JPH11138267A - Flat fillet submerged arc welding method by two electrode - Google Patents

Flat fillet submerged arc welding method by two electrode

Info

Publication number
JPH11138267A
JPH11138267A JP31914697A JP31914697A JPH11138267A JP H11138267 A JPH11138267 A JP H11138267A JP 31914697 A JP31914697 A JP 31914697A JP 31914697 A JP31914697 A JP 31914697A JP H11138267 A JPH11138267 A JP H11138267A
Authority
JP
Japan
Prior art keywords
welding
flux
bead
slag
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31914697A
Other languages
Japanese (ja)
Inventor
Nobuaki Tobishima
伸昭 飛嶋
Nobuyuki Ohama
展之 大濱
Naoaki Matsutani
直明 松谷
Katsutoshi Sueda
勝利 末田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP31914697A priority Critical patent/JPH11138267A/en
Publication of JPH11138267A publication Critical patent/JPH11138267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flat fillet submerged arc welding method having an excellent slag peeling property and fitness in a bead toe part, without welding defects of undercuts and high temperature cracks or the like and used in the manufacture of an extremely thick wide flange shaped steel or the like. SOLUTION: Multi-layer welding by welding is executed by the use of bond flux containing, by weight, 20-40% iron powder, 5-10% SiO2 , 5-15% Al2 O3 , 5-20% MgO, TiO2 , 5-10% CaCO3 , 5-15% ZrO2 to a total weight of flux, and a flange steel plate side is welded in a final pass. Also, a preceding electrode wire diameter is preferably specified to 4.0-6.0 mm, a succeeding electrode wire diameter is preferably specified to 5.0-7.0 mm, and welding is executed with a distance between electrodes of 40-60 mm in initial layer welding and 10-30 mm from the second pass.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鉄骨、橋梁等の鋼構
造物に使用される極厚H型鋼を製作する場合等に用いら
れる下向すみ肉サブマージアーク溶接に関し、さらに詳
しくは大入熱多層盛溶接において、スラグ剥離性とビー
ド止端部のなじみが良好な2電極下向すみ肉サブマージ
アーク溶接方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a downward fillet submerged arc welding used for producing an extremely thick H-shaped steel used for steel structures such as steel frames and bridges, and more particularly to a large heat input multilayer. The present invention relates to a two-electrode downward fillet submerged arc welding method that has good slag removability and conformability of a bead toe in fill welding.

【0002】[0002]

【従来の技術】近年、鋼構造物を用いた建築物の高層化
に伴い、柱として利用されてきた鉄骨ボックス柱は鋼板
の極厚化が一段と進み、板厚60mm程度までは2電極
1パス溶接、また、板厚70mm程度では3電極1パス
の大入熱サブマージアーク溶接が行われて作業能率は急
速に向上した。しかし、溶接入熱の増大により、被溶接
鋼板は溶接熱影響部の性能劣化が懸念されると同時に、
溶接材料および施工法を含めた溶接技術そのものも板厚
限界に達してきている。また、このような大入熱サブマ
ージアーク溶接は、被溶接鋼板を溶融し裏当金までの溶
け込みを得るために先行電極電流は2000A以上を必
要とし、溶接装置が完備されている一部の大手鉄骨橋梁
メーカーでしか実施されておらず、適用範囲の限られた
ものであった。
2. Description of the Related Art In recent years, with the heightening of buildings using steel structures, steel box columns which have been used as columns have become increasingly thicker in steel plates, and two electrodes and one pass up to a plate thickness of about 60 mm. Welding, and at a plate thickness of about 70 mm, large heat input submerged arc welding with three electrodes and one pass was performed, and the work efficiency was rapidly improved. However, due to the increase in welding heat input, the steel plate to be welded is likely to deteriorate in the performance of the weld heat affected zone,
The welding technology itself, including welding materials and construction methods, has also reached the thickness limit. In addition, such large heat input submerged arc welding requires a leading electrode current of 2,000 A or more in order to melt the steel plate to be welded and obtain penetration into the backing metal, and some of the major welding equipments equipped with welding equipment are required. It was implemented only by steel bridge manufacturers, and its scope was limited.

【0003】一方、最近では建築物の梁として使用され
てきたH型鋼を、柱として利用することによってで建築
コスト削減を図っている。このためH型鋼板も板厚60
〜100mmと極厚化している。従来、H型鋼の製作に
は、高能率な下向すみ肉サブマージアーク溶接が適用さ
れてきた。例えば、特開昭59−76698号公報に、
フラックス成分、粒度、かさ密度を特定した溶融型フラ
ックスを用いてすみ肉溶接することにより、良好なスラ
グ剥離性とビード外観を得ることが開示されている。し
かし、前記技術は被溶接鋼板が板厚13mm程度と薄く
比較的小入熱で使用されているので、極厚H型鋼の大入
熱溶接へ適用した場合はスラグの耐火性が劣り、良好な
ビード外観を得ることはできない。
On the other hand, construction costs have been reduced by using H-shaped steel, which has recently been used as a beam for buildings, as a pillar. For this reason, H-type steel sheets have a thickness of 60
It is extremely thick, up to 100 mm. Conventionally, high-efficiency downward fillet submerged arc welding has been applied to the manufacture of H-section steel. For example, in JP-A-59-76698,
It is disclosed that fillet welding is performed using a molten flux having a specified flux component, particle size, and bulk density to obtain good slag removability and bead appearance. However, since the above-mentioned technology is used with a relatively small heat input because the steel plate to be welded is as thin as approximately 13 mm in thickness, when applied to large heat input welding of an extremely thick H-section steel, the slag has poor fire resistance and has a good No bead appearance can be obtained.

【0004】そこで、本発明者らは先に大入熱に適用で
きるフラックスおよび溶接法として、特願平8−102
914号で溶融温度の高いMgO成分を多く含有するニ
ッケルスラグを適用することを提案した。これによれ
ば、ニッケルスラグの溶融温度は約1500℃であり、
溶融型フラックスの溶融温度の1200〜1300℃に
比べ高い。このため大入熱の下向すみ肉サブマージアー
ク溶接で溶け込みが深く、良好なビード形状を得ること
ができる。しかし、板厚25mm程度までの1パス溶接
でしか検討しておらず、例えば板厚60mmの極厚鋼に
図1に示すK開先を施して両側1層溶接すると、開先内
にスラグが噛み込んでスラグ剥離性が著しく劣化する。
また、両側1層溶接では溶着量が不足するとともに、溶
け込みが深くビード幅が狭くなって高温割れが発生し
た。一方、前記フラックスを用いて多層盛溶接を実施し
たところ、溶接パス数は著しく増大したものの割れは発
生しなかったが、ビード止端部のなじみが悪くアンダー
カットが発生し、ビード外観不良となった。
Accordingly, the present inventors have previously disclosed a flux and a welding method applicable to large heat input as disclosed in Japanese Patent Application No. 8-102.
No. 914 proposed to apply nickel slag containing a large amount of MgO component having a high melting temperature. According to this, the melting temperature of nickel slag is about 1500 ° C,
It is higher than the melting temperature of the molten flux of 1200 to 1300 ° C. Therefore, the deep fillet submerged arc welding with large heat input has a deep penetration and a good bead shape can be obtained. However, only one-pass welding up to a plate thickness of about 25 mm has been studied. For example, when a K-groove shown in FIG. The slag is remarkably deteriorated due to biting.
In addition, in the single-layer welding on both sides, the amount of welding was insufficient, and the penetration was deep and the bead width was narrow, so that high-temperature cracking occurred. On the other hand, when the multi-pass welding was carried out using the flux, the number of welding passes was remarkably increased, but no crack was generated, but the bead did not conform to the toe end and undercut occurred, resulting in poor bead appearance. Was.

【0005】[0005]

【発明が解決しようとする課題】本発明は、極厚鋼の下
向すみ肉サブマージアーク溶接において、スラグ剥離性
およびビード止端部のなじみが良好で優れた溶接作業性
が得られるとともに、アンダーカットや高温割れ等の溶
接欠陥のない溶接継手部が得られる2電極下向すみ肉サ
ブマージアーク溶接方法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a submerged arc welding method for a down fillet of ultra-thick steel, in which excellent slag removability and conformability of a bead toe can be obtained and excellent welding workability can be obtained. An object of the present invention is to provide a two-electrode downward fillet submerged arc welding method capable of obtaining a welded joint portion having no welding defects such as cuts and hot cracks.

【0006】[0006]

【課題を解決するための手段】本発明は、板厚60〜1
00mmの極厚鋼板の下向すみ肉サブマージアーク溶接
方法において、フラックス全重量に対して鉄粉:20〜
40wt%、SiO2:5〜10wt%、Al23
5〜15wt%、MgO:5〜20wt%、TiO2
5〜20wt%、CaCO3 :5〜10wt%、ZrO
2 :5〜15wt%を含有するボンドフラックスを用い
て多層盛溶接し、最終パスはフランジ鋼板側を溶接する
ことを特徴とする。またさらに、先行電極ワイヤ径:
4.0〜6.0mm、後行電極ワイヤ径:5.0〜7.
0mmとし、電極間距離を初層溶接:40〜60mm、
2パス目以降:10〜30mmで溶接することも特徴と
する2電極下向すみ肉サブマージアーク溶接方法であ
る。
SUMMARY OF THE INVENTION The present invention is directed to a plate having a thickness of 60 to 1 mm.
In the downward fillet submerged arc welding method for an extremely thick steel sheet of 00 mm, iron powder: 20 to
40 wt%, SiO 2 : 5 to 10 wt%, Al 2 O 3 :
5 to 15 wt%, MgO: 5 to 20 wt%, TiO 2 :
5-20 wt%, CaCO 3 : 5-10 wt%, ZrO
2 : It is characterized in that multi-pass welding is performed using a bond flux containing 5 to 15 wt%, and the final pass is to weld the flange steel plate side. Furthermore, the lead electrode wire diameter:
4.0-6.0 mm, trailing electrode wire diameter: 5.0-7.0.
0 mm, the distance between the electrodes is first layer welding: 40-60 mm,
Second pass and thereafter: This is a two-electrode downward fillet submerged arc welding method, which is also characterized by welding at 10 to 30 mm.

【0007】[0007]

【発明の実施の形態】板厚60mm以上の極厚H型鋼を
製作するための2電極下向すみ肉サブマージアーク溶接
においてフラックスおよび溶接施工条件等を種々検討し
た結果、以下の知見を得た。 (1)極厚H型鋼のすみ肉サブマージアーク溶接作業の
能率を上げるには、高電流を用いてワイヤ溶融速度を増
加すれば良い。しかし、単に高電流化すると溶接入熱量
が増加して、溶接時に生成するスラグが溶接金属を保持
できず、ビード幅が不揃いとなる。従って、大入熱の2
電極下向すみ肉サブマージアーク溶接においては、フラ
ックスに耐火性を与えることが重要となる。
BEST MODE FOR CARRYING OUT THE INVENTION In the two-electrode downward fillet submerged arc welding for manufacturing an ultra-thick H-section steel having a plate thickness of 60 mm or more, the following findings were obtained as a result of various studies on the flux and welding conditions. (1) In order to improve the efficiency of the fillet submerged arc welding work of the extremely thick H-section steel, it is sufficient to increase the wire melting rate by using a high current. However, if the current is simply increased, the amount of heat input to welding increases, and slag generated during welding cannot hold the weld metal, resulting in uneven bead width. Therefore, large heat input 2
In submerged arc welding of fillet facing down the electrode, it is important to provide the flux with fire resistance.

【0008】(2)同様に、極厚H型鋼の板厚が厚くな
れば開先断面積も増加するので、必要な溶着金属量も多
くなる。したがって高い溶着金属量を確保する目的でフ
ラックス中に鉄粉等の金属粉を添加するが、スラグ生成
剤となる鉱物原料や合金成分を混合する必要があるの
で、水ガラス等のバインダーを用いて製造されるボンド
フラックスを適用する必要がある。
(2) Similarly, as the thickness of the extra-thick H-section steel increases, the groove cross-sectional area increases, so that the required amount of deposited metal also increases. Therefore, metal powder such as iron powder is added to the flux for the purpose of securing a high amount of deposited metal.However, it is necessary to mix a mineral raw material or an alloy component serving as a slag forming agent. It is necessary to apply the produced bond flux.

【0009】(3)また、1層溶接で仕上げる大入熱の
溶接施工では、溶け込みが深くなると共にビード幅は狭
くなり、梨型の溶け込み形状となって高温割れが発生す
る。さらに、ビード幅が狭いのでビード止端部のなじみ
が悪くアンダーカットが発生しビード外観不良となる。
多層盛溶接にすると高温割れは防止でき、溶接狙い位置
を各パス振り分けることにより、ビード止端部のアンダ
ーカットは発生しない。
(3) Further, in the welding with high heat input, which is completed by single-layer welding, the penetration becomes deeper and the bead width becomes narrower, resulting in a pear-shaped penetration shape and high-temperature cracking. Furthermore, since the bead width is narrow, the bead does not fit well and the undercut occurs, resulting in poor bead appearance.
High-temperature cracking can be prevented by multi-pass welding, and the undercut of the bead toe does not occur by allocating the welding target position to each pass.

【0010】(4)一方、多層盛溶接においては、各パ
ス溶接終了後のスラグ剥離性が溶接作業能率上、特に重
要である。多層盛溶接では、特に初層溶接は開先底部を
狙って溶接するので溶接スラグが噛み込み易い。この溶
接スラグを残して次パスの溶接をすると溶接欠陥として
溶接終了後の手直しが必要となって作業能率は著しく低
下する。
(4) On the other hand, in multi-pass welding, slag removability after each pass welding is particularly important in terms of welding work efficiency. In the multi-layer welding, the first layer welding is particularly aimed at the groove bottom, so that the welding slag is easily bitten. If welding is performed in the next pass while leaving the welding slag, work after welding is required to be reworked as a welding defect, resulting in a significant decrease in work efficiency.

【0011】そこで、フラックス組成について種々検討
を行った結果、耐火性などの条件を満たすとともに溶接
後容易にスラグ剥離する成分系を見いだした。以下に本
発明の作用と共に限定理由について詳細に説明する。 [鉄粉:20〜40wt%]鉄粉はフラックス全重量に
対し、20〜40wt%含有することが必要である。鉄
粉は溶接時にア−ク熱により溶融され、開先内に移行し
溶着量を増加する。また、溶接時に生成するスラグ量が
減少してスラグが取れ易くなる。このような鉄粉の効果
を得るためには、フラックス全重量に対し20%以上の
添加が必要である。一方、40%を超えると鉄粉の溶融
が困難となり、ビード表面に一部突起として残存し、ビ
ード外観を著しく損ねる。
Therefore, as a result of various studies on the flux composition, a component system which satisfies conditions such as fire resistance and which easily peels off slag after welding was found. Hereinafter, the reason for the limitation will be described in detail together with the operation of the present invention. [Iron powder: 20 to 40% by weight] It is necessary that the iron powder contains 20 to 40% by weight based on the total weight of the flux. The iron powder is melted by arc heat during welding, moves into the groove, and increases the amount of welding. In addition, the amount of slag generated during welding is reduced, and slag is easily removed. In order to obtain such an effect of iron powder, it is necessary to add 20% or more to the total weight of the flux. On the other hand, when the content exceeds 40%, melting of the iron powder becomes difficult, and some of the iron powder remains on the bead surface as projections, thereby significantly impairing the bead appearance.

【0012】[SiO2 :5〜10wt%]SiO2
フラックス全重量に対し、5〜10wt%含有すること
が必要である。SiO2 はスラグの粘性を増加させる作
用を有すると共に、溶接スラグをガラス質の性状とす
る。したがって開先内に噛み込んだスラグがガラス化し
ていれば、砕けやすくスラグ除去作業が容易となる。こ
のようなSiO2 の効果を得るためには、フラックス全
重量に対し5%以上の添加を必要とする。一方、10%
を超えるとスラグの融点が低下し、大入熱溶接の場合、
溶融金属を保持できずビード幅が不揃いとなりビード外
観が不良となる。
[SiO 2 : 5 to 10 wt%] It is necessary to contain 5 to 10 wt% of SiO 2 based on the total weight of the flux. SiO 2 has the effect of increasing the viscosity of the slag and makes the weld slag a vitreous property. Therefore, if the slag bitten into the groove is vitrified, the slag is easily broken and the slag removal operation is facilitated. In order to obtain such an effect of SiO 2 , it is necessary to add 5% or more to the total weight of the flux. On the other hand, 10%
If the temperature exceeds, the melting point of the slag decreases, and in the case of large heat input welding,
The molten metal cannot be held, the bead width is not uniform, and the bead appearance is poor.

【0013】[Al23 :5〜15wt%]Al2
3 はフラックス全重量に対し、5〜15wt%含有する
ことが必要である。Al23 は溶融温度が約2000
℃と比較的高く、フラックスの耐火性を増加させる作用
が優れている。したがって大入熱溶接においても溶融金
属を確実に保持でき、ビードの広がりを抑えてビード幅
を狭くするのでスラグ剥離性が向上する。このようなA
23 の効果はフラックス全重量に対し5%以上の添
加が必要であるが、15%を超えるとビード幅が狭くな
りすぎ、ビード止端部のなじみが不良となる。
[Al 2 O 3 : 5 to 15 wt%] Al 2 O
3 needs to be contained in an amount of 5 to 15% by weight based on the total weight of the flux. Al 2 O 3 has a melting temperature of about 2000
° C, which is relatively high, and has an excellent effect of increasing the fire resistance of the flux. Therefore, even in large heat input welding, the molten metal can be reliably held, and the spread of the bead is suppressed and the bead width is narrowed, so that the slag removability is improved. Such an A
The effect of l 2 O 3 requires addition of 5% or more based on the total weight of the flux. However, if it exceeds 15%, the bead width becomes too narrow, resulting in poor adaptation of the bead toe.

【0014】[MgO:5〜20wt%]MgOはフラ
ックス全重量に対し、5〜20wt%含有することが必
要である。MgOは融点が約2700℃と非常に高く、
フラックスに耐火性を与える。大入熱溶接においても安
定したビード形成を行う効果を得るためには、5%以上
の添加が必要である。一方、20%を超えると溶接スラ
グが硬くなり、開先内に噛み込んでスラグ除去作業が困
難となる。
[MgO: 5 to 20 wt%] MgO needs to be contained in an amount of 5 to 20 wt% based on the total weight of the flux. MgO has a very high melting point of about 2700 ° C,
Provides fire resistance to the flux. In order to obtain the effect of forming a stable bead even in large heat input welding, addition of 5% or more is necessary. On the other hand, if it exceeds 20%, the welding slag becomes hard and bites into the groove, making it difficult to remove the slag.

【0015】[TiO2 :5〜20wt%]TiO2
フラックス全重量に対し、5〜20wt%含有すること
が必要である。TiO2 は溶融スラグに流動性を与え、
ビード止端部のなじみを良好にする効果がある。このよ
うなTiO2 の効果を得るためには5%以上の添加が必
要であるが、20%を超えるとスラグの流動性が過大と
なりビード表面の波目が粗くなりビード外観が不良とな
る。
[TiO 2 : 5 to 20 wt%] TiO 2 needs to be contained in an amount of 5 to 20 wt% based on the total weight of the flux. TiO 2 gives fluidity to molten slag,
This has the effect of improving the familiarity of the bead toe. To obtain such an effect of TiO 2 , the addition of 5% or more is necessary. However, if it exceeds 20%, the fluidity of the slag becomes excessive, the wave on the bead surface becomes coarse, and the bead appearance becomes poor.

【0016】[CaCO3 :5〜10wt%]CaCO
3 はフラックス全重量に対し、5〜10wt%含有する
ことが必要である。CaCO3 は溶接時にアークを安定
にする。また、多層盛り溶接においては、溶接金属中に
拡散性水素が溶接パスの増加と共に蓄積され、最終パス
近傍で拡散性水素に起因する低温割れが生じる場合があ
る。CaCO3 は溶接時のアーク熱により、CaOとC
2 に分解されアーク空洞における水素分圧を下げ、溶
接金属に移行する水素を低減させ拡散性水素量を低くす
る効果を有する。このようなCaCO3 の効果を得るた
めには、5%以上の添加が必要であるが、10%を超え
るとガス発生量が過多となり、アークの吹き上げが激し
く、溶接作業性が劣化すると共にビード外観が不良とな
る。
[CaCO 3 : 5-10 wt%] CaCO 3
3 needs to contain 5 to 10% by weight based on the total weight of the flux. CaCO 3 stabilizes the arc during welding. In multi-pass welding, diffusible hydrogen is accumulated in the weld metal as the number of welding passes increases, and low-temperature cracking due to diffusible hydrogen may occur near the final pass. CaCO 3 is formed by CaO and C by arc heat during welding.
It has the effect of reducing the hydrogen partial pressure in the arc cavity which is decomposed into O 2 , reducing the amount of hydrogen transferred to the weld metal, and reducing the amount of diffusible hydrogen. To obtain such an effect of CaCO 3 , the addition of 5% or more is necessary. However, if it exceeds 10%, the amount of generated gas becomes excessive, the arc blows up sharply, the welding workability is deteriorated, and the bead is deteriorated. The appearance is poor.

【0017】[ZrO2 :5〜15wt%]ZrO2
フラックス全重量に対し、5〜15wt%含有すること
が必要である。ZrO2 はMgO同様溶融温度が非常に
高く約3000℃であり、フラックスに耐火性を与え大
入熱の溶接においても安定したビード形成を行う、ま
た、ZrO2 の添加は溶接スラグを砕け易くし、開先内
に噛み込んだスラグを微少な衝撃でも粉砕することが可
能となる。このような効果を得るためには、5%以上の
添加が必要であるが、15%を超えると耐火性が過多と
なりスラグの流動性が失われ、ビード外観が不良とな
る。以上、フラックス成分の作用と限定理由について述
べたが、これはスラグ剤となる鉱物原料や溶融金属とし
て開先内に移行する合金成分を水ガラス等のバインダー
を用いて造粒したボンドフラックスを前提とするもので
ある。
[ZrO 2 : 5 to 15 wt%] It is necessary to contain 5 to 15 wt% of ZrO 2 with respect to the total weight of the flux. ZrO 2 has a very high melting temperature of about 3000 ° C., similar to MgO, and provides fire resistance to the flux to form a stable bead even in welding with a large heat input. The addition of ZrO 2 makes the welding slag fragile. In addition, the slag that has caught in the groove can be crushed even with a slight impact. To obtain such an effect, it is necessary to add 5% or more. However, if it exceeds 15%, the fire resistance becomes excessive, the fluidity of the slag is lost, and the bead appearance becomes poor. The effects of the flux component and the reasons for the limitation have been described above, but this is based on the assumption that the bond flux is obtained by granulating a mineral raw material as a slag agent or an alloy component that migrates into the groove as a molten metal using a binder such as water glass. It is assumed that.

【0018】[最終パスの溶接方法]H型鋼はフランジ
鋼板とウェブ鋼板とをすみ肉溶接して製作される。通
常、板厚25mm程度までは開先加工を施さずに両側一
層溶接されるが、板厚60mm以上の極厚鋼の溶接にお
いては、図1に示すようにウェブ鋼板1の側にK開先を
施し、両面から多層盛溶接を行い十分な溶け込みが得ら
れるようにする。
[Final pass welding method] The H-shaped steel is manufactured by fillet welding a flange steel sheet and a web steel sheet. Normally, both sides are welded without a beveling process up to a plate thickness of about 25 mm. However, in welding of a very thick steel plate having a plate thickness of 60 mm or more, as shown in FIG. And perform multi-pass welding from both sides to obtain sufficient penetration.

【0019】図1に示すように極厚H型鋼を製作するた
めの多層盛溶接においては、初層溶接の溶け込みを十分
に得るために垂直線Lとフランジ鋼板2の表面およびウ
ェブ鋼板1側の開先面がなすそれぞれの角度を開先角度
θ1 の1/2であるθ1 /2として、ワイヤの狙い位置
を開先底部とする。続いて2パス目以降は開先内でフラ
ンジ鋼板2側またはウェブ鋼板1側を狙って振り分けて
多層盛溶接を行う。
As shown in FIG. 1, in the multi-layer welding for producing an extremely thick H-section steel, in order to obtain sufficient penetration of the first layer welding, the vertical line L and the surface of the flange steel plate 2 and the web steel plate 1 side are formed. each angle formed open crest as theta 1/2 which is half the included angle theta 1, the target position of the wire and the bottom of the groove. Subsequently, in the second and subsequent passes, multi-layer welding is performed by sorting the flange steel plate 2 or the web steel plate 1 in the groove.

【0020】しかし、図2(b)に示すように最終パス
をウェブ鋼板1側とすると、図2(a)に示すように、
最終パス前のワイヤ4狙い位置がフランジ鋼板2側とな
り、図1に示したようにフランジ鋼板2側表面は垂直線
Lとなす角度がθ1 /2と小さく傾斜が大きい。このこ
ととさらには図2(a)に示すようにウェブ鋼板1側に
溶融スラグの流れをせき止める前パスのビードもないの
で、最終パス前の溶接において溶融スラグが重力でウェ
ブ鋼板1側に流れる。従って、フランジ鋼板2側のビー
ド止端部にアンダーカット3が生じる。
However, if the final pass is on the web steel sheet 1 side as shown in FIG. 2B, as shown in FIG.
Final pass before the wire 4 aiming position becomes flange steel plate 2 side, flange steel plate 2 surface as shown in FIG. 1 has a small inclination is large angle between the vertical line L and theta 1/2. As shown in FIG. 2A, since there is no bead in the pass before damping the flow of the molten slag on the web steel plate 1 side, the molten slag flows toward the web steel plate 1 by gravity in the welding before the final pass. . Therefore, an undercut 3 occurs at the bead toe on the flange steel plate 2 side.

【0021】逆に図3(b)に示すように、最終パスの
ワイヤ4の狙い位置をフランジ鋼板2側とすると、図1
に示すように、ウェブ鋼板1側鋼板表面と垂直線Lとが
なす角度はθ1 /2+θ2 と広く、傾斜が緩くなる。し
たがって図3(a)に示すように最終パス前の溶接にお
いて溶融スラグが流れることがなく、ビード止端部にア
ンダーカットが生じることはない。続く最終パスにおい
ても、図3(b)に示すように溶融スラグが前パスのビ
ード5で止められ流れることがなく、アンダーカットは
生じない。
Conversely, as shown in FIG. 3B, when the target position of the wire 4 in the final pass is on the side of the flange steel plate 2, FIG.
As shown in, the angle between the vertical line L and the web steel plate 1 side surface of the steel sheet is large and θ 1/2 + θ 2, the inclination becomes loose. Therefore, as shown in FIG. 3A, no molten slag flows during welding before the final pass, and no undercut occurs at the bead toe. In the subsequent final pass, as shown in FIG. 3B, the molten slag is stopped by the bead 5 of the previous pass and does not flow, so that no undercut occurs.

【0022】[ワイヤ径および極間距離の限定理由]本
発明における2電極溶接において先行電極は溶込み深さ
を、後行電極はビード幅を制御する役割がある。したが
って先行電極は電流密度を高くするために細径とし、ワ
イヤ径は4.0〜6.0mmが適当である。4.0mm
未満では高電流が使用できず、また、高温割れも発生す
る。一方、6.0mmを超えると溶込み量が少なくな
る。また、後行電極はビード幅を広げるためにワイヤ径
は5.0〜7.0mmが適当である。5.0mm未満で
はビード幅を広げる効果を得られず、7.0mmを超え
るとワイヤを溶融するために高い電流が必要で、先行電
極との電流バランスが悪くアークが不安定となりビード
幅が不揃いとなる。
[Reason for Limiting Wire Diameter and Distance between Poles] In two-electrode welding according to the present invention, the leading electrode has a role of controlling the penetration depth, and the trailing electrode has a role of controlling the bead width. Therefore, the leading electrode is preferably small in diameter to increase the current density, and the wire diameter is suitably 4.0 to 6.0 mm. 4.0mm
If it is less than 1, a high current cannot be used, and high-temperature cracking also occurs. On the other hand, if it exceeds 6.0 mm, the amount of penetration decreases. Also, the wire diameter of the subsequent electrode is suitably 5.0 to 7.0 mm in order to increase the bead width. If it is less than 5.0 mm, the effect of widening the bead width cannot be obtained. If it exceeds 7.0 mm, a high current is required to melt the wire, the current balance with the preceding electrode is poor, the arc becomes unstable, and the bead width is uneven. Becomes

【0023】また、電極間距離は溶込み深さに大きく影
響し、深い溶込みを必要とする初層溶接では電極間距離
を40〜60mmとする。電極間距離が40mm未満で
は、先行電極のアークが後行電極に干渉され後方に引き
寄せられ深い溶込み得られない。一方、60mmを超え
るとアークの干渉は起こらないものの、溶融池が2プー
ルとなりビード表面の波目が粗くビード外観が不良とな
る。また、2パス目以降は溶融池をセミワンプールとし
て、ビード止端部にアンダーカット等の溶接欠陥が無く
ビード幅を均一とするため電極間距離は10〜30mm
が必要で、10mm未満ではアークの吹き上げが激しく
ビード外観不良となる。30mmを超えるとビード幅が
広がりすぎて、開先内のスラグ剥離性が劣化する。
Further, the distance between the electrodes greatly affects the penetration depth, and the distance between the electrodes is set to 40 to 60 mm in the first layer welding which requires deep penetration. If the distance between the electrodes is less than 40 mm, the arc of the leading electrode is interfered by the trailing electrode and is drawn backward, so that deep penetration cannot be obtained. On the other hand, if it exceeds 60 mm, the interference of the arc does not occur, but the molten pool becomes two pools, the wave on the bead surface is coarse, and the bead appearance is poor. In the second pass and thereafter, the weld pool is a semi-one pool, and the distance between the electrodes is 10 to 30 mm to make the bead width uniform without welding defects such as undercuts at the bead toe.
When the thickness is less than 10 mm, the arc blows up violently, resulting in poor bead appearance. If it exceeds 30 mm, the bead width becomes too wide, and the slag removability in the groove deteriorates.

【0024】[0024]

【実施例】表1に示す組成のボンドフラックスを試作
し、表2に示す化学成分の鋼板を図1に示す開先に加工
し、表3に示す化学成分のワイヤを用い、表4に示す溶
接条件で2パス目以降は開先の両側に振り分け、最終パ
スのワイヤ狙い位置と電極間距離を変えて2電極でサブ
マージアーク溶接した。溶接時のスラグ剥離性、ビード
のなじみ等の溶接作業性と溶接終了後超音波探傷で高温
割れの有無および初層の溶込みを調べた。それらの結果
を表5および表6にまとめて示す。
EXAMPLES A bond flux having a composition shown in Table 1 was trial-produced, a steel sheet having a chemical composition shown in Table 2 was processed into a groove shown in FIG. 1, and a wire having a chemical composition shown in Table 3 was used. Under the welding conditions, the second pass and thereafter were distributed to both sides of the groove, and the target position of the wire in the final pass and the distance between the electrodes were changed to perform submerged arc welding with two electrodes. Welding workability such as slag peeling property and bead familiarity during welding, and the presence of hot cracks and penetration of the first layer were examined by ultrasonic testing after welding. The results are summarized in Tables 5 and 6.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【表6】 [Table 6]

【0031】表5中試験No.1〜6が本発明例、試験
No.7〜22が比較例である。本発明例である試験N
o.1〜6は、フラックス組成、最終パスのワイヤ狙い
位置、ワイヤ径および電極間距離が適正なので、初層の
溶込み、スラグ剥離性、ビードのなじみが良好で、高温
割れも無く極めて満足な結果であった。
In Table 5, Test No. 1 to 6 are examples of the present invention and test Nos. 7 to 22 are comparative examples. Test N which is an example of the present invention
o. In the case of Nos. 1 to 6, the flux composition, the target wire position of the final pass, the wire diameter, and the distance between the electrodes are appropriate, so the penetration of the first layer, the slag removability, the familiarity of the beads are good, and there is no high-temperature cracking. Met.

【0032】試験No.7は、フラックス記号F−7の
鉄粉が高くビード表面に突起が発生し、また、Al2
3 が低いのでスラグ剥離性が劣化した。試験No.8
は、フラックス記号F−8のSiO2 が高くビード幅が
不揃いとなり、また、ZrO2 が低いのでスラグ剥離が
不良であった。試験No.9は、フラックス記号F−9
のMgOが高く溶接スラグが硬くなり剥離性が劣化し、
また、CaCO3 が高いためアークの吹き上げが激しく
溶接作業性が劣化した。
Test No. 7, the projection is generated in the high bead surface of iron powder in the flux code F-7, also, Al 2 O
3, the slag peeling property was deteriorated. Test No. 8
In Example 1, the flux code F-8 was high in SiO 2, resulting in irregular bead width, and ZrO 2 was low, so that slag peeling was poor. Test No. 9 is the flux symbol F-9
Of MgO is high, the welding slag becomes hard, and the peelability deteriorates.
In addition, since CaCO 3 was high, the blow-up of the arc was severe and welding workability was deteriorated.

【0033】試験No.10は、フラックス記号F−1
0の鉄粉が低く溶着量不足となり、また、Al23
高いのでビード幅は狭くなって、ビード止端部のなじみ
が不良であった。試験No.11は、フラックス記号F
−11のTiO2 が高くスラグの流動性が過大でビード
表面の波目が粗くなり、また、CaCO3 が低いためア
ークが安定せずビード幅が不揃いでビードのなじみが不
良となった。
Test No. 10 is the flux symbol F-1
Since the iron powder of No. 0 was low and the amount of welding was insufficient, and the Al 2 O 3 was high, the bead width was narrow and the conformity of the bead toe was poor. Test No. 11 is the flux symbol F
Since TiO 2 of -11 was high and the fluidity of the slag was excessive, the ripples on the bead surface became coarse, and because CaCO 3 was low, the arc was not stable, the bead width was not uniform, and the bead adaptation was poor.

【0034】試験No.12は、フラックス記号F−1
2のSiO2 が低く、また、ZrO2 が高いのでスラグ
の流動性が失われ、スラグ剥離性およびビード外観が劣
化した。試験No.13は、フラックス記号F−13の
MgOとTiO2 が低いので、スラグの耐火性と流動性
が悪く、スラグ剥離性およびビードのなじみが劣化し
た。
Test No. 12 is the flux symbol F-1
2 had low SiO 2 and high ZrO 2 , the fluidity of the slag was lost, and the slag removability and bead appearance deteriorated. Test No. In No. 13, MgO and TiO 2 having a flux code of F-13 were low, so that the slag was poor in fire resistance and fluidity, and the slag peeling property and the penetration of beads were deteriorated.

【0035】試験No.14は、最終パス狙い位置がウ
ェブ鋼板側であり、最終パス前のフランジ側にアンダー
カットが発生した。試験No.15は溶接条件の記号W
3の先行電極ワイヤ径が細いので、初層の溶込みが深く
高温割れが発生した。試験No.16は溶接条件W4の
先行電極ワイヤ径が太いので初層の溶込み不足となっ
た。
Test No. In No. 14, the target position of the final pass was the web steel plate side, and undercut occurred on the flange side before the final pass. Test No. 15 is the symbol W for welding conditions
Since the diameter of the leading electrode wire of No. 3 was small, the penetration of the first layer was deep and hot cracking occurred. Test No. In No. 16, the leading electrode wire diameter of the welding condition W4 was large, so that the penetration of the first layer was insufficient.

【0036】試験No.17は溶接条件記号W5の後行
電極ワイヤ径が細いので、ビード幅が広がらずビード止
端部のなじみが劣化した。試験No.18は溶接条件記
号W6の後行電極ワイヤ径が太く、先行と後行電極の電
流バランスが悪くなってアークが不安定でビード止端部
のなじみが劣化した。
Test No. In No. 17, since the diameter of the trailing electrode wire of the welding condition symbol W5 was small, the bead width was not widened and the conformity of the bead toe was deteriorated. Test No. In No. 18, the wire diameter of the trailing electrode of welding condition symbol W6 was large, the current balance between the leading electrode and the trailing electrode was poor, the arc was unstable, and the adaptability of the bead toe was deteriorated.

【0037】試験No.19は、初層の電極間距離が短
いため、溶込みが浅くなった。試験No.20は、2パ
ス目以降の電極間距離が短いため、アークの吹き上げが
激しく溶接作業性が劣化した。試験No.21は、2パ
ス目以降の電極間距離が長いため、溶融池が2プールと
なりビード表面の波目が粗くなった。試験No.22
は、初層の電極間距離が長いため、ビード幅が広くなり
スラグ剥離性が劣化した。
Test No. In No. 19, since the distance between the electrodes of the first layer was short, the penetration was shallow. Test No. In No. 20, since the distance between the electrodes after the second pass was short, the arc blow-up was severe and welding workability was deteriorated. Test No. In No. 21, since the distance between the electrodes after the second pass was long, the molten pool became two pools, and the waves on the bead surface became coarse. Test No. 22
Since the distance between the electrodes of the first layer was long, the bead width was widened and the slag removability was deteriorated.

【0038】[0038]

【発明の効果】以上詳述したように、本発明の2電極下
向すみ肉サブマージアーク溶接方法によれば、極厚H型
鋼を製作する場合等に用いられるすみ肉溶接においてス
ラグ剥離性、ビード止端部のなじみが良好で優れた溶接
作業性が得られるとともにアンダーカットや高温割れ等
の溶接欠陥も無く、高能率に極厚H型鋼を提供すること
ができる。
As described above in detail, according to the two-electrode downward fillet submerged arc welding method of the present invention, the slag peeling property and the bead in the fillet welding used when manufacturing an extremely thick H-section steel or the like. The weldability of the toe is good and excellent welding workability can be obtained, and there is no welding defect such as undercut or hot crack, so that an extremely thick H-section steel can be provided with high efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】極厚H型鋼を製作するときの開先形状を示す断
面図
FIG. 1 is a cross-sectional view showing a groove shape when manufacturing an extremely thick H-section steel.

【図2】比較例の溶接積層要領を示す断面図で、(a)
は最終パス前、(b)は最終パス後の状態を示す。
FIG. 2 is a cross-sectional view showing a welding lamination procedure of a comparative example, and FIG.
Shows the state before the final pass, and (b) shows the state after the final pass.

【図3】本発明の溶接積層要領を示す断面図で、(a)
は最終パス前、(b)は最終パス後の状態を示す。
FIG. 3 is a cross-sectional view showing a welding lamination procedure according to the present invention;
Shows the state before the final pass, and (b) shows the state after the final pass.

【符号の説明】[Explanation of symbols]

1 ウェブ鋼板 2 フランジ鋼板 3 アンダーカット 4 ワイヤ 5 前パスのビード tw ウェブ鋼板の板厚 tf フランジ鋼板の板厚 d 開先深さ L 垂直線 θ1 フランジ鋼板とウェブ鋼板側開先面がなす角度 θ2 ウェブ鋼板表面と開先面がなす角度1 web steel plate 2 a flange steel plate 3 undercut 4 wire 5 beads t w the thickness t f thickness d groove depth of the flange steel L vertical theta 1 flange steel and the web steel plate side GMA surface of the web steel plate before path angle angle theta 2 web steel sheet surface and the groove surface Nasu forms

───────────────────────────────────────────────────── フロントページの続き (72)発明者 末田 勝利 東京都中央区築地三丁目5番4号 日鐵溶 接工業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Katsutoshi Sueda 3-5-4 Tsukiji, Chuo-ku, Tokyo Nippon Steel Welding Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 板厚60〜100mmの極厚鋼板の下向
すみ肉サブマージアーク溶接方法において、フラックス
全重量に対して鉄粉:20〜40wt%、SiO2 :5
〜10wt%、Al23 :5〜15wt%、MgO:
5〜20wt%、TiO2 :5〜20wt%、CaCO
3 :5〜10wt%、ZrO2 :5〜15wt%を含有
するボンドフラックスを用いて多層盛溶接し、最終パス
はフランジ鋼板側を溶接することを特徴とする2電極下
向すみ肉サブマージアーク溶接方法。
In a downward fillet submerged arc welding method for an extremely thick steel plate having a thickness of 60 to 100 mm, iron powder: 20 to 40 wt% and SiO 2 : 5 to the total weight of the flux.
~10wt%, Al 2 O 3: 5~15wt%, MgO:
5~20wt%, TiO 2: 5~20wt% , CaCO
3 : Multi-pass welding using a bond flux containing 5 to 10 wt% and ZrO 2 : 5 to 15 wt%, and the final pass is welding on the flange steel plate side. Method.
【請求項2】 先行電極ワイヤ径:4.0〜6.0m
m、後行電極ワイヤ径:5.0〜7.0mmとし、電極
間距離を初層溶接:40〜60mm、2パス目以降:1
0〜30mmで溶接することを特徴とする請求項1記載
の2電極下向すみ肉サブマージアーク溶接方法。
2. Lead electrode wire diameter: 4.0 to 6.0 m
m, trailing electrode wire diameter: 5.0-7.0 mm, distance between electrodes: first layer welding: 40-60 mm, second pass and thereafter: 1
2. The method for welding a two-electrode downward fillet submerged arc according to claim 1, wherein the welding is performed at 0 to 30 mm.
JP31914697A 1997-11-06 1997-11-06 Flat fillet submerged arc welding method by two electrode Pending JPH11138267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31914697A JPH11138267A (en) 1997-11-06 1997-11-06 Flat fillet submerged arc welding method by two electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31914697A JPH11138267A (en) 1997-11-06 1997-11-06 Flat fillet submerged arc welding method by two electrode

Publications (1)

Publication Number Publication Date
JPH11138267A true JPH11138267A (en) 1999-05-25

Family

ID=18106963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31914697A Pending JPH11138267A (en) 1997-11-06 1997-11-06 Flat fillet submerged arc welding method by two electrode

Country Status (1)

Country Link
JP (1) JPH11138267A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516368A (en) * 2003-07-02 2007-06-21 アンドウステイール・フランス How to assemble a section of a rack over a self-raising oilfield platform
JP2011240370A (en) * 2010-05-18 2011-12-01 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for horizontal fillet gas shield arc welding
CN102861974A (en) * 2012-09-21 2013-01-09 武汉钢铁(集团)公司 Angle joint submerged arc welding method of bridge steel combinations with different strengths and plate thicknesses
CN105081537A (en) * 2014-05-08 2015-11-25 株式会社神户制钢所 Four-electrode single-sided and single-layered submerged-arc welding method
CN108890097A (en) * 2018-09-11 2018-11-27 华业钢构核电装备有限公司 A kind of complete penetration welding method of H profile steel component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516368A (en) * 2003-07-02 2007-06-21 アンドウステイール・フランス How to assemble a section of a rack over a self-raising oilfield platform
JP2011240370A (en) * 2010-05-18 2011-12-01 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for horizontal fillet gas shield arc welding
CN102861974A (en) * 2012-09-21 2013-01-09 武汉钢铁(集团)公司 Angle joint submerged arc welding method of bridge steel combinations with different strengths and plate thicknesses
CN105081537A (en) * 2014-05-08 2015-11-25 株式会社神户制钢所 Four-electrode single-sided and single-layered submerged-arc welding method
CN108890097A (en) * 2018-09-11 2018-11-27 华业钢构核电装备有限公司 A kind of complete penetration welding method of H profile steel component

Similar Documents

Publication Publication Date Title
KR101156279B1 (en) Material and method for submerged arc welding of 9% ni steel
JP2021126696A (en) Narrow groove submerged arc welding method
JP2000263284A (en) One-side welding method for steel for low-temperature use
JPH11138267A (en) Flat fillet submerged arc welding method by two electrode
JPH11216569A (en) Fillet welding of ultra thick steel plate
JP3801186B2 (en) Ultra-thick welded material by multilayer submerged arc welding
JP7126080B1 (en) Gas-shielded arc welding method, welded joint, and method for manufacturing the welded joint
JP3765761B2 (en) Bond flux for submerged arc welding
JPH0673757B2 (en) Large heat input latent arc welding method for thick steel plate
JPH09206945A (en) Multi-electrode gas shielded one-side welding method
JP2001205483A (en) Flux-containing wire for gas shield arc welding
JP3624727B2 (en) Multi-layer submerged arc welding method for extra-thick steel plates
JP3889897B2 (en) Two-electrode vertical electrogas arc welding method with excellent welding workability and back bead appearance
JPH11347788A (en) Bond flux for submerged arc welding
JPH11267883A (en) Bonded flux for single face submerged arc welding and single face submerged arc welding method of 570 mpa atmosphere corrosion resisting steel for large heat input
WO2022196541A1 (en) Gas-shielded arc welding method, welded joint, and welded-joint production method
JP2978350B2 (en) Multi-electrode single-sided submerged arc welding
JP6908547B2 (en) Bond flux for multi-electrode single-sided submerged arc welding
JP3068280B2 (en) Low hydrogen coated arc welding rod
CN108145343B (en) Flux for submerged arc welding
WO2022196540A1 (en) Gas shield arc welding method, welding joint, and method for producing welding joint
JP3160535B2 (en) Large heat input 2-electrode submerged arc welding method
JPH04339592A (en) Flux for submerged arc welding of 80-kg/cm2 class high tensile steel
JPH081338A (en) High heat input multi-layer submerged arc welding method for thick steel plate
JPH06285639A (en) Inner surface seam welding method for clad steel tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040322

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040914