JPH03238174A - One-side submerged arc welding method at high speed - Google Patents

One-side submerged arc welding method at high speed

Info

Publication number
JPH03238174A
JPH03238174A JP2035918A JP3591890A JPH03238174A JP H03238174 A JPH03238174 A JP H03238174A JP 2035918 A JP2035918 A JP 2035918A JP 3591890 A JP3591890 A JP 3591890A JP H03238174 A JPH03238174 A JP H03238174A
Authority
JP
Japan
Prior art keywords
electrode
welding
submerged arc
current
welding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2035918A
Other languages
Japanese (ja)
Other versions
JPH0747218B2 (en
Inventor
Nobuyuki Ohama
大浜 展之
Ikuo Asada
浅田 育雄
Shigeo Oyama
繁男 大山
Ryuichi Motomatsu
元松 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2035918A priority Critical patent/JPH0747218B2/en
Publication of JPH03238174A publication Critical patent/JPH03238174A/en
Publication of JPH0747218B2 publication Critical patent/JPH0747218B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

PURPOSE:To perform welding with high efficiency by specifying the wire diameter of first and second electrodes and specifying the relation between an electric current and the welding speed of both. CONSTITUTION:One-side multiple electrode submerged arc welding is performed by using >=3 electrodes of first, second and third electrodes 8, 9 and 10. The wire diameter of the first electrode 8 and the second electrode 9 is then made to >=4.0 mmphi. When a current and the welding speed of the first electrode 8 are then denoted by Iq1(A) and S(sm/min), respectively, 100<=S<=200 is formulated and the inequality 1 is satisfied. When the distance 14 between the second electrode 9 and the third electrode 10 is made to 150-300 mm and a current of the third electrode 10 is denoted by I3 (A), the inequality II is satisfied. The two welding wires having 1.2-2.4 mmphi diameter are made to a couple to form one-unit electrode. Consequently, both sound and fine back beads and front beads can be formed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、3電極以上の多電極を用いて行う片面サブマ
ージアーク溶接法に係わり、更に詳しくは、溶接速度1
00cm/min以上の高速で行う高能率な片面サブマ
ージアーク溶接法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a single-sided submerged arc welding method using three or more multi-electrodes, and more specifically, a welding speed of 1
The present invention relates to a highly efficient single-sided submerged arc welding method that is performed at a high speed of 00 cm/min or higher.

(従来の技術) 従来より、厚板の高能率溶接法として、片面サブマージ
アーク溶接法が造船を中心にさかんに適用されてきた。
(Prior Art) Conventionally, single-sided submerged arc welding has been widely applied as a high-efficiency welding method for thick plates, mainly in shipbuilding.

ところが、効率化追求のレベルは増々高くなり、従来の
溶接速度に比べ1.5〜2倍の高速性を加味した溶接法
が要望されている。
However, the level of pursuit of efficiency is becoming higher and higher, and there is a demand for welding methods that are 1.5 to 2 times faster than conventional welding speeds.

しかしながら、従来の片面サブマージアーク溶接法は、
特公昭48−22572号公報や特公昭49−3842
0号公報等に開示されているが如く、いずれも溶接速度
100cm/min未満である。
However, the conventional single-sided submerged arc welding method
Special Publication No. 48-22572 and Special Publication No. 49-3842
As disclosed in Publication No. 0, etc., the welding speed is less than 100 cm/min in all cases.

一方、表側および裏側より、各々溶接する通常の継手溶
接においては、溶接速度100cm/min以上の多電
極溶接が、数多く開示されているが、この技術をそのま
ま片面サブマージアーク溶接法に適用することは困難で
ある。通常の多電極溶接においては、溶は込みおよび溶
着量を確保するため、かなり強引に電流を上げても溶は
落ちの心配がなく、また、裏ビード形成のための特別の
配慮が必要でないため、高速化も比較的容易に達成でき
る。
On the other hand, in conventional joint welding in which welding is performed from the front side and the back side, many multi-electrode welding methods with a welding speed of 100 cm/min or more have been disclosed, but it is not possible to directly apply this technology to single-sided submerged arc welding. Have difficulty. In normal multi-electrode welding, in order to ensure the penetration and amount of welding, even if the current is increased considerably, there is no fear of the melt coming off, and no special consideration is required for forming a back bead. , speeding up can be achieved relatively easily.

しかし、片面サブマージアーク溶接においては、表ビー
ドはもちろんのこと、健全な裏ビードをも同時に形成す
ることが要求されるので、高速化を達成するために、い
たずらに電流を上げると、裏ビードが出すぎてビードが
不均一になり、極端な場合には横割れが発生することに
なる。さらに、溶接速度が速いとビードか細くなり、裏
ビード端部にアンダーカットが発生し易くなる。加えて
、高速ゆえに溶接金属の凝固が速く、第6(a)図に示
すが如く、結晶の成長方向(デンドライト)が突合せに
なり、非常に割れ易い組織となる。
However, in single-sided submerged arc welding, it is required to form not only a front bead but also a healthy back bead at the same time. If it protrudes too much, the bead will become uneven, and in extreme cases, horizontal cracks will occur. Furthermore, if the welding speed is high, the bead becomes thinner and undercuts are likely to occur at the end of the back bead. In addition, due to the high speed, the weld metal solidifies quickly, and as shown in FIG. 6(a), the crystal growth directions (dendrites) are butted, resulting in a structure that is extremely susceptible to cracking.

従って、片面サブマージアーク溶接においては、溶接速
度100cm/min以上に踏み込んだ技術は、未だ達
成されていないのが現状である。
Therefore, in single-sided submerged arc welding, the current state of the art is that a welding speed of 100 cm/min or higher has not yet been achieved.

尚、ここでいう片面サブマージアーク溶接法とは、第5
図(a) 、 (b)に示すように、突合された被溶接
材1.1′の裏面から、銅当金2上に層状に散布したバ
ッキングフラックス4、または耐火性キャンバスフ内に
収納されたバッキングフラックス4をエアーホース5等
の押上機構により被溶接材1,1′の裏面に押圧してお
き表側よりワイヤ3、フラックス6を用いてサブマージ
アーク溶接を行い、被溶接材の表側と裏側に同時にビー
ド形成する溶接方法である。
In addition, the single-sided submerged arc welding method referred to here refers to the fifth
As shown in Figures (a) and (b), backing flux 4 is sprinkled in a layer on the copper dowel 2 from the back side of the welded materials 1.1' that have been butted together, or the backing flux 4 is placed in a refractory canvas. The backing flux 4 is pressed onto the back surface of the materials to be welded 1, 1' by a push-up mechanism such as an air hose 5, and submerged arc welding is performed from the front side using the wire 3 and the flux 6. This is a welding method that forms a bead at the same time.

(発明が解決しようとする課題) 本発明は、上記高速片面サブマージアーク溶接法におい
て、健全な裏ビードを形成する溶接法を提供することを
第1の目的とするとともに、あわせて満足できる表ビー
ドをも形成する溶接法を提供することを目的としたもの
である。
(Problems to be Solved by the Invention) The first object of the present invention is to provide a welding method that forms a sound back bead in the above-mentioned high-speed single-sided submerged arc welding method, and also to provide a welding method that forms a satisfactory front bead. The object of the present invention is to provide a welding method that also forms.

(課題を解決するための手段) 本発明者らは上記事情に鑑み、種々検討した結果、以下
の知見を得た。即ち、高電流・高速の片面サブマージア
ーク溶接において健全な裏ビードを得るためには、 (1)裏ビードは、第1.第2電極によってのみ形成し
、高電流による電流密度増加に伴うア−りの集中性をソ
フトにするため、所定以上の太さを有するワイヤを用い
ること。
(Means for Solving the Problems) In view of the above circumstances, the present inventors conducted various studies and obtained the following findings. That is, in order to obtain a healthy back bead in high current/high speed single-sided submerged arc welding, (1) the back bead should be Use a wire that is formed only by the second electrode and has a thickness greater than a predetermined value in order to soften the concentration of arcs caused by an increase in current density due to high current.

(2)第1.第2電極の電流和と溶接速度が、特別な関
係を満足した時のみ裏ビードが形成できること。
(2) First. A back bead can be formed only when the sum of currents of the second electrode and the welding speed satisfy a special relationship.

の2点が重要である。Two points are important.

即ち、本発明の要旨とするところは、「3電極以上を用
いる片面多電極サブマージアーク溶接法において、第1
電極および第2電極のワイヤ径を4.0mmφ以上とし
、かつ、第1電極の電流をI。
That is, the gist of the present invention is to provide a single-sided multi-electrode submerged arc welding method using three or more electrodes.
The wire diameter of the electrode and the second electrode is 4.0 mmφ or more, and the current of the first electrode is I.

(A)、第2電極の電流をI2 (A)、溶接速度をS
 (am/m1n)とした時、 100≦S≦200、かつ 4 (S+575)≦II +I2≦4 (S+725
)を満足することを特徴とする高速片面サブマージアー
ク溶接法」である。
(A), the current of the second electrode is I2 (A), the welding speed is S
(am/m1n), 100≦S≦200, and 4 (S+575)≦II +I2≦4 (S+725
) is a high-speed single-sided submerged arc welding method.

また、更に満足できる表ビードをも形成する必要がある
場合、 「第2電極と第3電極との距離を150〜300+nm
とし、かつ、第3電極の電流を13(A)とする時、■
3≦0.85(II+12)であるか、またはワイヤ径
が1.2〜2.4開φの溶接ワイヤ2本を一対として同
一のワイヤ送給機構によって発生させる並列アークを1
単位の電極とし、この電極を第3電極以降の少なくとも
1つの電極に用いることを特徴とする高速片面サブマー
ジアーク溶接法」である。
In addition, if it is necessary to form a more satisfactory surface bead, the distance between the second electrode and the third electrode should be set to 150 to 300+ nm.
And when the current of the third electrode is 13 (A), ■
3≦0.85 (II + 12) or a pair of two welding wires with a wire diameter of 1.2 to 2.4 open φ and a parallel arc generated by the same wire feeding mechanism.
A high-speed single-sided submerged arc welding method characterized by using a single electrode as a unit electrode and using this electrode as at least one electrode after the third electrode.''

(作  用) 以下に、本発明について詳細に説明する。まず、本発明
においては3本以上の電極を用いることが必要である。
(Function) The present invention will be explained in detail below. First, in the present invention, it is necessary to use three or more electrodes.

これにより、第1.第2電極で裏ビードを形成し、第3
電極以降で表ビードを形成し、必要な溶着量を確保する
ことが可能となる。
As a result, the first. Form a back bead with the second electrode, and
A surface bead is formed after the electrode, making it possible to secure the required amount of welding.

〔ワイヤ径の限定理由〕[Reasons for limiting wire diameter]

まず、第1.第2電極のワイヤ径について述べる。溶着
量を増やすためには電流密度を上げることが効果があり
、そのためワイヤ径を小さくすることが考えられるが、
本発明のように高速の片面溶接の場合、ビードが非常に
細くなり易い。また、細径の場合アークが集中し、ビー
ドが凸になり、アンダーカットが発生し易い。従って、
アークをソフトにし、ビードを広げるために第1.第2
電極のワイヤ径を太くする必要がある。この場合、4.
0mm未満では効果がなく、4.0mm以上にする必要
がある。
First, 1. The wire diameter of the second electrode will be described. In order to increase the amount of welding, it is effective to increase the current density, and therefore it is possible to reduce the wire diameter,
In the case of high-speed single-sided welding as in the present invention, the bead tends to become very thin. Furthermore, if the diameter is small, the arc will concentrate, the bead will become convex, and undercuts will likely occur. Therefore,
The first step is to soften the arc and widen the bead. Second
It is necessary to increase the diameter of the electrode wire. In this case, 4.
If it is less than 0 mm, there is no effect, and it is necessary to make it 4.0 mm or more.

〔溶接速度と第1.第2電極の電流和の関係〕ところで
、一般に電流が増加すると溶融池(プール)が大きくな
るため、裏ビードが出やすくなるが、極端な場合割れが
発生し易くなる。
[Welding speed and 1. [Relationship between the sum of currents of the second electrode] Generally, as the current increases, the molten pool becomes larger, making it easier for back beads to appear, but in extreme cases, cracks are more likely to occur.

方、速度が速くなると溶融池が細長くなるか、溶着量が
減少するので、溶融金属の供給が不足し、その結果裏ビ
ードが出にくくなり、極端な場合はアンダーカットにな
る。従って、単純に電流を増加し、速度を上げるだけで
は裏ビードが出すぎるかあるいは全く出ない状況となり
バランスのよいビード形成は困難であった。
On the other hand, as the speed increases, the molten pool becomes elongated or the amount of welding decreases, resulting in an insufficient supply of molten metal, which makes it difficult to form a back bead, and in extreme cases, an undercut. Therefore, by simply increasing the current and increasing the speed, too much or no back bead appears, making it difficult to form a well-balanced bead.

このような高電流・高速片面サブマージアーク溶接の問
題を解決するため鋭意検討を重ねた結果、第1電極の電
流II  (A)と第2電極の電流■2(A)との和(
Il+12)と溶接速度S(cm/m1n)が特別な関
係を満足した時のみ、非常に良好な裏ビードを形成でき
ることが判明した。
As a result of intensive studies to solve such high-current, high-speed single-sided submerged arc welding problems, we found that the sum of the current II (A) of the first electrode and the current II (A) of the second electrode (
It has been found that a very good back bead can be formed only when Il+12) and welding speed S (cm/m1n) satisfy a special relationship.

第1図は第1.第2電極の電流和と溶接速度が裏ビード
形成に及ぼす影響を調査したものである。
Figure 1 is 1. This study investigated the effects of the second electrode current sum and welding speed on back bead formation.

溶接は、第4図に示すように板厚t = I Bmm 
%ルートフェースd=5mm、開先角度θ−50’で実
施した。また、第1.第2電極の距離は35++++*
とじた。
Welding is performed with plate thickness t = I Bmm as shown in Figure 4.
% root face d = 5 mm, groove angle θ-50'. Also, 1st. The distance of the second electrode is 35+++++*
Closed.

この場合、余盛高さ1.5〜3.5+nmを良好な範囲
とし、1.5間未満を余盛不足、3.5mto超は出す
ぎと判断した。第1図において、Oに付属した数字は裏
ビードの余盛り高さを表し、・は全く裏ビードが出てい
ない場合である。溶接速度が200cm/minを超え
ると電流の如何にかかわらず裏ビードを出すことはでき
なかった。その結果、本発明者らは、 100≦S≦200、かつ、 4 (S+575)≦1.+12≦4 (S+725)
であれば、アンダーカットも割れもない健全な裏ビード
が得られることを新規に知見した。
In this case, a height of 1.5 to 3.5+nm was determined to be a good range, a height of less than 1.5 mto was determined to be insufficient, and a height of more than 3.5 mto was determined to be excessive. In FIG. 1, the number attached to O represents the extra height of the back bead, and . is the case where the back bead does not come out at all. When the welding speed exceeded 200 cm/min, no back bead could be produced regardless of the current. As a result, the present inventors found that 100≦S≦200, and 4 (S+575)≦1. +12≦4 (S+725)
If so, we newly discovered that a healthy back bead without undercuts or cracks can be obtained.

本発明においては、以上の如く3電極以上の高連片面サ
ブマージアーク溶接で、特定の太さを有するワイヤを第
1.第2電極に配置し、かつ、この場合の第1.第2電
極の電流和ど溶接速度の関係を特定することが必須条件
である。
In the present invention, as described above, in high-speed single-sided submerged arc welding using three or more electrodes, a wire having a specific thickness is first welded. the second electrode, and the first electrode in this case. It is essential to specify the relationship between the current sum of the second electrode and the welding speed.

第2図に本発明の電極の配置の一例を示した。FIG. 2 shows an example of the arrangement of electrodes of the present invention.

図中8は第1電極、9は第2電極、lOは第3電極、1
1は被溶接材1の開先底面、12は被溶接材1の表面、
13は第1〜第2電極間距離、14は第2〜第3電極間
距離を示す。
In the figure, 8 is the first electrode, 9 is the second electrode, lO is the third electrode, 1
1 is the bottom surface of the groove of the material to be welded 1, 12 is the surface of the material to be welded 1,
13 indicates the distance between the first and second electrodes, and 14 indicates the distance between the second and third electrodes.

〔第3電極の条件の限定理由〕 次に、表ビード形成を担う第3電極以降について検討し
た。
[Reason for limiting the conditions of the third electrode] Next, the third and subsequent electrodes responsible for forming the surface bead were examined.

第3電極以降は、融合不良およびスラグ巻き込み等の内
部欠陥の発生を防止し、必要な溶着量を確保するために
用いるのであるが、同時に第1゜第2電極で形成された
溶接金属を溶融し、第6図(b)に示す如くデンドライ
トの方向を上むきに制御する役割もある。しかし、第1
.第2電極で形成される溶融池(プール)内に第3電極
が配置されると、いわゆるワンプールとなり第3電極に
よるアークが裏ビード下端まで到達し、ビードが出すぎ
、プントライ1トも突合せとなり非常に割れ易い組織と
なる。従って、第3電極は第1.第2電極により形成さ
れるプールの外側に配置する必要がある。
The third and subsequent electrodes are used to prevent internal defects such as poor fusion and slag entrainment, and to ensure the necessary amount of welding.At the same time, the weld metal formed by the first and second electrodes is melted. However, as shown in FIG. 6(b), it also has the role of controlling the direction of the dendrites upward. However, the first
.. When the third electrode is placed in the molten pool formed by the second electrode, it becomes a so-called one pool, and the arc caused by the third electrode reaches the lower end of the back bead, causing the bead to protrude too much and the punch line also butts. This results in a tissue that is extremely fragile. Therefore, the third electrode is the first. It must be placed outside the pool formed by the second electrode.

本発明者等は、第1.第2電極で形成されるプールの長
さを第1図斜線で囲まれた領域で調べた結果、プールの
長さは最大約140mmであった。
The inventors of the present invention firstly. As a result of examining the length of the pool formed by the second electrode in the area surrounded by diagonal lines in FIG. 1, the maximum length of the pool was about 140 mm.

従って、第2電極と第3電極の距離は150■以上必要
である。しかし、この長さが800m+++を超えると
溶融スラグが完全に凝固して、安定したアークを発生す
ることができない。従って、第2電極と第3電極の距離
は150〜300 mmに限定した。なお、この場合電
極の距離とは、第2図に示すように開先底面11におけ
るワイヤ中心間の距離14をいう。
Therefore, the distance between the second electrode and the third electrode must be 150 cm or more. However, if this length exceeds 800 m+++, the molten slag will completely solidify, making it impossible to generate a stable arc. Therefore, the distance between the second electrode and the third electrode was limited to 150 to 300 mm. In this case, the distance between the electrodes refers to the distance 14 between the wire centers at the bottom surface 11 of the groove, as shown in FIG.

また、溶着量を確保するため、第3電極の電流が高くな
りすぎると溶は込みが深くなり、第1゜第2電極によっ
て形成された裏ビードに悪影響を及ぼす。この場合、第
3電極の電流は第1.第2電極の電流和の65%を超え
ると裏ビードが出すぎたり、割れが発生する。従って、
第3電極の電流をI3  (A)とした時、■3≦0.
85(II +12 )と限定した。
Moreover, in order to ensure the amount of welding, if the current of the third electrode becomes too high, the weld penetration becomes deep, which adversely affects the back bead formed by the first and second electrodes. In this case, the current of the third electrode is the same as that of the first electrode. If it exceeds 65% of the total current of the second electrode, too much back bead will appear or cracks will occur. Therefore,
When the current of the third electrode is I3 (A), ■3≦0.
85 (II +12).

〔細径ワイヤ適用の理由〕[Reason for applying small diameter wire]

ところで、片面溶接の適用される板厚は多種多様で板厚
が大きくなると、溶着量の確保が非常に難しくなってく
る。電極数を増やせばよいが、これでは装置が大形化し
、かつコストが上昇するので、自ずから限界がある。従
って、できるだけ効率よく溶着量を確保する工夫が必要
である。
By the way, there are many different plate thicknesses to which single-sided welding can be applied, and as the plate thickness increases, it becomes extremely difficult to ensure a sufficient amount of welding. It would be possible to increase the number of electrodes, but this increases the size of the device and increases the cost, so there is a limit to this. Therefore, it is necessary to devise ways to ensure the amount of welding as efficiently as possible.

そこで、電流密度を上げ溶着量を増加するため、細径ワ
イヤを適用することが考えられる。しかし、表ビードは
ある程度の広がりが必要であり、単なる細径ワイヤでは
ビードか細く、ビード両端にアンダーカットや融合不良
を引き起こす。
Therefore, in order to increase the current density and increase the amount of welding, it is possible to use a small diameter wire. However, the front bead needs to be spread to a certain extent, and if a mere small diameter wire is used, the bead will be too thin, causing undercuts and poor fusion at both ends of the bead.

そこで、溶は込みが浅く、ビードが広がり、溶着量を確
保できる方法を検討した結果、細径ワイヤ2本を一対と
して同一のワイヤ送給機構によって並列アークを発生さ
せると効果があることが判明した。
Therefore, as a result of considering a method that would ensure a shallow weld penetration, a wide bead, and a sufficient amount of welding, it was found that it is effective to generate parallel arcs using the same wire feeding mechanism using two small-diameter wires as a pair. did.

1 このワイヤ送給機構は、第3図(a)に示すように2本
のワイヤ15.15’を1個の電動式モータ16で加圧
ローラ(省略)および送給ローラ17を経てノズル18
に送給している。本送給機構によれば、電流が2本のワ
イヤに分散され、その結果アークがソフトになり、電流
を増加しても溶込みは深くならない。第3図(b)に本
発明例を第3電極101第4電極19に適用した具体例
を示す。ワイヤは、溶接線に平行に2本配置する。この
場合、ワイヤ径が1.2mm未満では十分なビード塩が
りが得られず、逆に、2.4mmを超えると電流密度が
低くなり溶着量の確保が困難である。従って、ワイヤ径
は1.2〜2.4n+mに限定した。
1 This wire feeding mechanism, as shown in FIG. 3(a), uses one electric motor 16 to feed two wires 15 and 15' through a pressure roller (not shown) and a feeding roller 17 to a nozzle 18.
is being sent to. According to this feeding mechanism, the current is distributed over the two wires, resulting in a soft arc and no deeper penetration even when the current is increased. FIG. 3(b) shows a specific example in which the present invention is applied to the third electrode 101 and the fourth electrode 19. Two wires are placed parallel to the weld line. In this case, if the wire diameter is less than 1.2 mm, sufficient bead salting cannot be obtained, and conversely, if it exceeds 2.4 mm, the current density becomes low and it is difficult to secure a sufficient amount of welding. Therefore, the wire diameter was limited to 1.2 to 2.4n+m.

ところで、本発明溶接法は片面サブマージアーク溶接法
であり、溶接材料として表側フラックス、バッキングフ
ラックスおよび電極ワイヤを必要とするものであるが、
これら溶接材料に関しては、目的に応じた適正な溶接金
属を得ることのできるものであればそれらの組成につい
ては特に限定されるものではない。
By the way, the welding method of the present invention is a single-sided submerged arc welding method, and requires front side flux, backing flux, and electrode wire as welding materials.
The composition of these welding materials is not particularly limited as long as it is possible to obtain a weld metal appropriate for the purpose.

2 即ち、表側フラックスとしては、5iO3An)203
 、TiO7,MnO,MgO等の金属酸化物、Ca 
F 2 + M g F2等の金属弗化物、CaCO3
等の金属炭酸塩、St、Mn等の脱酸剤、Ni、Mo等
の合金剤あるいは鉄粉を適宜配合して作製されたフラッ
クスを用いればよい。
2 That is, the front side flux is 5iO3An)203
, metal oxides such as TiO7, MnO, MgO, Ca
F 2 + M g Metal fluorides such as F2, CaCO3
A flux prepared by suitably blending metal carbonates such as, deoxidizing agents such as St, Mn, alloying agents such as Ni, Mo, or iron powder may be used.

フラックスタイプとしては、メルト形、ボンド形フラッ
クスのいずれでもよい。バッキングフラックスについて
も同様である。
The flux type may be either melt type or bond type flux. The same applies to backing flux.

電極ワイヤはフラックス組成との関連で選択されるもの
であるが、M n : 0 、3〜8 、2%、MO:
0.15〜0.75%の一種または二種以上を含有する
ワイヤが強度および靭性を確保する上で好ましい。
The electrode wire is selected in relation to the flux composition, Mn: 0, 3-8, 2%, MO:
A wire containing 0.15 to 0.75% of one or more types is preferable in order to ensure strength and toughness.

以上本発明について詳述したが、本発明効果をさらに明
確にするため、以下実施例について述べる。
The present invention has been described in detail above, but in order to further clarify the effects of the present invention, examples will be described below.

(実 施 例) 第1表に示す鋼板に対し、第2表のワイヤ、第3表のフ
ラックス、第4表のバッキングフラックスを用いて、1
2種類の片面サブマージアーク溶接を行なった。
(Example) For the steel plate shown in Table 1, using the wire shown in Table 2, the flux shown in Table 3, and the backing flux shown in Table 4,
Two types of single-sided submerged arc welding were performed.

第3表のフラックスは、原料粉を水ガラスを用いて造粒
した後、400℃X 120m1nの条件でロータリー
キルンで焼成したボンドフラックスで仕上がりフラック
スの粒度は12X100メツシユで整粒した。また、第
4表のバッキングフラックスは第5図(a)に示した銅
当金併用型のバッキングフラックスでボンド形ブラック
スである。尚、フェノール樹脂は水およびアルコールを
それぞれ溶媒として溶解し、粘液とした後、フラックス
粒子に被覆した。
The flux shown in Table 3 is a bonded flux in which raw material powder is granulated using water glass and then fired in a rotary kiln at 400° C. and 120 ml, and the particle size of the finished flux is sized to a 12×100 mesh. Further, the backing flux shown in Table 4 is a backing flux combined with a copper dome shown in FIG. 5(a) and is a bond type black. The phenol resin was dissolved in water and alcohol as solvents to form a slime, which was then coated on the flux particles.

本発明実施例における溶接結果を第5表に示す。Table 5 shows the welding results in Examples of the present invention.

本発明例であるNo、 1〜8は何れも良好な裏ビード
を形成し、いずれもすぐれた溶接部を得ることができた
が、一方、比較例のNo、 9〜14の場合、溶接結果
の欄に記入しであるように、満足できる裏ビードの形成
ができなかった。
Invention examples Nos. 1 to 8 all formed good back beads and excellent welds were obtained in all cases, but on the other hand, comparative examples Nos. 9 to 14 had poor welding results. As shown in the column, a satisfactory back bead could not be formed.

尚、第5表において、開先形状は第4図に示す形状を用
いた。tは試験板の板厚、dはルートフェース、θは開
先角度である。
In Table 5, the groove shape shown in FIG. 4 was used. t is the thickness of the test plate, d is the root face, and θ is the groove angle.

(発明の効果) 以上説明したように、本発明は高速の片面サブマージア
ーク溶接法によって極めて健全で良好な裏ビードを得る
とともに表ビードも良好に形成でき、高効率溶接が可能
となってその実用的価値は極めて大きい。
(Effects of the Invention) As explained above, the present invention uses a high-speed single-sided submerged arc welding method to obtain an extremely sound and good back bead, and also to form a good front bead, making it possible to perform highly efficient welding and to put it into practical use. The value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、第1.第2電極の電流和と溶接速度が裏ビー
ド形成に及ぼす影響を説明するための図、第2図および
第3図(a) 、 (b)は本発明溶接法の実施態様を
示す側面図、第4図は本発明実施例に用いた開先形状を
示す正面図、第5図(a) 、 (b)は片面サブマー
ジアーク溶接法を説明するための正面図、第6図(a)
 、 (b)は溶接金属のデンドライトの方向を説明す
るための正面図である。 1、 1’  :被溶接材   2:銅当金3:電極ワ
イヤ 4:パッキングブラックス 5:エアーホース    6:フラツクス7;耐火性キ
ャンパス
Figure 1 shows 1. A diagram for explaining the influence of the current sum of the second electrode and the welding speed on back bead formation, FIGS. 2 and 3 (a) and (b) are side views showing an embodiment of the welding method of the present invention, FIG. 4 is a front view showing the groove shape used in the embodiment of the present invention, FIGS. 5(a) and (b) are front views for explaining the single-sided submerged arc welding method, and FIG. 6(a)
, (b) is a front view for explaining the direction of dendrites of weld metal. 1, 1': Material to be welded 2: Copper weld 3: Electrode wire 4: Packing blacks 5: Air hose 6: Flux 7; Fireproof canvas

Claims (1)

【特許請求の範囲】 (1)3電極以上を用いる片面多電極サブマージアーク
溶接法において、第1電極および第2電極のワイヤ径を
4.0mmφ以上とし、かつ、第1電極の電流をI、(
A)、第2電極の電流をI_2(A)、溶接速度をS(
cm/min)とした時、100≦S≦200 かつ 4(S+575)≦I_1+I_2≦4(S+725)
を満足することを特徴とする高速片面サブマージアーク
溶接法。 (2)第2電極と第3電極との距離を150〜300m
mとし、かつ、第3電極の電流をI_3(A)とする時
、 I_3≦0.65(I_1+I_2) であることを特徴とする特許請求の範囲第1項記載の高
速片面サブマージアーク溶接法。(3)ワイヤ径が1.
2〜2.4mmφの溶接ワイヤ2本を一対として同一の
ワイヤ送給機構によって発生させる並列アークを1単位
の電極とし、この電極を第3電極以降の少なくとも1つ
の電極に用いることを特徴とする特許請求の範囲第1項
記載の高速片面サブマージアーク溶接法。 (4)第2電極と第3電極との距離を150〜300m
mとし、かつ、第3電極の電流をI_3(A)とする時
、 I_3≦0.65(I_1+I_2) であり、かつ、ワイヤ径が1.2〜2.4mmφの溶接
ワイヤ2本を一対として同一のワイヤ送給機構によって
発生させる並列アークを1単位の電極とし、この電極を
第3電極以降の少なくとも1つの電極に用いることを特
徴とする特許請求の範囲第1項記載の高速片面サブマー
ジアーク溶接法。
[Scope of Claims] (1) In a single-sided multi-electrode submerged arc welding method using three or more electrodes, the wire diameters of the first and second electrodes are 4.0 mmφ or more, and the current of the first electrode is I, (
A), the current of the second electrode is I_2(A), and the welding speed is S(
cm/min), 100≦S≦200 and 4 (S+575)≦I_1+I_2≦4 (S+725)
A high-speed single-sided submerged arc welding method that satisfies the following. (2) The distance between the second electrode and the third electrode is 150 to 300 m.
The high-speed single-sided submerged arc welding method according to claim 1, wherein I_3≦0.65 (I_1+I_2) where m is the current of the third electrode and I_3 (A). (3) The wire diameter is 1.
A pair of two welding wires with a diameter of 2 to 2.4 mm and parallel arcs generated by the same wire feeding mechanism are used as one unit electrode, and this electrode is used as at least one electrode after the third electrode. A high-speed single-sided submerged arc welding method according to claim 1. (4) The distance between the second electrode and the third electrode is 150 to 300 m.
m and the current of the third electrode is I_3 (A), I_3≦0.65 (I_1+I_2) and a pair of two welding wires with a wire diameter of 1.2 to 2.4 mmφ. The high-speed single-sided submerged arc according to claim 1, characterized in that parallel arcs generated by the same wire feeding mechanism are used as one unit of electrode, and this electrode is used as at least one electrode after the third electrode. Welding method.
JP2035918A 1990-02-16 1990-02-16 High-speed single-sided submerged arc welding method Expired - Lifetime JPH0747218B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2035918A JPH0747218B2 (en) 1990-02-16 1990-02-16 High-speed single-sided submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2035918A JPH0747218B2 (en) 1990-02-16 1990-02-16 High-speed single-sided submerged arc welding method

Publications (2)

Publication Number Publication Date
JPH03238174A true JPH03238174A (en) 1991-10-23
JPH0747218B2 JPH0747218B2 (en) 1995-05-24

Family

ID=12455417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2035918A Expired - Lifetime JPH0747218B2 (en) 1990-02-16 1990-02-16 High-speed single-sided submerged arc welding method

Country Status (1)

Country Link
JP (1) JPH0747218B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104002004A (en) * 2014-06-19 2014-08-27 镇江四洋特种金属材料制造有限公司 Thick metal plate large-area butt joint braze welding method
CN106964881A (en) * 2017-03-07 2017-07-21 上海锅炉厂有限公司 Supercritical CFB Boiler high temperature pendant superheater stainless steel buried arc welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213814U (en) * 1988-07-13 1990-01-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213814U (en) * 1988-07-13 1990-01-29

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104002004A (en) * 2014-06-19 2014-08-27 镇江四洋特种金属材料制造有限公司 Thick metal plate large-area butt joint braze welding method
CN106964881A (en) * 2017-03-07 2017-07-21 上海锅炉厂有限公司 Supercritical CFB Boiler high temperature pendant superheater stainless steel buried arc welding method

Also Published As

Publication number Publication date
JPH0747218B2 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
JP2691857B2 (en) Single-sided submerged arc welding method
JPH11138266A (en) Tandem submaerged arc welding method
JP2860060B2 (en) Single-sided submerged arc welding method
JPH03238174A (en) One-side submerged arc welding method at high speed
JPH0484676A (en) One-side submerged arc welding method at high speed
JP3148055B2 (en) Single-sided submerged arc welding method
JP2581485B2 (en) Termination method for multi-electrode single-sided submerged arc welding
JPH049279A (en) One-side submerged arc welding method at high speed
JPH05185234A (en) Termination processing method for multiple electrode one-side submerged arc welding process
JPH04284974A (en) Gas shielded arc welding method at high speed
JP2835277B2 (en) Single-sided submerged arc welding method
JPH03268876A (en) One-side submerged arc welding method at high speed
JP4707949B2 (en) Multi-electrode single-sided submerged arc welding method
JP2978350B2 (en) Multi-electrode single-sided submerged arc welding
JP2005319507A (en) Multiple electrodes one side submerged arc welding method
JPH11226735A (en) Gas shield arc welding method
JP3102821B2 (en) Single-sided gas shielded arc welding method for in-plane tack joints
JPH0852573A (en) Method for starting multi-electrode, one side submerged arc welding
JPH0985446A (en) Gas shielded arc welding method
JPH1190680A (en) Backing flux for one side submerged arc welding
JPH11138267A (en) Flat fillet submerged arc welding method by two electrode
JPH05293658A (en) Multiple electrode one side submerged arc welding method
JPH03238173A (en) One-side submerged arc welding method
JP3247236B2 (en) Manufacturing method of flux cored wire for arc welding
JP3120907B2 (en) Single-sided submerged arc welding method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15