the outer diameter of the object to be measured (20) can be determined.

前記の第1図に示すフィルター(17)は光学ヘッド(
10)の出射口(11)及び入射口(12)に取り付け
、レーザー光源(1)の波長以外を遮光するもので、外
乱光を遮光してAPC回路のセンサー(28)及び測定
用センサー(16)に入射しないようにしている。
The filter (17) shown in FIG.
It is attached to the output port (11) and the input port (12) of the laser light source (10) and blocks light other than the wavelength of the laser light source (1). ).

被測定物(20)は電線、糸、ワイヤ等の線状をなした
もので、その軸方向に高速で移動しかつ振動を伴っても
良い、被測定物(20)は各図に図示しである光学ヘッ
ド(10)の移動方向(23)に移動するよう配置する
The object to be measured (20) is a linear object such as an electric wire, thread, wire, etc., and may move at high speed in the axial direction and may be accompanied by vibration.The object to be measured (20) is shown in each figure. The optical head (10) is arranged to move in the moving direction (23) of the optical head (10).

このとき光学ヘッド(10)が正確に測定できる測定範
囲は、光軸方向(21)では合成光(8)が平行光なの
で出射口(11)から入射口(12)間で測定可能であ
り、合成方向(22)ではスリット長(25) 、被測
定物の移動方向(23)ではスリット幅(26)で囲ま
れた範囲となり、被測定物(20)の投影面がスリット
長(25)とスリット幅(26)の範囲内にあれば良く
、被測定物(20)の振動も許容できる。
At this time, the measurement range that can be accurately measured by the optical head (10) is between the exit port (11) and the entrance port (12) because the combined light (8) is parallel light in the optical axis direction (21). The range is surrounded by the slit length (25) in the composite direction (22) and the slit width (26) in the direction of movement of the object to be measured (23), and the projection plane of the object to be measured (20) is the slit length (25). It only needs to be within the range of the slit width (26), and vibration of the object to be measured (20) can also be tolerated.

第3図(a)において、前記のハーフプリズム(6)を
取り除き合成光(8)のかわりに平行光(4)を用いて
、該平行光(4)を出射口(11)より投光照射し被測
定物(20)の外径を測定する場合、スリット(14)
のスリット幅(26)の中心がビーム中心(47)付近
に配置し、スリット長(25)の方向に平行光(4)の
長袖ビーム半径(43)を配置する。
In FIG. 3(a), the half prism (6) is removed and parallel light (4) is used instead of the composite light (8), and the parallel light (4) is projected from the exit port (11). When measuring the outer diameter of the object to be measured (20), the slit (14)
The center of the slit width (26) is placed near the beam center (47), and the long beam radius (43) of the parallel light (4) is placed in the direction of the slit length (25).

そして、スリット長(25)の方向に被測定物を移動す
ると移動した位置センサー(16)の受光量の関係は第
3図(b)のようにビーム半径(43)と電圧信号の変
化値(29)として表わすことができる。しかして、平
行光(4)を被測定物(20)に投光照射すると被測定
物(20)で遮光した像はセンサー(16)上に結ぶが
、このとき前記センサー(16)上の像は被測定物(2
0)の遮光した遮光面積と等しい大きさとなる。しかし
、被測定物(20)の移動する位置によって遮光するガ
ウス分布の光強度が変化し、透過光(15)の遮光量は
光強度を遮光面積で積分したものとなる。被測定物(2
0)の外径が長軸ビーム半径(43)に対して十分率さ
い場合には、センサー(16)の受光量が最小なる遮光
量を測定して外径を測定することが可能である〔第3図
(b)参照]。すなわち、遮光面積はスリット幅(26
)と外径の積とみなしスリット幅(26)が一定なので
、遮光面積は外径に比例する。また、長軸ビーム半径(
43)に対して外径は十分小さいので、ビーム中心(4
7)付近のガウス分布は最大光速度強度(44)に対し
て変化が小さく、はぼ一定で最大光強度(44)とみな
せば、外径と最大光強度(44)に比例した遮光量とな
る〔第3図(a)の上段左図参照〕。故に、最大遮光量
は外径と比例の関係となる。この方法では、ビーム中心
(47)付近でガウス分布がほぼ一定な範囲で測定する
必要があり、被測定物(20)の位置決めまたは走査等
の手段を要する。
When the object to be measured is moved in the direction of the slit length (25), the relationship between the amount of light received by the moved position sensor (16) and the change value of the voltage signal (43) is as shown in Figure 3 (b). 29). Therefore, when the object to be measured (20) is irradiated with parallel light (4), an image blocked by the object to be measured (20) is focused on the sensor (16), but at this time, the image on the sensor (16) is is the object to be measured (2
The size is equal to the light-shielding area of 0). However, the light intensity of the Gaussian distribution that is blocked changes depending on the position where the object to be measured (20) moves, and the amount of blocked transmitted light (15) is obtained by integrating the light intensity over the blocked area. Object to be measured (2
If the outer diameter of 0) is a sufficient ratio to the major axis beam radius (43), it is possible to measure the outer diameter by measuring the amount of light shielding that minimizes the amount of light received by the sensor (16). See FIG. 3(b)]. In other words, the light shielding area is the slit width (26
) and the outer diameter and the assumed slit width (26) is constant, so the light shielding area is proportional to the outer diameter. Also, the major axis beam radius (
Since the outer diameter is sufficiently small compared to 43), the beam center (4
7) The nearby Gaussian distribution has a small change with respect to the maximum light velocity intensity (44), and if it is considered to be almost constant and the maximum light intensity (44), then the amount of shading is proportional to the outer diameter and the maximum light intensity (44). [See the upper left diagram in Figure 3(a)]. Therefore, the maximum amount of light shielding is proportional to the outer diameter. This method requires measurement in a range where the Gaussian distribution is approximately constant near the beam center (47), and requires means such as positioning or scanning of the object to be measured (20).

そこで、第3図(C)においては、前述のように平行光
(4)及び(4゛)をハーフプリズム(6)で合成光(
8)とし被測定物(20)に投光照射して、前記したス
リン) (14)で合成光(8)の−走光強度分布の範
囲のみをセンサー(16)で受光すれば合成光(8)が
平行光であるからしてセンサー(16)上の遮光像は被
測定物(20)の遮光した遮光面積と等しい大きさとな
り、スリット(14)の開口部は一定光強度分布であり
、被測定物(20)が合成方向(22)に位置ずれして
も透過光(15)の遮光量及びセンサー(16)の受光
量を一定とすることができる。
Therefore, in Fig. 3 (C), parallel beams (4) and (4゛) are combined using a half prism (6) as described above.
8) If the object to be measured (20) is illuminated with light and the sensor (16) receives only the range of -phototactic intensity distribution of the composite light (8) in (14), the composite light (8) is ) is parallel light, the shaded image on the sensor (16) has a size equal to the shaded area of the object to be measured (20), and the opening of the slit (14) has a constant light intensity distribution. Even if the object to be measured (20) is displaced in the synthesis direction (22), the amount of blocked transmitted light (15) and the amount of light received by the sensor (16) can be kept constant.

遮光面積はスリット幅(26)と被測定物(20)の外
径の積とみなしスリット幅(26)が一定なので、遮光
面積は外径に比例する。センサー(16)上の遮光量は
光強度分布を遮光面積で積分したものであるが、光強度
分布が一定なので遮光面積に比例する。遮光量は外径に
比例し遮光量を測定して被測定物(20)の外径を測定
できる。前記のようにスリット(14)の開口部は一定
光強度分布であり、被測定物(20)が合成方向(22
)に位置ずれしてもスリット長(25)の範囲では測定
値を一定とすることができる。
The light shielding area is considered to be the product of the slit width (26) and the outer diameter of the object to be measured (20).Since the slit width (26) is constant, the light shielding area is proportional to the outer diameter. The amount of light blocking on the sensor (16) is obtained by integrating the light intensity distribution over the light blocking area, and since the light intensity distribution is constant, it is proportional to the light blocking area. The amount of light shielding is proportional to the outer diameter, and by measuring the amount of light shielding, the outer diameter of the object to be measured (20) can be measured. As mentioned above, the opening of the slit (14) has a constant light intensity distribution, and the object to be measured (20) is directed in the synthesis direction (22
), the measured value can be kept constant within the range of the slit length (25).

この様に、被測定物(20)がスリット長(25)とス
リット幅(26)の範囲内にあれば良く、また光軸方向
(21)では合成光(8)が平行光であるからして被測
定物(20)の光軸方向(21)、合成方向(22)の
振動も許容できる。
In this way, it is sufficient that the object to be measured (20) is within the range of the slit length (25) and the slit width (26), and the combined light (8) is parallel light in the optical axis direction (21). Therefore, vibrations of the object to be measured (20) in the optical axis direction (21) and in the composite direction (22) can also be tolerated.

前述した被測定物(20)の外径はスリット幅(26)
における平均の外径を与えるが、スリット幅(26)を
短くすれば、小さな外径の変化を測定することが可能と
なりうる。また、前述したように被測定物(20)に投
光照射する合成光(8)が平行光なので、センサー(1
6)上の遮光像は被測定物(20)の遮光した遮光面積
と等しい大きさでかつ微小の外径でも遮光像は鮮明とな
り、微小の外径でも測定が可能である。
The outer diameter of the aforementioned object to be measured (20) is the slit width (26)
However, if the slit width (26) is shortened, it may be possible to measure small changes in the outer diameter. Moreover, as mentioned above, since the composite light (8) that is projected onto the object to be measured (20) is parallel light, the sensor (1
6) The above light-shielding image has a size equal to the light-shielding area of the object to be measured (20), and the light-shielding image is clear even with a minute outer diameter, and measurement is possible even with a minute outer diameter.

何れにしても、センサー出力=(投光強度分布)×(遮
光面積)×(センサー感度分布)であって、投光強度分
布とセンサー感度分布は一定であるので、センサー出力
は遮光面積Sに比例する。
In any case, sensor output = (light emission intensity distribution) x (shading area) x (sensor sensitivity distribution), and since the light emission intensity distribution and sensor sensitivity distribution are constant, the sensor output is equal to the shade area S. Proportional.

一方、被測定物の平均外径をlとするとX−(遮光面積
S)+(スリット幅) でスリット幅は一定であるので、外径lは遮光面積に比
例することになる。
On the other hand, if the average outer diameter of the object to be measured is 1, then the slit width is given by X-(shading area S)+(slit width), so the outer diameter l is proportional to the shading area.

したがって、外径!に対してスリット幅が十分小さけれ
ば最大、最小が求まる。
Therefore, the outer diameter! If the slit width is sufficiently small, the maximum and minimum can be found.

次に、線状をなした被測定物(20)の外径をその軸方
向に移動させて連続的に測定する場合、光学ヘッド(1
0)の移動方向(23)に被測定物(20)を移動させ
るが、被測定物(20)に第4図(C)の如く大形欠陥
(18)があれば電圧信号(33)の変化は大きく、微
小欠陥(19)があれば、電圧信号(33)の変化は小
さい。このとき、被測定物(20)の線径の変化の大き
さは、電圧信号(33)の変化の大きさより測定でき、
第3図(b)(d)の如く変化値(29)を指示計(3
4)で指示すれば被測定物(20)の外径を測定し、第
4図(b)に示す電圧比較器(35)を用いれば設定値
以上の径の変動に対して良否判定をでき、電圧信号(3
3)の最小値をもとめるボトムホルダー(36)を用い
て第4図(e)に示す最大外径(53)を求め、また変
化値(29)を積分器(37)で平均化して平均外径(
54)かえられる。
Next, when continuously measuring the outer diameter of the linear object to be measured (20) by moving it in the axial direction, the optical head (1
The object to be measured (20) is moved in the moving direction (23) of 0), but if the object to be measured (20) has a large defect (18) as shown in Figure 4 (C), the voltage signal (33) will change. The change is large, and if there is a microdefect (19), the change in the voltage signal (33) is small. At this time, the magnitude of the change in the wire diameter of the object to be measured (20) can be measured from the magnitude of the change in the voltage signal (33),
As shown in Fig. 3(b) and (d), change value (29) is measured by indicator (3).
4), the outer diameter of the object to be measured (20) can be measured, and if the voltage comparator (35) shown in Fig. 4(b) is used, a pass/fail judgment can be made for changes in diameter exceeding the set value. , voltage signal (3
3) Using the bottom holder (36) to find the maximum outer diameter (53) shown in Figure 4(e), the change value (29) is averaged with an integrator (37) to calculate the outside diameter of the average. Diameter (
54) Can be changed.

また、被測定物(20)の軸方向の線径の変化の大きさ
は、電圧信号(33)の時間(50)の変化である周波
数を測定すれば軸方向線径の変化の大きさが求められる
。電圧信号(33)を第4図(b)に示すフィルター(
38)で低周波数信号(51)として大きい変化のみを
取り前記電圧比較器(35)で判定すれば、軸方向、径
方向共に大きな大形欠陥(18)のみ判定して良否の結
果かえられる。
Furthermore, the magnitude of change in the axial wire diameter of the object to be measured (20) can be determined by measuring the frequency, which is the change in time (50) of the voltage signal (33). Desired. The voltage signal (33) is passed through the filter (
38), if only large changes are taken as the low frequency signal (51) and judged by the voltage comparator (35), only the large defect (18) which is large in both the axial and radial directions can be judged and the result can be changed as pass/fail.

前述した被測定物(20)が糸の場合、単糸と呼ぶ数乃
至数十ミクロンの極細糸が幾本もより合わされて数百ミ
クロンの糸を構成している。
When the object to be measured (20) described above is a thread, a number of ultrafine threads called single threads of several to tens of microns are twisted together to form a thread of several hundred microns.

高速に糸の軸方向に移動する際に糸の線径変化と単糸が
糸の径の外にはみ出した毛羽の本数を、測定するにはメ
ガヘルツオーダーの高周波数で測定する必要がある0本
実施例のセンサー(16)はこの速度に十分応答できる
ものでかつスリット幅(26)を小さくして極細の単糸
を十分測定できる分解能をもち、電圧信号(33)の周
波数変化をフィルター(38)用いて毛羽と糸の径の変
化量に分離する。糸の径の変化量を示す低周波信号(5
1)についてはボトムホルダー(36)で糸の最大外径
(53)を、積分器(37)により平均外径(54)を
求めることができる。また、電圧比較器(35)により
糸の径の判定をすることができる。毛羽を示す高周波信
号(52)は微分器(39)とゼロクロスの電圧比較器
(35)を用いて毛羽の本数をカウンター(4o)でカ
ウントして一定ピッチの糸の長毎に記録する。
In order to measure changes in the wire diameter of the yarn and the number of fuzz that protrude outside the yarn diameter when the yarn moves at high speed in the axial direction, it is necessary to measure at a high frequency on the order of megahertz. The sensor (16) of the embodiment can sufficiently respond to this speed and has a resolution sufficient to measure an extremely fine single yarn by reducing the slit width (26), and filters (38) the frequency change of the voltage signal (33). ) to separate fluff and thread diameter changes. A low frequency signal (5
Regarding 1), the maximum outer diameter (53) of the yarn can be determined using the bottom holder (36), and the average outer diameter (54) can be determined using the integrator (37). Further, the diameter of the yarn can be determined by the voltage comparator (35). A high frequency signal (52) indicating fuzz is recorded by using a differentiator (39) and a zero-cross voltage comparator (35), and counting the number of fuzz by a counter (4o) for each length of yarn at a constant pitch.

このように本実施例の外径測定装置は線径を高分解能で
測定し大形欠陥(18)と微小欠陥(19)を同時に測
定し、かつ高速に測定でき被測定物(20)の振動を許
容する外径測定装置である。
In this way, the outer diameter measuring device of this embodiment can measure the wire diameter with high resolution, measure large defects (18) and small defects (19) simultaneously, and can measure at high speed. This is an outer diameter measuring device that allows

被測定物(20)の外径を精度良く測定するには外乱と
なるレーザー光源(1)の出力変動、被測定物(20)
による散乱光や外乱光を小さくしセンサー(16)の受
光量の精度を高め、センサー(16)を含めた測定回路
のノイズを小さくし、測定値の精度を高める。このため
前記した光学ヘッド(10)の出射口(11)にフィル
ター(17)とスリット(13)を付け、入射口(12
)にフィルター(17)とスリット(14)を付ける。
In order to accurately measure the outer diameter of the object to be measured (20), fluctuations in the output of the laser light source (1), which cause disturbances, and the object to be measured (20)
This reduces the amount of scattered light and disturbance light caused by the sensor (16), increases the accuracy of the amount of light received by the sensor (16), reduces noise in the measurement circuit including the sensor (16), and increases the accuracy of the measured value. For this purpose, a filter (17) and a slit (13) are attached to the exit port (11) of the optical head (10), and the entrance port (12) is provided with a filter (17) and a slit (13).
) Attach the filter (17) and slit (14).

このようにして被測定物(8)による散乱光や外乱光が
APC回路のセンサー(28)及び測定用センサー(1
6)に入射しないようにして、レーザー光源(1)の出
力変動を防止し、測定値の精度を高めるよう構成する。
In this way, scattered light and disturbance light from the object to be measured (8) are transmitted to the sensor (28) of the APC circuit and the measurement sensor (1).
6), so as to prevent output fluctuations of the laser light source (1) and improve the accuracy of measured values.

何れにしても以上の方法によれば、走行する被測定物の
透過光の時間変化を測定してその周波数を分別し、径の
値と微小欠陥を同時に測定することが可能である。
In any case, according to the above method, it is possible to measure the time change of transmitted light of a moving object to be measured, separate its frequency, and simultaneously measure the diameter value and minute defect.

合成光(8)を作る手段としてハーフプリズム(6)は
偏光ビームスプリッタ(56)でも良く、偏光ビームス
プリッタ(56)は入射光の偏光方向が斜面(57)に
垂直なとき透過し反射せず、水平なとき反射し透過しな
いもので、直角プリズムを貼り合わせたもので良い。
The half prism (6) may be a polarizing beam splitter (56) as a means of creating the composite light (8), and the polarizing beam splitter (56) transmits the incident light when the polarization direction is perpendicular to the slope (57) and does not reflect it. , which reflects when it is horizontal and does not transmit, and can be made by pasting together right-angle prisms.

第5図において、レーザー光源(1)、(1”)がHe
 −Neレーザーのような偏光がランダムでビーム断面
が円形の平行光(4)、(4゛)を出射する場合、偏光
ビームスプリッタ(56)を出射する平行光(41)、
(41’)の偏光方向は互いに直交していて平行光(4
1)の偏光方向(58)と平行光(41’)の偏光方向
(59’)となる、このとき、偏光ビームスプリッタ(
56)の偏光方向に対する反射、透過の比率が等しく、
かつレーザー光源(1)、(1゛)のビーム半径と出力
が等しければ、合成光(8)は前記ハーフプリズム(6
)で合成する場合と同様に均一強度分布を得ることがで
き、平行光(42)の偏光方向(58’)と平行光(4
2”)の偏光方向(59)となるが合成光(8)同様に
合成光(8°)も合成できる。
In Fig. 5, the laser light sources (1), (1”) are He
- When emitting parallel light (4), (4゛) with random polarization and a circular beam cross section, such as a Ne laser, the parallel light (41) emitted from the polarizing beam splitter (56),
The polarization directions of (41') are orthogonal to each other, and the parallel light (41') is perpendicular to each other.
The polarization direction (58) of 1) becomes the polarization direction (59') of the parallel light (41'). At this time, the polarization beam splitter (
56) The ratio of reflection and transmission to the polarization direction is equal,
And if the beam radius and output of the laser light sources (1) and (1゛) are equal, the combined light (8) will pass through the half prism (6).
), it is possible to obtain a uniform intensity distribution in the same way as when combining the parallel light (42) and the polarization direction (58') of the parallel light (42).
Although the polarization direction (59) is 2''), the combined light (8°) can also be combined in the same way as the combined light (8).

第6図において、レーザー光源(1)、(1”)が半導
体レーザーのように直線偏光して楕円ビームの場合、第
6(b)図のように平行光(4)、(4”)の偏光方向
が偏光ビームスプリッタ(56)の斜面(57)に45
1の角度で入射し、出射する平行光(41)、(41°
)のビーム長径が同じ方向となるようにする。平行光(
4)、(4”)は斜面(57)で通過、反射が1:1と
なり均一強度分布の合成光(8)、(8”)をえる。こ
のとき、合成光(8)、(8゛)の合成方向(22)が
45゜ず頃斜するので、被測定物(20)の移動方向(
23)が合成方向(22)と直交するように配置する。
In Figure 6, when the laser light sources (1), (1'') are linearly polarized elliptical beams like semiconductor lasers, parallel beams (4), (4'') are generated as shown in Figure 6(b). The polarization direction is 45 on the slope (57) of the polarizing beam splitter (56).
Parallel light (41) that enters at an angle of 1 and exits (41°
) so that the major axis of the beam is in the same direction. Parallel light (
4) and (4'') pass through the slope (57) and are reflected at a ratio of 1:1, resulting in composite light (8) and (8'') with a uniform intensity distribution. At this time, since the direction (22) of combining the combined light beams (8) and (8°) is inclined at about 45°, the moving direction (22) of the object to be measured (20) (
23) is arranged so that it is perpendicular to the composite direction (22).

被測定物(20)が大きく測定範囲を太き(する場合、
特に合成方向(22)の測定可能範囲を大きくする必要
がある。この場合、第7図、第8図、第9図に示すよう
に、合成光(8)、(8゛)の−電光強度分布の幅を大
きくして測定範囲を広げることができる。
If the object to be measured (20) is large and the measurement range is wide (if
In particular, it is necessary to increase the measurable range in the composite direction (22). In this case, as shown in FIGS. 7, 8, and 9, the measurement range can be expanded by increasing the width of the -electric light intensity distribution of the combined lights (8) and (8').

第7図について説明すると、(55)はプリズムベアで
、一方向の入射光のビーム径を拡大するものであり、入
射光のビーム径はプリズム厚みの差のある方向のみ拡大
され、厚みの等しい方向ではビーム径は等しく、入射光
が平行光であれば出射光も平行光となるものである。2
枚のプリズムのうち入射側で拡大された平行光はその光
軸が拡大方向に曲がるが、出射側のプリズムを適当に配
置すれば、出射側でも拡大されかつ入射光の光軸と出射
光の光軸は平行となり、プリズム厚みの等しい方向では
光軸は一直線となる。
To explain Fig. 7, (55) is a prism bear that expands the beam diameter of the incident light in one direction, and the beam diameter of the incident light is expanded only in the direction where there is a difference in prism thickness. The beam diameters are the same in each direction, and if the incident light is parallel light, the output light will also be parallel light. 2
The optical axis of parallel light magnified on the input side of the prism bends in the expansion direction, but if the prism on the output side is properly arranged, it will also be expanded on the output side and the optical axis of the input light and the output light will be The optical axes are parallel, and in the direction where the prism thickness is equal, the optical axes are in a straight line.

前記の平行光(4)、(4゛)をプリズムベア(55)
、(55’)に入射し長径ビーム半径を拡大するように
配置すると出射光の長径ブーム半径は拡大され平行光(
4a)、(4a’)となる。前記したハーフプリズム(
6)で平行光(4a)、(4a’)の拡大された長径ビ
ーム半径を合成すれば、合成光(8)の−電光強度分布
の幅が拡大できて測定範囲を広げることができる。プリ
ズムベア(55)による拡大率は2乃至6倍とれ、大形
コリメータレンズやビームエキスパンターによるビーム
半径の拡大する手段より、光出力の利用率や小型化の点
で有利である。
The above parallel beams (4) and (4゛) are connected to the prism bear (55).
, (55') and is arranged so as to expand the major diameter beam radius, the major diameter boom radius of the output beam is expanded and parallel light (
4a) and (4a'). The half prism mentioned above (
By combining the expanded long beam radii of the parallel beams (4a) and (4a') in step 6), the width of the -electrical light intensity distribution of the combined beam (8) can be expanded, and the measurement range can be expanded. The magnification rate of the prism bear (55) is 2 to 6 times, which is more advantageous in terms of utilization of optical output and miniaturization than means for expanding the beam radius using large collimator lenses or beam expanders.

第8図について説明すると、3台のコリメートヘッドを
用いて、平行光(4)、(4゛)、(4”)を合成して
測定範囲を広げる実施例である。前記のように、平行光
(4)、(4゛)をハーフプリズム(6゛)で合成光(
8)を合成する。
Fig. 8 is an example in which three collimating heads are used to combine parallel lights (4), (4゛), and (4'') to expand the measurement range. Lights (4) and (4゛) are combined with a half prism (6゛) (
8).

次に、合成光(8)と平行光(4”)とをハーフプリズ
ム(6゛)で合成する。このとき、平行光(4”)のビ
ーム半径は前記のように平行光(4)、(4゛)と等し
くし、出力は合成光(8)を構成する平行光(41)、
(41’)と等しくし、ハーフプリズム(6′)への入
射位置と角度を調整して、合成光(8a)及び合成光(
8a’)は3つの平行光(4)、(4゛)、(4”)で
構成され、−電光強度分布の幅は2倍に拡大することが
できる。
Next, the combined light (8) and the parallel light (4") are combined using a half prism (6"). At this time, the beam radius of the parallel light (4") is the same as the parallel light (4), (4゛), and the output is parallel light (41) constituting the composite light (8),
(41') and adjust the incident position and angle to the half prism (6') to make the composite light (8a) and composite light (
8a') is composed of three parallel beams (4), (4゛), (4''), and - the width of the lightning intensity distribution can be expanded twice.

第9図について説明すると、2個のハーフプリズム(6
)、(6゛)と2個の直角プリズム(5)(5)を用い
て3倍に測定範囲を広げる実施例である。平行光(4)
、(4°)をハーフプリズム(6)で合成して合成光(
8)及び(8°)とする、該合成光(8′)を直角プリ
ズム(5)(5)により偏向してハーフプリズム(6”
)に導き、ハーフプリズム(6゛)の隣接して、後述す
る合成光(8a’)と直交する面に合成光(8)を導き
、斜面(7゛)で合成して合成光(8a)及び(8a’
)とする。このとき、合成光(8)及び(8゛)のビー
ム半径、光軸及び出力を前記のように調整しておけば、
−電光強度分布の幅を3倍に拡大することができる。
To explain Fig. 9, two half prisms (6
), (6゛) and two right angle prisms (5) (5) are used to expand the measurement range three times. Parallel light (4)
, (4°) are synthesized using a half prism (6) to produce composite light (
8) and (8°), and the combined light (8') is deflected by a right angle prism (5) (5) to form a half prism (6").
), the composite light (8) is guided to a surface adjacent to the half prism (6゛) and orthogonal to the composite light (8a') described later, and is combined at the slope (7゛) to produce composite light (8a). and (8a'
). At this time, if the beam radius, optical axis, and output of the combined lights (8) and (8゛) are adjusted as described above,
- The width of the lightning intensity distribution can be expanded three times.

以上の如く2つ以上の平行光を合成し、投光の光強度分
布を一定とすることにより測定範囲を拡大することがで
きる。
As described above, by combining two or more parallel lights and making the light intensity distribution of the projected light constant, the measurement range can be expanded.

次に、幅の大きな被測定物を測定する場合について第1
0図に基づいて説明する。
Next, let's look at the first example when measuring a large object to be measured.
This will be explained based on Figure 0.

第10図は振動しながら高速に走行する幅の大きな被測
定物の外径を高精度に高速測定する場合を示しており、
平行光(4)、(4”)をハーフプリズム(6)で合成
光(8)、(8′)に合成する。
Figure 10 shows a case where the outer diameter of a wide object to be measured is being measured at high speed and with high accuracy while vibrating and moving at high speed.
Parallel beams (4) and (4'') are combined into composite beams (8) and (8') by a half prism (6).

合成光(8゛)を直角プリズム(5)で偏向して合成光
(8)と平行とし、被測定物(20)の両方エツジ部に
各々合成光(8)、(8゛)を投光し、測定範囲内に入
るように配置する。合成光(8)、(8゛)と光軸を合
わせてスリット(14)、(14’)及びセンサー(1
6)、(16”)を配置し、スリット(14)、(14
”)の間隔をマイクロメータ等の方法で測定する。
The composite light (8゛) is deflected by a right angle prism (5) to be parallel to the composite light (8), and the composite beams (8) and (8゛) are respectively projected onto both edges of the object to be measured (20). and place it within the measurement range. Align the optical axis with the composite light (8), (8゛) and connect the slits (14), (14') and sensor (1).
6), (16”) and slits (14), (14
”) using a method such as a micrometer.

センサー(16)、(16’)の電圧信号(33)、(
33“)を加算器(65)で加算すれば、被測定物(2
0)の両方のエツジ部の寸法変化を測定でき、その値に
前記スリット(14)、(14’)の間隔を加算すれば
、両方のエツジ間の寸法を測定でき、被測定物(20)
の振動は加算器(65)で相殺されて影響はない。
Voltage signals (33), (
33") using the adder (65), the measured object (2
0), and by adding the distance between the slits (14) and (14') to that value, the dimension between both edges can be measured, and the object to be measured (20)
The vibrations are canceled out by the adder (65) and have no effect.

また、光学ヘッド(10)、(10’)の2台を用いて
前記のように被測定物(20)のエツジに合成光(8)
、(8”)を投光し測定しても良い。
In addition, using two optical heads (10) and (10'), the combined light (8) is applied to the edge of the object to be measured (20) as described above.
, (8") may be emitted and measured.

第11図は被測定物(20)が更に多くの測定対称部分
を有する場合に用いられる実施例である。
FIG. 11 shows an embodiment used when the object to be measured (20) has more parts to be measured.

ハーフプリズム(6)、(6゛)、(6”)を用いて合
成光を分割すれば多数の合成光を作ることができる。合
成光(8)はハーフプリズム(6゛)の斜面(7”)で
分割され、合成光(8a)、(8b)となり、合成光(
8a)を直角プリズム(5)で偏向する0合成光(8゛
)は直角プリズム(5)でハーフプリズム(6″)に導
き、斜面(7”)で分割され合成光(8c)、(8d)
となり、合成光(8d)を直角プリズム(5)で偏向す
る。合成光(8a)、(8b)1、合成光(8c)、(
8d)は平行になるよう配置し、被測定物(20)に投
光され光軸を合わせたスリット(14a)、(14b)
、(14c)、(14d)、センサー(16a)、(1
6b)、(16c)、(16d)に受光され測定が行わ
れる。被測定物(20)が幾つかの穴や溝を持つ場合に
は、同時に穴や溝の径を測定することが可能となる。
A large number of composite lights can be created by dividing the composite light using half prisms (6), (6゛), and (6'').The composite light (8) is split by dividing the composite light using half prisms (6), (6゛), and (6''). ”), resulting in composite light (8a) and (8b), and composite light (
8a) is deflected by the right-angle prism (5). The 0 composite light (8゛) is guided by the right-angle prism (5) to the half prism (6"), and is divided by the slope (7") to become the composite light (8c) and (8d). )
The combined light (8d) is deflected by the right angle prism (5). Combined light (8a), (8b) 1, combined light (8c), (
8d) are slits (14a) and (14b) arranged so that they are parallel and whose optical axes are aligned with each other when the light is projected onto the object to be measured (20).
, (14c), (14d), sensor (16a), (1
6b), (16c), and (16d) and measurement is performed. When the object to be measured (20) has several holes or grooves, it is possible to measure the diameters of the holes or grooves at the same time.

(発明の効果) 本発明に係る外径測定装置は、レーザーの平行光を被測
定物に照射し、その透過光をセンサーにて受光して、被
測定物の面積や外径を測定することができる。
(Effects of the Invention) The outer diameter measuring device according to the present invention measures the area and outer diameter of the object by irradiating the object with parallel laser light and receiving the transmitted light with a sensor. I can do it.

レーザー光を一定の強度分布とする手段とスリットによ
り測定範囲を制限することで、被測定物の位置ずれや振
動が許容でき極細の線径も測定可能となる。
By limiting the measurement range with a means to give a constant intensity distribution of the laser beam and a slit, positional deviation and vibration of the object to be measured can be tolerated, and even extremely fine wire diameters can be measured.

また、センサーの高速応答性が良く高速で走行する被測
定物の微小変化も測定可能でセンサー出力の信号を周波
数弁別する手段により被測定物の微小変化と大きな外径
変化を同時に測定することができる。
In addition, the high-speed response of the sensor makes it possible to measure minute changes in objects to be measured that are moving at high speed, and by means of frequency discrimination of the sensor output signal, it is possible to simultaneously measure minute changes and large changes in the outer diameter of objects to be measured. can.

更に、ビーム半径の拡大手段により測定範囲を拡大する
ことができるのみならず、被測定物のエツジに対する投
光操作如何により幅の大きな被測定物を測定することが
できる。
Furthermore, not only can the measuring range be expanded by the beam radius enlarging means, but also a wide object to be measured can be measured by controlling the light projection operation to the edge of the object to be measured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)(b)は第1実施例の平面図と正面図、 第2図(a)(b)は合成光の平面図と正面図、同図(
C)は同図(a)のハーフプリズム(6)への平行光の
入射状態を示す説明図、同図(d)(e)(f)は各平
行光の光強度分布を示す説明図、 第3図(a)(b)はそれぞれ平行光を用いて、被測定
物に照射した場合の光強度分布説明図とその検出信号の
グラフ、同図(c)(d)は合成光を用いた場合の光強
度分布説明図とその検出信号のグラフ、 〔なお、第2図(C)〜(f)、第3図(a)(c)に
おいて(i)は平行光又は合成光の断面図、(ii)(
if)はそれぞれ長軸ビーム半径、短軸ビーム半径の光
強度分布図である。〕第44図a)乃至(f)は検出回
路のブロック図と検出の信号の説明図、 第5図(a)(b)は偏光ビームスプリッタを用いた第
2実施例の平面図と側面図、 第6図(a)(b)は偏光ビームスプリッタを用いた第
3実施例の平面図と側面図、 第7図(a)(b)はプリズムペアで合成光を拡大する
第4実施例の平面図と側面図、第8図は3つの平行光で
合成光を拡大する第5実施例図の平面図、 第9図は2個のプリズムペアで合成光を拡大する第6実
施例の平面図、 第10図は第7実施例の説明図、 第11図は第8実施例の説明図である。 (1)・・・・・レーザー光源 (2)・・・・・コリメートレンズ (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (1日) (19) (20) (21) (22) ・・・コリメートヘッド ・・・平行光 ・・・直角プリズム ・・・ハーフプリズム ・・・斜面 ・・・合成光 ・・・吸収体 ・・・光学ヘッド ・・・出射口 ・・・入射口 ・ ・ ・スリント ・ ・・スリント ・・・透過光 ・・・センサー ・ ・ ・フィルター ・・・微小欠陥 ・・・大形欠陥 ・・・被測定物 ・・・光軸方向 ・・・合成方向 (23) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) ・移動方向 ・スリット長 ・スリット幅 ・測定範囲 ・センサー ・変化値 ・APC回路 ・出力電流 ・プリアンプ ・電圧信号 ・指示計 ・電圧比較器 ・ボトムホルダー ・積分器 ・フィルター ・微分器 ・カウンター ・平行光 ・平行光 ・長軸ビーム半径 (44) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) ・最大強度 ・最大強度 ・ビーム間隔 ・ビーム中心 ・短軸ビーム半径 ・電圧値 ・時間 ・低周波信号 ・高周波信号 ・最大外径 ・平均外径 ・プリズムペア ・偏光ビームスプリッタ ・斜面 ・偏光方向 ・偏光方向 49電圧値 第4図 第 5 図 (a) (b) 第 図 (a) (b) 8“ 47−
Figures 1 (a) and (b) are a plan view and a front view of the first embodiment, Figures 2 (a) and (b) are a plane view and a front view of the combined light, and the same figure (
C) is an explanatory diagram showing the incident state of parallel light to the half prism (6) of the same figure (a), and (d), (e), and (f) are explanatory diagrams showing the light intensity distribution of each parallel light, Figures 3 (a) and 3 (b) are graphs of the light intensity distribution and its detection signal when parallel light is used to irradiate the object to be measured, respectively, and Figure 3 (c) and (d) are graphs when combined light is used. An explanatory diagram of the light intensity distribution and a graph of its detection signal when Figure, (ii) (
if) is a light intensity distribution map of the major axis beam radius and the minor axis beam radius, respectively. ] Figures 44a to 44(f) are block diagrams of the detection circuit and explanatory diagrams of detection signals, and Figures 5(a) and 44(b) are plan and side views of the second embodiment using a polarizing beam splitter. , Figures 6(a) and (b) are plan and side views of the third embodiment using a polarizing beam splitter, and Figures 7(a) and (b) are the fourth embodiment in which the combined light is expanded using a prism pair. Fig. 8 is a plan view of the fifth embodiment in which the combined light is expanded by three parallel beams, and Fig. 9 is a plan view of the sixth embodiment in which the combined light is expanded by two prism pairs. A plan view, FIG. 10 is an explanatory diagram of the seventh embodiment, and FIG. 11 is an explanatory diagram of the eighth embodiment. (1)...Laser light source (2)...Collimating lens (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (1 day) (19) (20) (21) (22) ...Collimating head...Parallel light...Right angle prism...Half Prism... Slope... Combined light... Absorber... Optical head... Output port... Inlet port... Slint... Slint... Transmitted light... Sensor... Filter...Minute defect...Large defect...Object to be measured...Optical axis direction...Composition direction (23) (25) (26) (27) (28) (29) (30) (31) (32) (33) (34) (35) (36) (37) (38) (39) (40) (41) (42) (43) ・Moving direction, slit length, slit width, measurement Range, sensor, change value, APC circuit, output current, preamplifier, voltage signal, indicator, voltage comparator, bottom holder, integrator, filter, differentiator, counter, parallel light, parallel light, long axis beam radius (44 ) (45) (46) (47) (48) (49) (50) (51) (52) (53) (54) (55) (56) (57) (58) (59) ・Maximum strength・Maximum intensity, beam spacing, beam center, short axis beam radius, voltage value, time, low frequency signal, high frequency signal, maximum outer diameter, average outer diameter, prism pair, polarizing beam splitter, slope, polarization direction, polarization direction 49 Voltage Values Figure 4 Figure 5 (a) (b) Figure (a) (b) 8" 47-

Claims (3)

【特許請求の範囲】[Claims] (1)断面外形が一定な平行光束とされたレーザービー
ムを高速走行する線状の被測定物に照射し、被測定物に
よる遮光量を検出して外径を測定するに際し、複数のビ
ームを合成することによってビーム断面内の光強度分布
を一定としたことを特徴とする外径測定装置。
(1) When measuring the outer diameter by irradiating a linear object to be measured running at high speed with a laser beam that is a parallel beam with a constant cross-sectional outline and detecting the amount of light blocked by the object, multiple beams are used. An outer diameter measuring device characterized by making the light intensity distribution within a beam cross section constant by combining the beams.
(2)センサー前部にスリットを配置し検出感度を高め
極細の線径を測定可能としたことを特徴とする請求項(
1)に記載の外径測定装置。
(2) A claim characterized in that a slit is arranged in the front part of the sensor to increase detection sensitivity and make it possible to measure extremely fine wire diameters (
The outer diameter measuring device according to 1).
(3)走行する被測定物の透過光の時間変化を測定して
その周波数を分別し径の値と微小欠陥を同時に測定する
ことを特徴とする請求項(1)又は(2)に記載の外径
測定装置。(4)被測定物のエッジを2つの投光を受光
センサーにより測定し、2つの受光センサーの値と受光
センサーの間隔を測定して幅の大きな被測定物を測定す
ることを特徴とする請求項(1)又は(2)に記載の外
径測定装置。
(3) The method according to claim (1) or (2), characterized in that the time change of the transmitted light of the moving object to be measured is measured, its frequency is separated, and the diameter value and minute defect are simultaneously measured. Outer diameter measuring device. (4) A claim characterized in that a wide object is measured by measuring the edge of the object to be measured using two light emitting sensors, and measuring the values of the two light receiving sensors and the distance between the two light receiving sensors. The outer diameter measuring device according to item (1) or (2).
JP3489590A 1990-02-15 1990-02-15 Outer-diameter measuring apparatus Pending JPH03238307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3489590A JPH03238307A (en) 1990-02-15 1990-02-15 Outer-diameter measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3489590A JPH03238307A (en) 1990-02-15 1990-02-15 Outer-diameter measuring apparatus

Publications (1)

Publication Number Publication Date
JPH03238307A true JPH03238307A (en) 1991-10-24

Family

ID=12426909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3489590A Pending JPH03238307A (en) 1990-02-15 1990-02-15 Outer-diameter measuring apparatus

Country Status (1)

Country Link
JP (1) JPH03238307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197009A (en) * 2005-04-21 2011-10-06 Sumitomo Electric Ind Ltd Superconducting wire inspection device and method
JP2016014557A (en) * 2014-07-01 2016-01-28 株式会社デンソー Dimension measurement device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197009A (en) * 2005-04-21 2011-10-06 Sumitomo Electric Ind Ltd Superconducting wire inspection device and method
JP2016014557A (en) * 2014-07-01 2016-01-28 株式会社デンソー Dimension measurement device

Similar Documents

Publication Publication Date Title
JP2510786B2 (en) Object shape detection method and apparatus
JPH10288578A (en) Particle measuring device and its calibrating method
JP3509088B2 (en) Optical device for three-dimensional shape measurement
JPS59166805A (en) Optical projector and use thereof
JPH08240408A (en) Displacement sensor
WO2002093567A2 (en) Focus error correction method and apparatus
JPH03238307A (en) Outer-diameter measuring apparatus
US5815272A (en) Filter for laser gaging system
JPS603529A (en) Measuring method of optical beam diameter
JPH03238308A (en) Outer-shape measuring apparatus
JP2003083723A (en) Three-dimensional shape measuring optical system
JPS5926883B2 (en) Edge detection device
JPS61242779A (en) Method of detecting inclination and focus of laser beam in laser beam machining device
JPS6370110A (en) Distance measuring apparatus
JPS61140802A (en) Light wave interference device preventing reverse surface reflected light
JPH06102028A (en) Noncontact optical range finder and range finding method
JPS62503049A (en) Methods and apparatus for orienting, inspecting and/or measuring two-dimensional objects
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JP2859359B2 (en) Micro Dimension Measurement Method
JPH05107346A (en) Laser doppler speed meter
JPS5965815A (en) Focus detector
JPH08136248A (en) Confocal point position measuring device
JPH0452401B2 (en)
JPH074909A (en) Laser sensor apparatus
JPH02226034A (en) Eccentricity measuring apparatus for lens