JPH03235395A - Manufacture of copper through hole printed wiring board - Google Patents

Manufacture of copper through hole printed wiring board

Info

Publication number
JPH03235395A
JPH03235395A JP2963190A JP2963190A JPH03235395A JP H03235395 A JPH03235395 A JP H03235395A JP 2963190 A JP2963190 A JP 2963190A JP 2963190 A JP2963190 A JP 2963190A JP H03235395 A JPH03235395 A JP H03235395A
Authority
JP
Japan
Prior art keywords
copper
resist film
alkylbenzimidazole
benzimidazole
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2963190A
Other languages
Japanese (ja)
Other versions
JP3074315B2 (en
Inventor
Hideyuki Kawai
河井 秀幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP02029631A priority Critical patent/JP3074315B2/en
Publication of JPH03235395A publication Critical patent/JPH03235395A/en
Application granted granted Critical
Publication of JP3074315B2 publication Critical patent/JP3074315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

PURPOSE:To simplify the manufacturing process of the little wiring board and to contrive to shorten the treating time for the wiring board by a method wherein an etching resist film made of a compound, such as 2-alkyl benzimidazole, is formed on the surface of the copper of a negative circuit pattern. CONSTITUTION:A negative resist film soluble in an alkaline and water-soluble liquid is formed by a printing method or a photograph method, then, is dipped in a solution, in which one or more kinds of a compound or compounds shown by Formula I and Formula II (In the formulas, R1 shows an alkyl group of 3 to 17 C, R2 to R4 show a lower alkyl group, (n) shows 0 to 2 and HA shows an organic or inorganic acid) is/are mixed, and an etching resist film consisting of a compound, such as 2-alkylbenzimidazole, 2-alkyl-alkylbenzimidazole, 2- phenylbenimidazole, 2-phenyl-alkylbenzimiazole or the like, is formed on the surface of copper. Subsequently, an obtained copper-clad laminated sheet is dried and after that, the sheet is brought into contact with an alkaline aqueous solution to remove the negative resist film and is treated with an alkaline etching liquid.

Description

【発明の詳細な説明】 (産業上の利用分野) 従来の銅スルーホールプリント配線板の製造方法には数
多くの問題点があった。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) Conventional methods for manufacturing copper through-hole printed wiring boards have had many problems.

本発明は、それらの問題点を解決する新しい製造方法の
提供を目的とするものである。
The present invention aims to provide a new manufacturing method that solves these problems.

従って本発明はプリント配線板製造業界に短い時間で安
価にかつ信頼性の高い銅スルーホールプリシト配線板を
製造する方法を提供するものである。
Accordingly, the present invention provides the printed wiring board manufacturing industry with a method for manufacturing copper through-hole printed wiring boards in a short period of time, at low cost, and with high reliability.

(従来の技術) 銅スルーホールプリント配線板の製造方法として穴理法
、テンティング法、半田剥離法に大別される。
(Prior Art) Methods for manufacturing copper through-hole printed wiring boards are broadly classified into hole drilling method, tenting method, and solder stripping method.

穴理法は両面鋼張積層板に必要な箇所に多数の穴をあけ
、この多数の穴を有する基板を化学鋼メツキ、次いで電
気鋼メツキが行なわれる。その後すべての穴にエツチン
グ液が入らないように目詰めインクを充填し、穴の内部
の銅メツキを保護した後、基板の両面に必要な回路を印
刷法もしくは写真法によって陽画形成しその後エツチン
グを行なうことによって、エツチング及び目詰めインク
で保護されている部分を残して露出部分の銅を除去する
ことによって銅スルーホール配線板が形成される。
In the hole drilling method, a large number of holes are drilled at necessary locations in a double-sided steel clad laminate, and the board having the large number of holes is plated with chemical steel and then with electrical steel. After that, all the holes are filled with plugging ink to prevent the etching liquid from entering, and after protecting the copper plating inside the holes, the necessary circuits are formed as positive images on both sides of the board by printing or photography, and then etching is performed. By doing so, a copper through-hole wiring board is formed by removing the exposed copper, leaving the portion protected by the etching and plugging ink.

テンティング法では、穴あけに続いて化学鋼メツキ、電
気鋼メツキを行なった後ドライフィルムが貼り合わされ
、次いでパターン図の露光が行なわれ、次いで現象後エ
ツチングされる。穴の内部の銅メツキは貼り合わされた
ドライフィルムによって守られる。
In the tenting method, after drilling, chemical steel plating and electrical steel plating are performed, a dry film is bonded together, a pattern image is exposed, and then etching is performed after development. The copper plating inside the hole is protected by a bonded dry film.

半田剥離法では、電気鋼メツキを行なうまでの工程は、
上記の二つの工法と同一であるが、必要な回路を印刷法
もしくは、写真法によって陰画形成で行なう点が異なっ
ている。
In the solder stripping method, the process up to electrical steel plating is as follows:
This is the same as the above two methods, but the difference is that the necessary circuits are formed by printing or photographing negative images.

この陰画回路はエツチングレジストではなくその後行な
う電気半田メツキに対するメツキ用レジストである。勿
論この方法では、穴埋インクを使用する必要はない。陰
画で必要な回路をプリント配線配板に形成させ銅の露出
部以外がメツキ用レジスト膜で保護されていることにな
る。次いでこの露出部に電気半田メツキを行い、その後
メツキ用レジスト膜を除去する。次いで半田で保護され
ている部分を残して露出部分の銅を除去することによっ
て銅スルーホール配線板が形成される。
This negative circuit is not an etching resist but a plating resist for the electrical solder plating to be performed later. Of course, this method does not require the use of filler ink. The necessary circuits are formed on the printed wiring board using negative images, and the areas other than the exposed copper are protected with a plating resist film. Next, electrical solder plating is performed on this exposed portion, and then the plating resist film is removed. A copper through-hole wiring board is then formed by removing the exposed copper, leaving the portions protected by solder.

(発明が解決しようとする課題) 上記の製造方法では、エツチングレジスト膜の信頼性に
劣り製造不良が発生し易い、あるいは生産性が低い又製
造コストが高い等の欠点を有している。
(Problems to be Solved by the Invention) The above manufacturing method has drawbacks such as poor reliability of the etching resist film, easy production defects, low productivity, and high manufacturing cost.

ことに最近では短納期で大量の製品を安価に提供するこ
とが要求されるようになると対応しきれない。また半田
メツキ法では工程で使用する弗化水素酸や鉛に基づく公
害の発生が懸念され、公害予防対策にも多額の費用を必
要とする欠点もある。すなわち半田剥離法と同程度又は
それ以上の高い信頼性を有する銅スルーホール配線板の
製造法であって、工程が簡単で短時間の処理で済み、か
つ安価でありしかも公害防止上排水処理の簡単な方法の
開発が強く望まれてきた。
In particular, recently there has been a demand to provide large quantities of products at low prices with short delivery times, making it difficult to meet these demands. Furthermore, the solder plating method has the disadvantage of causing pollution due to the hydrofluoric acid and lead used in the process, and requires a large amount of money to take measures to prevent pollution. In other words, it is a method for manufacturing copper through-hole wiring boards that has a reliability equivalent to or higher than that of the solder stripping method.The process is simple, requires only a short processing time, is inexpensive, and is also effective in preventing pollution and wastewater treatment. There has been a strong desire to develop a simple method.

(問題点を解決するための手段) 問題点を解決する手段として、本発明者は半田よりもつ
と安価安全、且つ除去が安易な物質を探した。
(Means for Solving the Problems) As a means for solving the problems, the inventor searched for a substance that is cheaper, safer, and easier to remove than solder.

勿論その物質はエツチングに耐え、銅メツキの部分をエ
ツチング液から保護するものでなければならない。また
その物質は選択的に鋼表面上にのみ膜を形成することが
望まれるので鋼と反応する物質に着目し、鋭意研究を重
ねた結果、ついに2−アルキルベンツイミダゾール、2
−アルキル−アルキルベンツイミダゾール、2−フェニ
ルベンツイミダゾール、2−フェニルアルキルベンツイ
ミダゾールがこれらの問題点を一挙に解決するものであ
ることを見出だした。
Of course, the material must be resistant to etching and protect the copper plated areas from the etching solution. In addition, since it is desired that the substance selectively form a film only on the steel surface, we focused on substances that react with steel, and as a result of intensive research, we finally found 2-alkylbenzimidazole, 2-alkylbenzimidazole,
It has been found that -alkyl-alkylbenzimidazole, 2-phenylbenzimidazole, and 2-phenylalkylbenzimidazole solve these problems all at once.

本発明の方法は、化学鋼メツキ、電気鋼メツキ、続いて
アルカリ水溶液に可溶のレジストインク又はアルカリ現
象型液状レジスト、又はアルカリ現象型感光性フィルム
を鋼張積層板上に陰画回路を形成し、次いで有効成分と
して下記一般式(I) ・ (n)で表される、化合物 一般式 (但し、式中R1は炭素数3〜17のアルキル基、R2
は低級アルキル基、nは0〜2HAは有機又は無機の酸
を示す)。
The method of the present invention involves chemical steel plating, electrical steel plating, followed by resist ink soluble in alkaline aqueous solution, alkaline phenomenon type liquid resist, or alkaline phenomenon type photosensitive film to form a negative circuit on a steel clad laminate. Then, as an active ingredient, a compound general formula represented by the following general formulas (I) and (n) (wherein R1 is an alkyl group having 3 to 17 carbon atoms, R2
is a lower alkyl group, n is 0 to 2 HA is an organic or inorganic acid).

(但し、式中R3、R4は低級アルキル基、nは0〜2
、HAは有機又は無機の酸を示す)。
(However, in the formula, R3 and R4 are lower alkyl groups, and n is 0 to 2
, HA indicates an organic or inorganic acid).

を1種類又は2種類以上を混合した溶液に浸漬して、銅
表面に前記2−アルキルベンツイミダゾール、2−アル
キル−アルキルベンツイミダゾール、2−フェニルベン
ツイミダゾール、2−フェニル−アルキルベンツイミダ
ゾール等の化合物からなるエツチングレジスト膜を形成
し、かくして得られた鋼張積層板を乾燥したのち、アル
カリ性水溶液と接触させて感光性フィルムもしくはレジ
スト膜を除き、アルカリ性エツチング液で処理すること
により、上記の目的が十分達成されることを見い出し本
発明を完成することが出来た。
Compounds such as 2-alkylbenzimidazole, 2-alkyl-alkylbenzimidazole, 2-phenylbenzimidazole, 2-phenyl-alkylbenzimidazole, etc. are applied to the copper surface by immersing it in a solution of one type or a mixture of two or more types. After drying the steel clad laminate thus obtained, the photosensitive film or resist film is removed by contacting it with an alkaline aqueous solution and then treated with an alkaline etching solution to achieve the above purpose. We have found that this can be achieved satisfactorily and have completed the present invention.

本発明の実施に適する化合物は、2−n−プロピル−ベ
ンツイミダゾール、2−n−プロピル−メチルベンツイ
ミダゾール、2−n−プロピル−ジメチルベンツイミダ
ゾール、2−n−ブチル−ベンツイミダゾール、2−n
−ブチル−メチルベンツイミダゾール、2−n−ブチル
−ジメチルベンツイミダゾール2−n−ペンチル−ベン
ツイミダゾール、2−n−ペンチル−メチルベンツイミ
ダゾール、2−n−ペンチル−ジメチルベンツイミダゾ
ール、2−n−へキシル−ベンツイミダゾール、2−n
−へキシル−メチルベンツイミダゾール、2−n−ヘキ
シル−ジメチルベンツイミダゾール、2−n−へブチル
−ベンツイミダゾール、2−n−へブチル−メチルベン
ツイミダゾール、2−n−ヘプチル−ジメチルベンツイ
ミダゾール、2−n−オクチル−ベンツイミダゾール、
2−n−オグチルーメチルベンツイミダゾール、2−n
−オクチル−ジメチルベンツイミダゾール、2− n−
ノニル−ベンツイミダゾール、2−n−ノニル−メチル
ベンツイミダゾール、2−n−ノニル−ジメチルベンツ
イミダゾール、2−n−デシル−ベンツイミダゾール、
2−n−デシル−メチルベンツイミダゾール、2−n−
デシル−ジメチルベンツイミダゾール、2−n−ウンデ
シル−ベンツイミダゾール、2−n−ウンデシル−メチ
ルベンツイミダゾール、2− n−ウンデシル−ジメチ
ルベンツイミダゾール、2− n−ドデシル−ベンツイ
ミダゾール、2−n−ドデシル−メチルベンツイミダゾ
ール、2− n−ドデシル−ジメチルベンツイミダゾー
ル、2−n−トリデシル−ベンツイミダゾール、2−n
−トリデシル−メチルベンツイミダゾール、2−n−ト
リデシル−ジメチルベンツイミダゾール、2−n−テト
ラデシル−ベンツイミダゾール、2−n−テトラデシル
−メチルベンツイミダゾール、2− n−テトラデシル
−ジメチルベンツイミダゾール、2−n−ペンタデシル
−ベンツイミダゾール、2−n−ペンタデシル−メチル
ベンツイミダゾール、2−n−ペンタデシル−ジメチル
ベンツイミダゾール、2−n−ヘキサデシル−ベンツイ
ミダゾール、2−n−ヘキサデシル−メチルベンツイミ
ダゾール、2−n−ヘキサデシル−ジメチルベンツイミ
ダゾール、2−n−ヘプタデシル−ベンツイミダゾール
、2−n−ヘプタデシル−メチルベンツイミダゾール、
2−n−ヘプタデシル−ジメチルベンツイミダゾール、
2−イソプロピル−ベンツイミダゾール、2−イソプロ
ピル−メチルベンツイミダゾール、2−イソプロピル−
メチルベンツイミダゾール2−イソブチル−ベンツイミ
ダゾール、2−イソブチル−メチルベンツイミダゾール
、2−イソブチル−ジメチルベンツイミダゾール、2−
イソペンチル−ベンツイミダゾール2−イソペンチル−
メチルベンツイミダゾール、2−イソペンチル−ジメチ
ルベンツイミダゾール、2−イソへキシル−ヘンライミ
ダゾール、2−イソへキシル−メチルベンツイミダゾー
ル、2−イソヘキシル−ジメチルベンツイミダゾール、
2−ネオペンチル−ベンツイミダゾール、2−ネオペン
チル−メチルベンツイミダゾール、2−ネオペンチル−
ジメチルベンツイミダゾール、2−sec−ブチル−ベ
ンツイミダゾール、2−sec−ブチル−メチルベンツ
イミダゾール、2−8ec−ブチル−ジメチルベンツイ
ミダゾール2−tert−ブチル−ベンツイミダゾール
、’2−tert−ブチル−メチルベンツイミダゾール
、2−tert−ブチル−ジメチルベンツイミダゾール
、2−フェニル−ベンツイミダゾール、2−フェニル−
メチルベンツイミダゾール、2−フェニル−ジメチルベ
ンツイミダゾール、2−トシル−ベンツイミダゾール、
2−トシル−メチルベンツイミダゾール、2−トシル−
ジメチルベンツイミダゾール、2−キシリル−ベンツイ
ミダゾール2−キシリル−メチルベンツイミダゾール2
−キシリル−ジメチルベンツイミダゾール、2−メシチ
ル−ベンツイミダゾール、2−メシチル−メチルベンツ
イミダシル、2−メシチル−ジメチルベンツイミダゾー
ル、2−t e r t−フェニル−ベンツイミダゾー
ル2−tert−フェニル−メチルベンツイミダゾール
、2−tert−フェニル−ジメチルベンツイミダゾー
ル、と有機酸や無機酸より形成されるもので、それらの
酸の代表的なものは、酢酸、ギ酸、カプリン酸、グリコ
ール酸、バラニトロ安息香酸、パラトルエンスルホン酸
、ピクリン酸、蓚酸、コハグ酸、亜りん酸、マレイン酸
、アクリル酸、フマール酸、酒石酸、アジピン酸、塩酸
、硫酸、燐酸、乳酸、オレイン酸、等である。又酢酸鋼
、硫酸鋼、塩化第一銅、塩化第二鋼、水酸化鋼、酸化鋼
、酸化第一銅、酸化第二銅、リン酸鋼、炭酸鋼、等の金
属化合物、又はメタノール、エタノール、イソプロピル
アルコールブタノール、アセトン等の水溶性溶媒を任意
の割合で混合して使用することも可能である。
Compounds suitable for the practice of the invention are 2-n-propyl-benzimidazole, 2-n-propyl-methylbenzimidazole, 2-n-propyl-dimethylbenzimidazole, 2-n-butyl-benzimidazole, 2-n-
-butyl-methylbenzimidazole, 2-n-butyl-dimethylbenzimidazole, 2-n-pentyl-benzimidazole, 2-n-pentyl-methylbenzimidazole, 2-n-pentyl-dimethylbenzimidazole, 2-n- xyl-benzimidazole, 2-n
-hexyl-methylbenzimidazole, 2-n-hexyl-dimethylbenzimidazole, 2-n-hebutyl-benzimidazole, 2-n-hebutyl-methylbenzimidazole, 2-n-heptyl-dimethylbenzimidazole, 2 -n-octyl-benzimidazole,
2-n-ogutyl-methylbenzimidazole, 2-n
-Octyl-dimethylbenzimidazole, 2-n-
Nonyl-benzimidazole, 2-n-nonyl-methylbenzimidazole, 2-n-nonyl-dimethylbenzimidazole, 2-n-decyl-benzimidazole,
2-n-decyl-methylbenzimidazole, 2-n-
Decyl-dimethylbenzimidazole, 2-n-undecyl-benzimidazole, 2-n-undecyl-methylbenzimidazole, 2-n-undecyl-dimethylbenzimidazole, 2-n-dodecyl-benzimidazole, 2-n-dodecyl- Methylbenzimidazole, 2-n-dodecyl-dimethylbenzimidazole, 2-n-tridecyl-benzimidazole, 2-n
-tridecyl-methylbenzimidazole, 2-n-tridecyl-dimethylbenzimidazole, 2-n-tetradecyl-benzimidazole, 2-n-tetradecyl-methylbenzimidazole, 2-n-tetradecyl-dimethylbenzimidazole, 2-n- Pentadecyl-benzimidazole, 2-n-pentadecyl-methylbenzimidazole, 2-n-pentadecyl-dimethylbenzimidazole, 2-n-hexadecyl-benzimidazole, 2-n-hexadecyl-methylbenzimidazole, 2-n-hexadecyl- Dimethylbenzimidazole, 2-n-heptadecyl-benzimidazole, 2-n-heptadecyl-methylbenzimidazole,
2-n-heptadecyl-dimethylbenzimidazole,
2-isopropyl-benzimidazole, 2-isopropyl-methylbenzimidazole, 2-isopropyl-
Methylbenzimidazole 2-isobutyl-benzimidazole, 2-isobutyl-methylbenzimidazole, 2-isobutyl-dimethylbenzimidazole, 2-
isopentyl-benzimidazole 2-isopentyl-
Methylbenzimidazole, 2-isopentyl-dimethylbenzimidazole, 2-isohexyl-henreimidazole, 2-isohexyl-methylbenzimidazole, 2-isohexyl-dimethylbenzimidazole,
2-neopentyl-benzimidazole, 2-neopentyl-methylbenzimidazole, 2-neopentyl-
Dimethylbenzimidazole, 2-sec-butyl-benzimidazole, 2-sec-butyl-methylbenzimidazole, 2-8ec-butyl-dimethylbenzimidazole 2-tert-butyl-benzimidazole, '2-tert-butyl-methylbenz Imidazole, 2-tert-butyl-dimethylbenzimidazole, 2-phenyl-benzimidazole, 2-phenyl-
Methylbenzimidazole, 2-phenyl-dimethylbenzimidazole, 2-tosyl-benzimidazole,
2-tosyl-methylbenzimidazole, 2-tosyl-
Dimethylbenzimidazole, 2-xylyl-benzimidazole 2-xylyl-methylbenzimidazole 2
-xylyl-dimethylbenzimidazole, 2-mesityl-benzimidazole, 2-mesityl-methylbenzimidazole, 2-mesityl-dimethylbenzimidazole, 2-tert-phenyl-benzimidazole 2-tert-phenyl-methyl It is formed from benzimidazole, 2-tert-phenyl-dimethylbenzimidazole, and organic or inorganic acids. Typical examples of these acids are acetic acid, formic acid, capric acid, glycolic acid, varanitrobenzoic acid, These include paratoluenesulfonic acid, picric acid, oxalic acid, succinic acid, phosphorous acid, maleic acid, acrylic acid, fumaric acid, tartaric acid, adipic acid, hydrochloric acid, sulfuric acid, phosphoric acid, lactic acid, and oleic acid. Also, metal compounds such as acetic acid steel, sulfuric acid steel, cuprous chloride, chlorinated steel, hydroxide steel, oxidized steel, cuprous oxide, cupric oxide, phosphate steel, carbonated steel, or methanol, ethanol. It is also possible to use a mixture of water-soluble solvents such as , isopropyl alcohol butanol, and acetone in any proportion.

本発明における処理の態様について述べる。銅の表面を
研磨、脱脂、酸洗、水洗浄によって仕上げ、引き続き2
−アルキルベンツイミダゾール、2−アルキル−アルキ
ルベンツイミダゾール、又は2−フェニルベンツイミダ
ゾール、2−フェニル−アルキルベンツイミダゾールあ
るいはその誘導体を0.01〜40%望ましくは0.1
〜5%にこれら誘導体を溶解するために必要な上記の酸
を含む溶液に浸漬する。浸漬は0〜100″Cの温度範
囲が可能であるが望ましくは30〜50°Cが適当であ
る。浸漬時間は数秒から数十分の範囲が可能で、40〜
50°Cの温度では1〜3分が適当である。2−アルキ
ルベンツイミダゾール、2−アルキル−アルキルベンツ
イミダゾール、2−フェニルベンツイミダゾール、2−
フェニル−アルキルベンツイミダゾール溶液の適当なP
Hは酸性であれば可能であるが望ましくは5.0以下が
適当である。付着量は処理温度の上昇及び処理時間の延
長に従って増加する。このような2−アルキルベンツイ
ミダゾール、2−アルキル−アルキルベンツイミダゾー
ル、2−フェニルベンツイミダゾール、2−フェニル−
アルキルベンツイミダゾールの高い膜形成能力を化学的
に安定な耐エツチングレジスト膜として工業的に十分利
用できることに注目した点に本発明の特徴がある。
Aspects of processing in the present invention will be described. The surface of the copper is polished, degreased, pickled, and washed with water, followed by 2
- 0.01 to 40% of alkylbenzimidazole, 2-alkyl-alkylbenzimidazole, 2-phenylbenzimidazole, 2-phenyl-alkylbenzimidazole or a derivative thereof, preferably 0.1
Immerse in a solution containing ~5% of the above acids necessary to dissolve these derivatives. The temperature range for immersion is 0 to 100"C, but preferably 30 to 50"C.The immersion time can range from several seconds to several tens of minutes, and 40 to 50"C.
At a temperature of 50°C, 1 to 3 minutes is appropriate. 2-alkylbenzimidazole, 2-alkyl-alkylbenzimidazole, 2-phenylbenzimidazole, 2-
Suitable P of phenyl-alkylbenzimidazole solution
H is possible as long as it is acidic, but preferably 5.0 or less. The amount of adhesion increases as the processing temperature increases and the processing time increases. Such 2-alkylbenzimidazole, 2-alkyl-alkylbenzimidazole, 2-phenylbenzimidazole, 2-phenyl-
The present invention is characterized in that it focuses on the fact that the high film-forming ability of alkylbenzimidazole can be fully utilized industrially as a chemically stable etching-resistant resist film.

尚、本発明方法は硬質プリント配線板及びフレキシブル
プリント配線板のいずれにおいても実施することが出来
る。
Note that the method of the present invention can be carried out on both rigid printed wiring boards and flexible printed wiring boards.

以下実施例を挙げて本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

実施例1 1 、6 m/m厚のFR−4両面鋼張積層板に穴をあ
け、化学鋼メツキ、続いて電気メツキをすることにより
穴内部及び両面に25〜30μ厚の鋼メツキを形成させ
た。次にアクリル酸、スチレンコポリマーを主成分とす
るレジストインク(商品名rKM−10J太陽インキ製
造(株)製)をスクリーン印刷により厚さ20μ程度の
陰画のレジスト膜を形成し80°Cの温度で10間乾燥
した。又感光性フィルム(商品名rA−225J富士ハ
ント(株)製)をラミネート、露光、現像して、25μ
の陰画のレジスト膜を形成した。上記の印刷法、写真法
で陰画回路を形成した鋼張積層板を20%過硫酸ソーダ
水溶液に30秒間浸漬して、銅表面をソフトエッチした
のちに2−アルキルベンツイミダゾール、又は2−アル
キル−アルキルベンツイミダゾールの1%溶液中に銅張
積層板を浸漬し、ゆっくり動かしながら50°Cの温度
で3分間処理した。その後、銅張積層板を水洗し140
°Cで10分間乾燥してエツチングレジスト膜を形成さ
せた。続いて3%水酸化ナトリウム水溶液で陰画のレジ
スト膜を除去し、回路として残す必要のない部分の銅を
露出させた、次いでアルカリ性エッチンング剤(商品名
「Aプロセス」メルチラグ(株)製)を用いて、液温5
0°Cでスプレー中に上記鋼張積層板を120秒間通過
させてエツチングを行なった。その後鋼張積層板を5%
塩酸水溶液に浸漬エツチングレジスト膜を溶解除去して
、銅スルーホールプリント配線板を製造した。
Example 1 Holes were drilled in a FR-4 double-sided steel clad laminate with a thickness of 1 and 6 m/m, and steel plating with a thickness of 25 to 30 μm was formed inside the hole and on both sides by chemical steel plating and then electroplating. I let it happen. Next, a resist ink containing acrylic acid and styrene copolymer as main components (trade name: rKM-10J, manufactured by Taiyo Ink Manufacturing Co., Ltd.) was screen printed to form a negative resist film with a thickness of about 20μ, and heated at a temperature of 80°C. It was dried for 10 minutes. In addition, a photosensitive film (product name: rA-225J manufactured by Fuji Hunt Co., Ltd.) was laminated, exposed, and developed to a film of 25 μm.
A negative resist film was formed. A steel clad laminate on which a negative circuit has been formed using the above printing method or photographic method is immersed in a 20% sodium persulfate aqueous solution for 30 seconds to soft etch the copper surface, and then 2-alkylbenzimidazole or 2-alkyl- The copper clad laminate was immersed in a 1% solution of alkylbenzimidazole and treated at a temperature of 50° C. for 3 minutes with slow movements. After that, the copper clad laminate was washed with water for 140 minutes.
An etching resist film was formed by drying at °C for 10 minutes. Next, the negative resist film was removed with a 3% aqueous sodium hydroxide solution to expose the copper in areas that did not need to be left as a circuit, and then an alkaline etching agent (trade name "A Process" manufactured by Melchilag Co., Ltd.) was used. So, liquid temperature 5
Etching was carried out by passing the steel clad laminate for 120 seconds during spraying at 0°C. After that, 5% steel clad laminate
The etching resist film was dissolved and removed by immersion in a hydrochloric acid aqueous solution to produce a copper through-hole printed wiring board.

この試験結果は表1示した。The test results are shown in Table 1.

実施例2 1 、6 m/m厚のFR−4両面鋼張積層板に穴をあ
け、化学鋼メツキ、続いて電気鋼メツキをすることによ
り、穴内部及び両面に25〜30μ厚の銅メツキを形成
させた。
Example 2 A hole was drilled in a FR-4 double-sided steel clad laminate with a thickness of 1 or 6 m/m, and then chemical steel plating was applied, followed by electrical steel plating, thereby forming a 25-30μ thick copper plating inside the hole and on both sides. was formed.

次に、アクリル酸、スチレンコポリマーを主成分とする
レジストインク(商品名rKM−10」太陽インク製造
(株)製)をスクリーン印刷により厚さ20μ程度の陰
画のレジスト膜を形成し80’Cの温度で10分間乾燥
した。又、感光性フィルム(商品名「A−225」富士
ハント(株)製)をラミネート、露光、現像して25μ
の陰画のレジスト膜を形成した。更に、上記の印刷法文
写真法で陰画回路を形成した銅張積層板を20%過硫酸
ソーダ水溶液に30秒間浸漬して、鋼表面をソフトエッ
チしたのちに、2−フェニルベンツイミタゾール、又は
2−フェニル−アルキルベンツイミダゾールの1%溶液
中に鋼張積層板を浸漬し、ゆっくり動かしながら50°
Cの温度で3分間処理した。その後鋼張積層板を水洗し
、140°Cで10分間乾燥してエツチングレジスト膜
を形成させた。続いて3%水酸化ナトリウム水溶液で、
陰画のレジスト膜を除去し、回路として残す必要のない
部分の銅を露出させた。次いでアルカリ性エツチング剤
(商品名「Aプロセス」メルチラグ(株)製)を用いて
、液温50″Cでスプレー中に上記鋼張積層板を120
秒間通過させてエツチングを行なった。その後鋼張積層
板を5%塩酸水溶液に浸漬し、エツチングレジスト膜を
溶解除去して鋼スルーホール配線板を製造した。
Next, a resist ink containing acrylic acid and styrene copolymer as main components (trade name: rKM-10, manufactured by Taiyo Ink Manufacturing Co., Ltd.) was screen printed to form a negative resist film with a thickness of about 20 μm. Dry at temperature for 10 minutes. In addition, a photosensitive film (trade name "A-225" manufactured by Fuji Hunt Co., Ltd.) was laminated, exposed, and developed to a 25μ film.
A negative resist film was formed. Furthermore, the copper-clad laminate on which a negative circuit was formed using the above printing method was immersed in a 20% sodium persulfate aqueous solution for 30 seconds to soft-etch the steel surface, and then 2-phenylbenzimitazole or A steel clad laminate was immersed in a 1% solution of 2-phenyl-alkylbenzimidazole and rotated slowly at 50°.
It was treated for 3 minutes at a temperature of C. Thereafter, the steel clad laminate was washed with water and dried at 140°C for 10 minutes to form an etching resist film. Then, with 3% sodium hydroxide aqueous solution,
The negative resist film was removed to expose copper in areas that did not need to remain as a circuit. Next, using an alkaline etching agent (trade name "A Process" manufactured by Melchilag Co., Ltd.), the steel clad laminate was etched at a temperature of 50"C while spraying.
Etching was performed by passing the film for a second. Thereafter, the steel clad laminate was immersed in a 5% aqueous hydrochloric acid solution to dissolve and remove the etching resist film to produce a steel through-hole wiring board.

この試験結果は表2に示した。The test results are shown in Table 2.

(発明の効果) 本発明の製造方法により、生産性の向上、生産性コスト
の減少、排水中の有害物質の減少、又高い信頼性を有す
る銅スルーホールプリント配線板の製造に、特に顕著な
効果を発揮しつるものである。
(Effects of the Invention) The manufacturing method of the present invention improves productivity, reduces productivity costs, reduces harmful substances in wastewater, and is particularly effective in manufacturing copper through-hole printed wiring boards with high reliability. It is effective and vines.

Claims (1)

【特許請求の範囲】 アルカリ性水溶性液に可溶な陰画のレジス ト膜を印刷法もしくは写真法によつて形成し、ついで有
効成分として下記一般式( I )・(II)で表わされる
、化合物 一般式 ▲数式、化学式、表等があります▼( I ) (但し、式中R_1は炭素数3〜17のアルキル基、R
_2は低級アルキル基、nは0〜2、HAは有機又は無
機の酸を示す)。 ▲数式、化学式、表等があります▼(II) (但し、式中R_3、R_4は低級アルキル基、nは0
〜2、HAは,有機又は無機の酸を 示す)。 を1種類又は2種類以上を混合した溶液に浸漬して、銅
表面に前記2−アルキルベンツイミダゾール、2−アル
キル−アルキルベンツイミダゾール、2−フェニルベン
ツイミダゾール、2−フェニル−アルキルベンツイミダ
ゾール等の化合物からなるエッチングレジスト膜を形成
し、かくして得られた銅張積層板を乾燥したのち、アル
カリ性水溶液と接触させて陰画のレジスト膜を除き、ア
ルカリ性エッチング液で処理することを特徴とする銅ス
ルーホール配線板の製造方法。
[Claims] A negative resist film soluble in an alkaline aqueous liquid is formed by a printing method or a photographic method, and then a general compound represented by the following general formulas (I) and (II) is used as an active ingredient. Formula▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) (However, in the formula, R_1 is an alkyl group having 3 to 17 carbon atoms, R
_2 is a lower alkyl group, n is 0 to 2, and HA is an organic or inorganic acid). ▲There are mathematical formulas, chemical formulas, tables, etc.▼(II) (However, in the formula, R_3 and R_4 are lower alkyl groups, and n is 0.
~2, HA represents an organic or inorganic acid). Compounds such as 2-alkylbenzimidazole, 2-alkyl-alkylbenzimidazole, 2-phenylbenzimidazole, 2-phenyl-alkylbenzimidazole, etc. are applied to the copper surface by immersing it in a solution of one type or a mixture of two or more types. Copper through-hole wiring characterized in that an etching resist film is formed, the copper-clad laminate thus obtained is dried, and then brought into contact with an alkaline aqueous solution to remove the negative resist film and treated with an alkaline etching solution. Method of manufacturing the board.
JP02029631A 1990-02-13 1990-02-13 Method of manufacturing copper through-hole printed wiring board Expired - Lifetime JP3074315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02029631A JP3074315B2 (en) 1990-02-13 1990-02-13 Method of manufacturing copper through-hole printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02029631A JP3074315B2 (en) 1990-02-13 1990-02-13 Method of manufacturing copper through-hole printed wiring board

Publications (2)

Publication Number Publication Date
JPH03235395A true JPH03235395A (en) 1991-10-21
JP3074315B2 JP3074315B2 (en) 2000-08-07

Family

ID=12281437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02029631A Expired - Lifetime JP3074315B2 (en) 1990-02-13 1990-02-13 Method of manufacturing copper through-hole printed wiring board

Country Status (1)

Country Link
JP (1) JP3074315B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275694A (en) * 1992-03-24 1994-01-04 Sanwa Laboratory Ltd. Process for production of copper through-hole printed wiring boards
WO2001014612A1 (en) * 1999-08-26 2001-03-01 Enthone-Omi Inc. Process for selective deposition of copper substrates
CN108505048A (en) * 2018-05-14 2018-09-07 东南大学 A kind of benzimidazolyl polyethers copper inhibitor and preparation method thereof
CN111269555A (en) * 2020-03-31 2020-06-12 浙江益弹新材料科技有限公司 Thermoplastic polyurethane elastomer composition and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275694A (en) * 1992-03-24 1994-01-04 Sanwa Laboratory Ltd. Process for production of copper through-hole printed wiring boards
WO2001014612A1 (en) * 1999-08-26 2001-03-01 Enthone-Omi Inc. Process for selective deposition of copper substrates
CN108505048A (en) * 2018-05-14 2018-09-07 东南大学 A kind of benzimidazolyl polyethers copper inhibitor and preparation method thereof
CN108505048B (en) * 2018-05-14 2019-11-12 东南大学 A kind of benzimidazolyl polyethers copper inhibitor and preparation method thereof
CN111269555A (en) * 2020-03-31 2020-06-12 浙江益弹新材料科技有限公司 Thermoplastic polyurethane elastomer composition and preparation method thereof
CN111269555B (en) * 2020-03-31 2021-09-17 浙江益弹新材料科技有限公司 Thermoplastic polyurethane elastomer composition and preparation method thereof

Also Published As

Publication number Publication date
JP3074315B2 (en) 2000-08-07

Similar Documents

Publication Publication Date Title
KR100409189B1 (en) Microetching composition for copper or copper alloy
JP2781954B2 (en) Copper and copper alloy surface treatment agent
JP3314966B2 (en) Complexing agent for displacement tin plating
US3953214A (en) Photopolymerizable screen printing inks and use thereof
US4270985A (en) Screen printing of photopolymerizable inks
US4622097A (en) Process for producing copper through-hole printed circuit board
KR101485873B1 (en) Microetching agent for copper, supplementary liquid for same, and manufacturing method for circuit board
JP3316078B2 (en) Resist stripper
DE10302596A1 (en) Treatment of metal surfaces with a modified oxide exchange compound
JPH03235395A (en) Manufacture of copper through hole printed wiring board
US7063800B2 (en) Methods of cleaning copper surfaces in the manufacture of printed circuit boards
US5275694A (en) Process for production of copper through-hole printed wiring boards
JPH0569914B2 (en)
JPH07330738A (en) Protecting agent for metal surface and production using the same
JP3624427B2 (en) Printed circuit board manufacturing method, printed circuit board and equipment
KR20190120996A (en) Liquid stripper composition for dryfilm resist
KR0142407B1 (en) Process for production of copper through-hole printed wiring boards
CA2063844C (en) Process for production of copper through-hole printed wiring boards
JPH083766A (en) Production of copper through-hole printed circuit board
JPH05291729A (en) Manufacture of copper through-hole printed wiring board
EP0599308B1 (en) Surface treatment method of electrodeposition type photosensitive resin layer
JPH0250636B2 (en)
JPH04159794A (en) Manufacture of copper through hole printed wiring board
JPS63121848A (en) Composition for peeling electrodeposited coating film
JPH07245464A (en) Manufacture of copper through-hole printed wiring board