JPH03236606A - Waveguide and resonator - Google Patents

Waveguide and resonator

Info

Publication number
JPH03236606A
JPH03236606A JP2033084A JP3308490A JPH03236606A JP H03236606 A JPH03236606 A JP H03236606A JP 2033084 A JP2033084 A JP 2033084A JP 3308490 A JP3308490 A JP 3308490A JP H03236606 A JPH03236606 A JP H03236606A
Authority
JP
Japan
Prior art keywords
superconducting material
oxide superconductor
oxide
copper
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2033084A
Other languages
Japanese (ja)
Inventor
Yasuhiko Takemura
保彦 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2033084A priority Critical patent/JPH03236606A/en
Publication of JPH03236606A publication Critical patent/JPH03236606A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a resonator with a large Q by using a thin film or bulk made of an oxide superconducting material as a wall member and coating the surface of the superconducting material with a metallic film of a specific thickness. CONSTITUTION:A thin film or bulk made of an oxide superconducting material having a critical temperature of a liquid nitrogen temperature or over is used as a wall member and the surface of the oxide superconducting material of the inner face of the wall is coated by a metallic film whose thickness is 10-1000nm to form a waveguide and a resonator. Moreover, as the oxide superconducting material, it is desired to be selected from an oxide superconducting material of Y (or lanthanoide group element), Ba, Cu and O and an oxide superconducting material mainly made of Bi, Sr, Ca, Cu and O. Moreover, as a metal coating the surface of the oxide superconducting material, it is desired to selected from Ag, Au, Cu, Pb or their alloys.

Description

【発明の詳細な説明】 「発明の技術分野」 本発明は酸化物超伝導体を用いたマイクロ波領域におけ
る導波管および共振器に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to waveguides and resonators in the microwave region using oxide superconductors.

〔発明の詳細な説明〕[Detailed description of the invention]

r従来の技術・問題点」 マイクロ波領域の高周波電磁波に対して超伝導体が極め
て低い表面抵抗を持つことを利用した、低損失の導波管
や高Q値の共振器は産業的にも需要が大きいことが予測
され、活発に研究されている。
``Conventional technology/problems'' Low-loss waveguides and high-Q resonators that take advantage of the extremely low surface resistance of superconductors to high-frequency electromagnetic waves in the microwave region are industrially viable. It is predicted that there will be a large demand for it, and it is being actively researched.

超伝導体はマイクロ波に対する表面抵抗が、通常の金属
よりも低く、これを用いて導波管を作成すれば非常に損
失の少ない導波管となり、またこれを用いて共振器を作
成すれば非常にQ値の大きな共振器が作成できる0本発
明はこの超伝導導波管および共振器の特性をより向上さ
せることを目的とする0本発明による導波管を加速空洞
に用いれば、マイクロ波通信のみならず、例えば、高効
率の電子あるいはイオン・重イオンの加速器が作製でき
、これは工業・農業・医療等に広く利用できる。特に近
年、液体窒素温度以上で超伝導を示す高温酸化物超伝導
体が発見されてからは、その応用の一つとして、酸化物
超伝導体で導波管・共振器を作製することを0指した研
究がさかんに行われている。例えば、特開昭63−26
9805に記載されている。また、現在までに基礎的な
実験が多数行われている。それによると高品質な薄膜や
バルク材では液体窒素冷却で、同じ温度の銅よりも表面
抵抗が1桁以上中さいことが明らかになっている。この
値は従来の金属系超伝導体のレベルには達していない、
しかしながら、金属系超伝導体は高価な液体ヘリウムが
運転中に必要なのに対し、酸化物超伝導体では安価な液
体窒素でも十分であることを考慮すると運転コスト面で
十分実用的な値である。
Superconductors have a lower surface resistance to microwaves than ordinary metals, so if you use them to create a waveguide, you can create a waveguide with extremely low loss, and if you create a resonator using it, you can create a waveguide with very little loss. A resonator with a very large Q value can be created.The present invention aims to further improve the characteristics of superconducting waveguides and resonators.If the waveguide according to the present invention is used in an acceleration cavity, micro In addition to wave communications, for example, highly efficient electron, ion, and heavy ion accelerators can be created, which can be widely used in industry, agriculture, medicine, etc. Particularly in recent years, since the discovery of high-temperature oxide superconductors that exhibit superconductivity above liquid nitrogen temperatures, one of their applications is the creation of waveguides and resonators using oxide superconductors. The research mentioned is currently being carried out. For example, JP-A-63-26
9805. In addition, many basic experiments have been carried out to date. According to this study, it has been revealed that when high-quality thin films and bulk materials are cooled with liquid nitrogen, the surface resistance is more than an order of magnitude lower than that of copper at the same temperature. This value does not reach the level of conventional metallic superconductors.
However, considering that metallic superconductors require expensive liquid helium during operation, but cheap liquid nitrogen is sufficient for oxide superconductors, this is a sufficiently practical value in terms of operating costs.

また、現在までの実験では酸化物超伝導材料の多結晶試
料では単結晶試料よりも1桁程度特性が良くない。実際
に導波管や共振器を作製する場合には、大面積化が困難
な単結晶試料よりも、作製が容易で大面積で均質なもの
を作製できる多結晶試料を使用する方が、信頼性とコス
トの面から望ましい。したがって、酸化物超伝導体の多
結晶薄膜やバルクで単結晶試料並みの高周波特性を得る
ことが課題とされていた。
Furthermore, in experiments to date, polycrystalline samples of oxide superconducting materials have properties that are about an order of magnitude worse than single-crystalline samples. When actually fabricating waveguides and resonators, it is more reliable to use polycrystalline samples, which are easy to fabricate and can produce large-area, homogeneous samples, than single-crystal samples, which are difficult to fabricate. Desirable in terms of performance and cost. Therefore, it has been a challenge to obtain high-frequency characteristics comparable to single-crystal samples in polycrystalline thin films or bulk oxide superconductors.

j発明の構tcj 本発明は前記のような問題を解決する為に充分に低い表
面抵抗を実現した酸化物超伝導体をもちいた共振器及び
導波管を提供するものである。
Structure of the Invention The present invention provides a resonator and a waveguide using an oxide superconductor that achieves sufficiently low surface resistance in order to solve the above-mentioned problems.

即ち、液体窒素温度以上の臨界温度を有する酸化物超伝
導体の薄膜もしくはバルクを壁材として用い、壁の内面
の酸化物超伝導体の表面が厚さ10〜1000n−の金
属膜で被覆されていることを特徴とする導波管並びに共
振器である。
That is, a thin film or bulk of an oxide superconductor having a critical temperature higher than the liquid nitrogen temperature is used as a wall material, and the surface of the oxide superconductor on the inner surface of the wall is covered with a metal film with a thickness of 10 to 1000 nm. It is a waveguide and a resonator characterized by the following.

酸化物超伝導材料をマイクロ波の導波管や共振器に使用
する場合においては、多結晶試料が単結晶試料に比べて
特性が劣っていることの原因についてはこれまであまり
問題にされることはなく、単に臨界電流密度が多結晶試
料では小さいためだとされてきた。しかしながら、発明
者の詳細な研究の結果、多結晶試料では結晶粒界が存在
し、この粒界によって、個々の超伝導体結晶間の結合が
弱められるために特性が劣化するのだということが明ら
かになった。さらに詳細な研究の結果、本発明人は、粒
界の存在自体だけでなく、粒界が大気中で水分や二酸化
炭素にさらされることによる化学反応によっても特性劣
化がおこることに気付いた。そこで、酸化物超伝導体薄
膜を一切、大気に触れない状態で作製し、その表面に酸
化物超伝導体との化学反応性の小さい金属の薄い膜を保
護膜として形成し、高周波特性を測定したところ、単結
晶の特性には及ばなかったが、従来の多結晶薄膜よりも
1桁以上、特性の向上が見られた。これは、金属膜が保
護膜として機能したことと共に、金属膜によって超伝導
体結晶粒間の結合が強化されたためと考えられる。また
、この保護膜を作製した後、80°c、i度70%の恒
温恒湿槽に1000時間放置したが特性は5%劣化した
程度であった。−方同じ条件で、保護膜のないものを試
験したが、30%程度劣化していた。
When using oxide superconducting materials for microwave waveguides and resonators, the cause of the inferior properties of polycrystalline samples compared to single-crystalline samples has not been much of an issue. It has been thought that this is simply because the critical current density is small in polycrystalline samples. However, as a result of detailed research by the inventors, it was discovered that polycrystalline samples have grain boundaries, and these grain boundaries weaken the bonds between individual superconductor crystals, resulting in the deterioration of the properties. It was revealed. As a result of more detailed research, the inventors of the present invention found that properties deteriorate not only due to the presence of grain boundaries themselves, but also due to chemical reactions caused by exposure of grain boundaries to moisture and carbon dioxide in the atmosphere. Therefore, we fabricated an oxide superconductor thin film without any exposure to the atmosphere, formed a thin film of a metal with low chemical reactivity with the oxide superconductor as a protective film on its surface, and measured its high-frequency characteristics. As a result, although the properties were not as good as those of single crystal, it was found that the properties were improved by more than an order of magnitude compared to conventional polycrystalline thin films. This is thought to be because the metal film functioned as a protective film and also because the metal film strengthened the bonds between the superconductor crystal grains. Further, after producing this protective film, it was left in a constant temperature and humidity chamber at 80° C. and 70% i.degree. for 1000 hours, but the characteristics deteriorated by only 5%. A test without a protective film was conducted under the same conditions, but it was found to have deteriorated by about 30%.

また、表面を保護する金属膜は厚みが10nm以上であ
れば、膜状になり酸化物超伝導体の表面を覆うことがで
きる。それ以下の厚みの場合は膜状にならず、保護膜の
意味をなさない、また、11000n以上金属膜を形成
すると、下地の酸化物超伝導材料との間で密着性が悪く
なり、温度変化を数度加えると剥がれてしまった。
Further, if the metal film protecting the surface has a thickness of 10 nm or more, it becomes a film and can cover the surface of the oxide superconductor. If the thickness is less than that, it will not form a film and will not serve as a protective film.If a metal film is formed over 11,000 nm, the adhesion between it and the underlying oxide superconducting material will deteriorate, resulting in changes in temperature. When I applied it several times, it peeled off.

更に、下地の超伝導材料を作製した後、外気にふれさせ
ることなく、金属膜を形成して、超伝導材料と金属膜の
間に水分や炭酸ガスが存在しないよう番こすることが重
要である。その為、同一の反応室にて、超伝導材料と金
属膜を形成することやマルチチャンバ一方式の成膜装置
を使用して、外気に触れないよう工夫した。
Furthermore, after producing the underlying superconducting material, it is important to form a metal film without exposing it to the outside air and to ensure that there is no moisture or carbon dioxide between the superconducting material and the metal film. be. For this reason, we devised ways to avoid exposure to the outside air by forming the superconducting material and metal film in the same reaction chamber and using a multi-chamber type film forming apparatus.

一方、超伝導材料を形成した後、一度外気に曝した場合
は、金属膜を形成する際に、100〜300℃程度の温
度を加えながら、高真空状態に保持して、水分や炭酸ガ
スを取り除いた後に金属膜を形成することが重要であっ
た。
On the other hand, if a superconducting material is formed and then exposed to the outside air, it must be kept in a high vacuum state while applying a temperature of about 100 to 300°C to remove moisture and carbon dioxide gas when forming a metal film. It was important to form a metal film after removal.

以下に実施例を示し、より詳細に本発明を説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

「実施例1」 本実施例では高温酸化物超伝導体としてイツトリウム、
バリウム、銅および酸素からなる酸化物超伝導体(以下
YBCOという)を用いた。
“Example 1” In this example, yttrium,
An oxide superconductor (hereinafter referred to as YBCO) consisting of barium, copper, and oxygen was used.

第1図に示す複合チャンバー内ですべての反応をおこな
った。まず金属イツトリウム、金属バリウムおよび金属
銅を蒸発源とする電子ビーム蒸着法および抵抗加熱蒸着
法によってインドリウム、バリウム、銅からなる膜を高
真空中(10−’torr以下)で半径2インチの大き
さのチタン酸ストロンチウム基板上に成膜した。基板加
熱は行わなかった。イツトリウム、バリウム、銅の比率
はl:2=3で、膜厚は約2μmであった。ついでチャ
ンバー内に、酸素導入管(12)より1気圧の高純度酸
素を導入した後ヒーター(1)で基板を加熱し、酸化物
超伝導体の結晶成長をおこなった。加熱は、最初に70
0°Cで30分、次に800℃で30分、さらに900
°Cで10分、最後に400°Cで10時間の4段階に
分けておこなった。この加熱によって酸化物超伝導体(
YBCO)の結晶が形成される。膜は粒径数μmの多結
晶となる。形成された膜は0.1μm程度の凹凸があっ
た。
All reactions were carried out in a composite chamber as shown in FIG. First, a film consisting of indium, barium, and copper was deposited in a 2-inch radius in a high vacuum (10-'torr or less) by electron beam evaporation and resistance heating evaporation using yttrium, barium, and copper as evaporation sources. The film was formed on a strontium titanate substrate. No substrate heating was performed. The ratio of yttrium, barium, and copper was 1:2=3, and the film thickness was about 2 μm. Next, 1 atm of high-purity oxygen was introduced into the chamber through the oxygen introduction tube (12), and the substrate was heated with the heater (1) to grow crystals of the oxide superconductor. Heating is at first 70
30 minutes at 0°C, then 30 minutes at 800°C, then 900°C.
The test was carried out in four steps: 10 minutes at ℃ and finally 10 hours at 400 ℃. This heating causes the oxide superconductor (
YBCO) crystals are formed. The film becomes polycrystalline with a grain size of several μm. The formed film had irregularities of about 0.1 μm.

結晶成長が終了したら、再びチャンバー内をターボ分子
ポンプを使用して排気して、高真空中(10−’tor
r以下)状態に保持し酸化物超伝導表面に残っている酸
素を取り除いた後に反応室内の蒸発源(8)を用いて銀
の蒸着をおこなった。酸化物超伝導体膜上に厚さ約20
nmの薄い銀の膜を形成した。その間、基板加熱は行わ
なかった。
After crystal growth is completed, the chamber is evacuated again using a turbo molecular pump and placed in a high vacuum (10-'tor).
After removing the oxygen remaining on the oxide superconducting surface, silver was deposited using the evaporation source (8) in the reaction chamber. Approximately 20 mm thick on the oxide superconductor film
A nanometer-thin silver film was formed. During this time, the substrate was not heated.

このようにして作成された、直径2インチのYBCO膜
の高周波領域での表面抵抗を77にで測定した。その結
果、第2図に黒三角で示されるような特性が得られた。
The surface resistance of the YBCO film with a diameter of 2 inches thus prepared in the high frequency range was measured at 77°C. As a result, characteristics as shown by the black triangles in FIG. 2 were obtained.

この特性は、4.2Kにおける超伝導状態のニオブ(N
 b ”)の表面抵抗値よりは悪いが、77にでの銀の
表面抵抗値よりは1〜2桁良い結果が得られた。また、
従来報告されている多結晶薄膜での表面抵抗値よりも1
桁程度の改善が見られる。
This property is due to the superconducting state of niobium (N) at 4.2K.
Although it was worse than the surface resistance value of ``b''), it was one to two orders of magnitude better than the surface resistance value of silver in 77.
1 higher than the surface resistance of conventionally reported polycrystalline thin films.
An order of magnitude improvement can be seen.

このようにして作成された薄膜を用いて、1cmx 1
c+a X 2C■の矩形導波管型空洞共振器を作製し
た。そのQ値は77にで約3xlO’であった。従来の
銅製あるいは銀製の空洞共振器のQ値は4にでは〜10
’−105,77にでは〜104、また超伝導体ニオブ
製のものでは、4にで〜10’である。酸化物超伝導体
を用いて作製した空洞共振器は、ニオブ製のものには劣
るが、銅製や銀製の空洞共振器よりも良好な特性が得ら
れることが明らかとなった。
Using the thin film created in this way, 1 cm x 1
A rectangular waveguide cavity resonator of c+a x 2C■ was fabricated. Its Q value was 77 and about 3xlO'. The Q value of a conventional copper or silver cavity resonator is 4 to ~10.
-105,77 is ~104, and those made of superconductor niobium are ~10' at 4. It has been revealed that cavity resonators fabricated using oxide superconductors have better characteristics than cavity resonators made of copper or silver, although they are inferior to those made of niobium.

本実施例では、高真空排気にターボ分子ポンプを使用し
たので、ポンプからの逆拡散が無く、オイルミスト等不
純物のない薄膜を形成することができた。
In this example, since a turbo molecular pump was used for high vacuum evacuation, there was no back diffusion from the pump, and a thin film free of impurities such as oil mist could be formed.

r効果J 実施例に示したように、本発明によってによって、極め
てQ値の大きな共振器が作製できた0本発明の実施例で
は共振器についてのみ述べたが、もちろん、通常の導波
管やマイクロトリップライン等の高周波用立体回路に本
発明を適用することも本発明の主旨から当然含まれる。
r effect J As shown in the examples, the present invention made it possible to fabricate a resonator with an extremely large Q value. In the examples of the present invention, only the resonator was described, but of course ordinary waveguides and Naturally, the gist of the present invention also includes application of the present invention to high-frequency three-dimensional circuits such as microtrip lines.

また、超伝導材の表面に金属保護膜を形成したので、長
期の信頼性も増し、充分に工業的な応用が気体できるレ
ベルに近づいた。
Furthermore, since a metal protective film was formed on the surface of the superconducting material, long-term reliability was increased, and the material was close to the level where it could be used as a gas for industrial applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化物超伝導体薄膜作成および表面皮膜形成装
置の概略を示す。 第2図は本発明によって作製された超伝導薄膜の77に
での表面抵抗の周波数依存性を示す。 トチャンバー  2・ヒーター 3・基板(チタン酸ストロンチウム)および基板ホルダ
ー 4・イツトリウム蒸発源 5 ・ 6 ・ 7 ・ 8 ・ 9 ・ 10・ 11・ 12・ 電子銃 バリウム蒸発源 銅蒸発源 銀蒸発源 ターボ分子ポンプ ロータリーポンプ 高圧電源 酸素導入管
FIG. 1 schematically shows an apparatus for producing an oxide superconductor thin film and forming a surface film. FIG. 2 shows the frequency dependence of the surface resistance at 77 of the superconducting thin film produced according to the present invention. chamber 2, heater 3, substrate (strontium titanate) and substrate holder 4, yttrium evaporation source 5, 6, 7, 8, 9, 10, 11, 12, electron gun, barium evaporation source, copper evaporation source, silver evaporation source, turbo molecule Pump rotary pump high pressure power supply oxygen introduction tube

Claims (4)

【特許請求の範囲】[Claims] 1.液体窒素温度以上の臨界温度を有する酸化物超伝導
体の薄膜もしくはバルクを壁材として用い、壁の内面の
酸化物超伝導体の表面が厚さ10〜1000nmの金属
膜で被覆されていることを特徴とする導波管並びに共振
器。
1. A thin film or bulk of an oxide superconductor having a critical temperature higher than liquid nitrogen temperature is used as a wall material, and the surface of the oxide superconductor on the inner surface of the wall is covered with a metal film with a thickness of 10 to 1000 nm. Waveguides and resonators featuring:
2.特許請求の範囲第1項において、前記酸化物超伝導
体としては、イットリウム(あるいはランタノイド族元
素)、バリウム、銅及び酸素からなる酸化物超伝導体;
主としてビスマス、ストロンチウム、カルシウム、銅及
び酸素からなる酸化物超伝導体;もしくは主としてタリ
ウム、バリウム、カルシウム、銅及び酸素からなる酸化
物超伝導体より選ばれることを特徴とする導波管並びに
共振器。
2. In claim 1, the oxide superconductor is an oxide superconductor consisting of yttrium (or lanthanide group element), barium, copper, and oxygen;
A waveguide and a resonator characterized in that they are selected from oxide superconductors mainly consisting of bismuth, strontium, calcium, copper and oxygen; or oxide superconductors mainly consisting of thallium, barium, calcium, copper and oxygen. .
3.特許請求の範囲第1項において前記酸化物超伝導体
の表面を被覆する金属としては銀、金、銅、鉛もしくは
それらの合金より選ばれたことを特徴とする導波管並び
に共振器。
3. A waveguide and a resonator according to claim 1, wherein the metal covering the surface of the oxide superconductor is selected from silver, gold, copper, lead, or an alloy thereof.
4.特許請求の範囲第1項において、前記酸化物超伝導
体の作製と、その表面に金属膜を形成する過程はいずれ
も、一度も外気に触れることなく、雰囲気の完全に制御
された反応系中で連続的に行われることを特徴とする導
波管並びに共振器。
4. In claim 1, both the production of the oxide superconductor and the process of forming a metal film on its surface are performed in a reaction system with a completely controlled atmosphere without any exposure to outside air. Waveguides and resonators characterized in that they are carried out continuously.
JP2033084A 1990-02-13 1990-02-13 Waveguide and resonator Pending JPH03236606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2033084A JPH03236606A (en) 1990-02-13 1990-02-13 Waveguide and resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2033084A JPH03236606A (en) 1990-02-13 1990-02-13 Waveguide and resonator

Publications (1)

Publication Number Publication Date
JPH03236606A true JPH03236606A (en) 1991-10-22

Family

ID=12376830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2033084A Pending JPH03236606A (en) 1990-02-13 1990-02-13 Waveguide and resonator

Country Status (1)

Country Link
JP (1) JPH03236606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8954125B2 (en) 2011-07-28 2015-02-10 International Business Machines Corporation Low-loss superconducting devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8954125B2 (en) 2011-07-28 2015-02-10 International Business Machines Corporation Low-loss superconducting devices

Similar Documents

Publication Publication Date Title
JP2567460B2 (en) Superconducting thin film and its manufacturing method
US7189425B2 (en) Method of manufacturing a superconducting magnesium diboride thin film
JPH01163058A (en) Supercoductive thin film and its preparation
US20040026118A1 (en) Oxide superconducting wire
US5057201A (en) Process for depositing a superconducting thin film
Nakayama et al. Superconductivity of Bi2Sr2Ca n− 1Cu n O y (n= 2, 3, 4, and 5) thin films prepared in situ by molecular‐beam epitaxy technique
US5004721A (en) As-deposited oxide superconductor films on silicon and aluminum oxide
JPH01104774A (en) Production of thin film of oxide superconductor
JPH03236606A (en) Waveguide and resonator
Ezura et al. Microwave surface resistance of plasma-sprayed YBaCuO thick films on large-area metallic substrates
JP2835235B2 (en) Method of forming oxide superconductor thin film
US3988178A (en) Method for preparing superconductors
JPH01188677A (en) Production of superconducting thin film
JPH05302163A (en) Formation of multiple-oxide superconducting thin film
JPH01100816A (en) High temperature superconducting material
JP2817299B2 (en) Preparation method of composite oxide superconducting thin film
JPH01126206A (en) Superconducting thin film
JPH02124713A (en) Production of superconducting thin film
JPH01220311A (en) Manufacture of superconductive ceramic wire rod
JPS63257127A (en) Manufacture of thin film superconductor
JPH01184266A (en) Manufacture of oxide superconductor formed body
JPH01100827A (en) High temperature superconducting material
JPH01275405A (en) Production of superconductor structure
JPS63310519A (en) Manufacture of membrane consisting of oxide superconductor material
JPS63289725A (en) Manufacture of compound superconductive thin film