JPH0569914B2 - - Google Patents

Info

Publication number
JPH0569914B2
JPH0569914B2 JP63247247A JP24724788A JPH0569914B2 JP H0569914 B2 JPH0569914 B2 JP H0569914B2 JP 63247247 A JP63247247 A JP 63247247A JP 24724788 A JP24724788 A JP 24724788A JP H0569914 B2 JPH0569914 B2 JP H0569914B2
Authority
JP
Japan
Prior art keywords
copper
water
treatment
test piece
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63247247A
Other languages
Japanese (ja)
Other versions
JPH0293079A (en
Inventor
Susumu Matsubara
Masahiko Minagawa
Daikichi Tachibana
Shuji Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP63247247A priority Critical patent/JPH0293079A/en
Priority to EP89309866A priority patent/EP0364132A1/en
Priority to KR89013993A priority patent/KR0142409B1/en
Publication of JPH0293079A publication Critical patent/JPH0293079A/en
Publication of JPH0569914B2 publication Critical patent/JPH0569914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/52Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability

Description

【発明の詳細な説明】 産業上の利用分野 本発明は銅及び銅合金の表面処理方法に関する
ものであり、特にプリント配線板の回路部におけ
る防錆処理やエツチングレジスト膜の形成に好適
な方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for surface treatment of copper and copper alloys, and particularly to a method suitable for rust prevention treatment and formation of etching resist films in circuit areas of printed wiring boards. This is what we provide.

従来の技術 銅あるいは銅合金の表面に、2位長鎖アルキル
イミダゾール化合物の被膜を形成する表面処理方
法は、特公昭46−17046号、同48−11454号、同48
−25621号、同49−1983号、同49−26183号、同58
−22545号、同61−41988号及び特開昭61−90492
号の各公報に記載されている。
Prior Art Surface treatment methods for forming a film of a 2-position long-chain alkylimidazole compound on the surface of copper or copper alloy are disclosed in Japanese Patent Publications No. 46-17046, No. 48-11454, No. 48
−25621, No. 49-1983, No. 49-26183, No. 58
-22545, 61-41988 and JP-A-61-90492
It is stated in each publication of the issue.

発明が解決しようとする課題 このような長鎖アルキルイミダゾール化合物の
被膜による銅及び銅合金の表面処理は、最近特に
プリント配線板の回路部分を保護する方法として
注目されている。
Problems to be Solved by the Invention Recently, surface treatment of copper and copper alloys with a film of such a long-chain alkylimidazole compound has been attracting attention as a method for protecting the circuit portion of a printed wiring board.

しかしながら、従来の表面処理方法において
は、充分な厚みの化成被膜を形成するために、長
鎖アルキルイミダゾール化合物の水溶液に、銅表
面を比較的高温度で長時間接触させることを余儀
なくされていた。
However, in conventional surface treatment methods, in order to form a sufficiently thick chemical conversion film, the copper surface must be brought into contact with an aqueous solution of a long-chain alkylimidazole compound at a relatively high temperature for a long period of time.

従つて、プリント配線板の製造公程における高
速度化に対応できず、また銅スルーホールプリン
ト配線板のように小径スルーホールにおける銅表
面の処理が適確にできなかつた。
Therefore, it has not been possible to cope with the high-speed manufacturing process of printed wiring boards, and it has not been possible to appropriately treat the copper surface in small-diameter through holes such as those in copper through-hole printed wiring boards.

課題を解決するための手段 本発明者等は、このような事情に鑑み、種々の
試験を繰り返した結果、銅あるいは銅合金の表面
に、2位長鎖アルキルイミダゾールの被膜を形成
するに当り、2位長鎖アルキルイミダゾール化合
物と銅イオンを含む処理液に接触させることによ
り、従来の方法に比べて低温且つ短時間の接触処
理によつて、充分な厚みの化成被膜が得られるこ
とを見い出し、本発明を完遂した。
Means for Solving the Problems In view of the above circumstances, the inventors of the present invention repeatedly conducted various tests, and found that in forming a film of 2-position long chain alkylimidazole on the surface of copper or copper alloy, We have discovered that by contacting a 2-position long-chain alkylimidazole compound with a treatment solution containing copper ions, a chemical conversion coating with sufficient thickness can be obtained by contact treatment at a lower temperature and in a shorter time than in conventional methods. The invention has been completed.

本発明方法の実施においては、銅あるいは銅合
金を2位長鎖アルキルイミダゾール化合物及び銅
イオンを含む処理液と接触させるに当たり、処理
液中に酸性物質、望ましくは有機酸系化合物を添
加して、そのPHを3ないし6の範囲に調整すべき
である。
In carrying out the method of the present invention, when bringing copper or copper alloy into contact with a treatment solution containing a 2-position long chain alkylimidazole compound and copper ions, an acidic substance, preferably an organic acid compound, is added to the treatment solution, Its pH should be adjusted to a range of 3 to 6.

また処理液中に酸性物質及びアンモニアまたは
アミン類を添加し、イミダゾール化合物と銅イオ
ンの反応によつて生じる錯体が処理液中に析出す
ることを避けるべきである。
Furthermore, an acidic substance and ammonia or amines should be added to the processing solution to avoid precipitation of a complex formed by the reaction between the imidazole compound and copper ions in the processing solution.

本発明において用いる2位長鎖アルキルイミダ
ゾール化合物の代表的なものとしては、2−アミ
ルイミダゾール、2−ヘプチルイミダゾール、2
−デシルイミダゾール、2−ウンデシルイミダゾ
ール、2−ドデシルイミダゾール、2−トリデシ
ルイミダゾール、2−テトラデシルイミダゾー
ル、2−ヘプタデシルイミダゾール、2−ウンデ
シル−4−メチルイミダゾール、2−ヘプタデシ
ル−4−メチルイミダゾール及びこれらの塩であ
り、特に2−ウンデシルイミダゾールと2−ウン
デシル−4−メチルイミダゾール及びこれらの塩
が好適である。
Typical 2-position long chain alkylimidazole compounds used in the present invention include 2-amylimidazole, 2-heptylimidazole,
-decylimidazole, 2-undecylimidazole, 2-dodecylimidazole, 2-tridecylimidazole, 2-tetradecylimidazole, 2-heptadecyl imidazole, 2-undecyl-4-methylimidazole, 2-heptadecyl-4-methylimidazole and salts thereof, and 2-undecyl imidazole, 2-undecyl-4-methylimidazole, and salts thereof are particularly preferred.

処理液中において銅イオンを生じる物質の代表
的なものは、銅粉、塩化第一銅、塩化第二銅、水
酸化銅、リン酸銅、酢酸銅、硫酸銅、硝酸銅、臭
化銅等であり、これらのうち特に塩化第一銅が好
適である。
Typical substances that generate copper ions in the treatment solution include copper powder, cuprous chloride, cupric chloride, copper hydroxide, copper phosphate, copper acetate, copper sulfate, copper nitrate, copper bromide, etc. Of these, cuprous chloride is particularly preferred.

2位長鎖アルキルイミダゾールは水に対して難
溶性であるため、これらを水に溶解させるには、
水と有機溶剤の混合溶媒を用いるか、あるいは長
鎖アルキルイミダゾールを有機酸または無機酸と
反応させて、水に可溶な塩とすればよい。
2-position long chain alkylimidazoles are poorly soluble in water, so to dissolve them in water,
A water-soluble salt may be obtained by using a mixed solvent of water and an organic solvent, or by reacting a long-chain alkylimidazole with an organic or inorganic acid.

この場合において用いる有機溶剤としては、メ
タノール、エタノール、プロパノール、エチレン
グリコール、プロピレングリコール、セロソルブ
類、アセトン、アセトニトリル等である。
Examples of organic solvents used in this case include methanol, ethanol, propanol, ethylene glycol, propylene glycol, cellosolves, acetone, and acetonitrile.

また2位長鎖アルキルイミダゾールを水に可溶
な塩とするために用いる有機酸または無機酸とし
ては、安息香酸、酢酸、蟻酸、乳酸、プロピオン
酸、ステアリン酸、パルミチン酸、ラウリル酸、
カプリル酸、カプロン酸、グリコール酸、琥珀
酸、マレイン酸、酒石酸、アジピン酸、燐酸等で
ある。
The organic acids or inorganic acids used to make the 2-position long chain alkylimidazole into a water-soluble salt include benzoic acid, acetic acid, formic acid, lactic acid, propionic acid, stearic acid, palmitic acid, lauric acid,
These include caprylic acid, caproic acid, glycolic acid, succinic acid, maleic acid, tartaric acid, adipic acid, and phosphoric acid.

本発明方法において、銅イオンと長鎖アルキル
イミダゾールを錯体が処理液中に析出することを
防ぐために用いるアミン類としては、メチルアミ
ン、ジメチルアミン、エチルアミン、モノエタノ
ールアミン、ジエタノールアミン、トリエタノー
ルアミン等である。
In the method of the present invention, the amines used to prevent complexes of copper ions and long-chain alkylimidazole from precipitating in the treatment solution include methylamine, dimethylamine, ethylamine, monoethanolamine, diethanolamine, triethanolamine, etc. be.

本発明の実施に当たつては、予め銅イオンを生
じる物質にアンモニア、アミン類、アルカリ金属
水酸化物(または炭酸塩)、アルカリ土類金属水
酸化物(または炭酸塩)等を加えてその溶解性を
高めることが望ましい。
In carrying out the present invention, ammonia, amines, alkali metal hydroxides (or carbonates), alkaline earth metal hydroxides (or carbonates), etc. are added in advance to a substance that generates copper ions. It is desirable to increase solubility.

本発明方法において用いる処理液は、PHを3〜
6の範囲、好ましくは4〜5の範囲になるように
調整すべきである。長鎖アルキルイミダゾール化
合物と銅イオンを含む処理液のPHが高過ぎると、
長鎖アルキルイミダゾールと銅イオンの錯体が不
溶化し、溶液中に析出する。逆にPHHが低過ぎる
と長鎖アルキルイミダゾールが金属表面の銅イオ
ンと錯対を造りにくいので、化成被膜の生成速度
が極端に低下する。
The treatment liquid used in the method of the present invention has a pH of 3 to 3.
It should be adjusted to be in the range of 6, preferably in the range of 4 to 5. If the pH of the treatment solution containing long-chain alkylimidazole compounds and copper ions is too high,
A complex of long-chain alkylimidazole and copper ions becomes insolubilized and precipitates in the solution. On the other hand, if the PHH is too low, it is difficult for the long-chain alkylimidazole to form a complex with the copper ions on the metal surface, resulting in an extremely low rate of formation of the chemical conversion film.

本発明方法において用いる処理液には、溶液1
当たり長鎖アルキルイミダゾール化合物を5〜
50g、銅イオンを生じる物質を0.1〜5gの割合
で添加すればよい。
The processing liquid used in the method of the present invention includes solution 1
5 to 5 long-chain alkylimidazole compounds per
50 g, and a substance that generates copper ions may be added at a ratio of 0.1 to 5 g.

本発明方法を実施するには、銅あるいは銅合金
の表面を機械研磨するか、あるいは酸洗浄したの
ち、これら金属を処理液中に新漬するか、あるい
は金属表面に処理液を塗布または噴霧すれば良
い。
To carry out the method of the present invention, the surface of the copper or copper alloy is mechanically polished or acid-washed, and then the metal is freshly immersed in a treatment solution, or the treatment solution is applied or sprayed onto the metal surface. Good.

本発明方法においては、銅あるいは銅合金の表
面を、処理液に約25℃から40℃の温度範囲で、5
秒ないし20秒間接触させることによつて、0.1μ〜
1.2μの化成被膜を形成することができ、それ以上
の化成被膜を必要とする場合には、処理温度をさ
らに高くするかあるいは接触時間をさらに長くす
ればよい。
In the method of the present invention, the surface of copper or copper alloy is immersed in a treatment solution at a temperature of approximately 25°C to 40°C.
0.1μ~ by contacting for 20 seconds to 20 seconds.
A conversion coating of 1.2μ can be formed, and if a larger conversion coating is required, the treatment temperature may be higher or the contact time may be longer.

作 用 2位長鎖アルキルイミダゾール化合物は酸性水
溶液によく溶け、溶解した2位長鎖アルキルイミ
ダゾール化合物は、溶液中においてほとんど四級
化している。この2位長鎖アルキルイミダゾール
化合物を含む溶液を、酸素が存在する状態におい
て銅あるいは銅合金に接触させると銅が酸化さ
れ、銅イオンが溶出してイミダゾールと錯体を形
成する。この時の形成される錯体としては、銅イ
オン、イミダゾール及び有機酸イオンまたは無機
酸イオンを有する錯体並びに水に不溶の銅及びイ
ミダゾールのみからなる錯体の二つが考えられ
る。これらの錯体の内、水に不溶の銅イミダゾー
ル錯体が銅板上に析出し、膜が形成されると考え
られている。
Effect The long-chain alkylimidazole compound at the 2-position dissolves well in an acidic aqueous solution, and most of the dissolved long-chain alkylimidazole compound at the 2-position is quaternized in the solution. When a solution containing this 2-position long-chain alkylimidazole compound is brought into contact with copper or a copper alloy in the presence of oxygen, the copper is oxidized and copper ions are eluted to form a complex with imidazole. There are two possible complexes formed at this time: a complex containing copper ions, imidazole, and organic acid ions or inorganic acid ions, and a complex consisting only of water-insoluble copper and imidazole. Among these complexes, it is thought that a water-insoluble copper imidazole complex is deposited on the copper plate to form a film.

前記反応においては、2位長鎖アルキルイミダ
ゾール化合物を含む溶液中で、銅が酸化されイオ
ン化する速度が膜形成の律速になるものと考えら
れる。その際、予め溶液中に銅イオンを存在させ
ることにより、銅イオン、イミダゾール及び有機
酸イオンからなる錯体は既に存在した状態になつ
ている。この状態において酸素が存在すれば、前
記の錯体はさらに銅と反応し、不溶性の銅イミダ
ゾール錯体及び酢酸銅を形成する。この時に形成
される不溶性の銅イミダゾール錯体は、銅あるい
は銅合金の表面に膜を形成し、また酢酸銅は再び
銅イオン、イミダゾール及び酢酸からなる錯体を
形成するのに使用される。
In the above reaction, the rate at which copper is oxidized and ionized in the solution containing the 2-position long-chain alkylimidazole compound is considered to be the rate-limiting factor for film formation. At this time, by making copper ions exist in the solution in advance, a complex consisting of copper ions, imidazole, and organic acid ions is already present. In the presence of oxygen in this state, the complex further reacts with copper to form an insoluble copper imidazole complex and copper acetate. The insoluble copper imidazole complex formed at this time forms a film on the surface of the copper or copper alloy, and the copper acetate is again used to form a complex consisting of copper ions, imidazole, and acetic acid.

このように予め銅イオンを存在させたイミダゾ
ール有機酸溶液は、反応に最も時間を要するもの
と思われている初期の銅イオン溶出を必要としな
いので、さらに反応が進んだ状態において銅イオ
ンを溶液中に放出することができ、この銅イオン
がイミダゾール及び有機酸イオンと共に錯体を形
成するので、前記の反応系が繰り返され、その結
果として錯体の析出速度が速まり、銅あるいは銅
合金の表面に膜を速やかに形成できるものと思わ
れる。
In this way, the imidazole organic acid solution in which copper ions are pre-existing does not require the initial elution of copper ions, which is thought to take the longest time for the reaction, so copper ions can be removed from the solution after the reaction has progressed. Since the copper ions form a complex with imidazole and organic acid ions, the reaction system described above is repeated, resulting in an accelerated precipitation rate of the complex and the formation of a complex on the surface of the copper or copper alloy. It seems that a film can be formed quickly.

実施例 以下実施例及び比較例によつて、本発明を具体
的に説明する。
EXAMPLES The present invention will be specifically explained below with reference to Examples and Comparative Examples.

なお、これらの試験において金属表面における
化成被膜の厚さは、所定の大きさの試験片を0.5
%塩酸水溶液に浸漬して、長鎖アルキルイミダゾ
ールを溶出させ、紫外線分光光度計を用いて、こ
の溶液中に含まれる長鎖アルキルイミダゾールの
濃度を測定し、下記の実験式に基づいて化成被膜
の厚さを算出したものである。
In addition, in these tests, the thickness of the chemical conversion coating on the metal surface was determined by measuring 0.5
% hydrochloric acid aqueous solution to elute the long-chain alkylimidazole, measure the concentration of the long-chain alkylimidazole contained in this solution using an ultraviolet spectrophotometer, and calculate the concentration of the chemical conversion coating based on the following empirical formula. This is the calculated thickness.

膜厚(μ)=0.253×A×y/S 〔但し式中Aは210〜220mμの最大吸光度、Sは
試験片の表面積(cm2)、yは塩酸水溶液の使用量
(ml)を示す。〕 実施例 1 2−アンデシル−4−メチルイミダゾール10g
を酢酸20mlに加えて均一に混合し、他方塩化第一
銅0.4gを25%アンモニア水6mlに加えてよく撹
拌し、両溶液を水1中に夫々加え、よく撹拌し
て、PH4.40の透明な処理液を調製した。
Film thickness (μ) = 0.253×A×y/S [where A is the maximum absorbance at 210 to 220 mμ, S is the surface area of the test piece (cm 2 ), and y is the amount of the hydrochloric acid aqueous solution used (ml). ] Example 1 2-andecyl-4-methylimidazole 10g
was added to 20 ml of acetic acid and mixed uniformly. On the other hand, 0.4 g of cuprous chloride was added to 6 ml of 25% ammonia water and stirred well. Both solutions were added to 1 part of water, stirred well, and the pH was adjusted to 4.40. A clear processing solution was prepared.

次いで、銅張積層板の銅表面の湿式研磨材(商
品名「スコツチブライト」住友3M社製)を用い
て研磨し、1%塩酸水溶液に30秒間浸漬したの
ち、よく水洗し乾燥させて試験片とした。この試
験片を前記処理液に、液温30℃で10秒間浸漬した
のち、水洗し、乾燥したところ、その試験片の化
成被膜は0.3μであつた。この試験片を温度55℃、
湿度95%の恒温恒湿槽中で500時間放置したが、
銅表面に腐食は見られなかつた。
Next, the copper surface of the copper-clad laminate was polished using a wet polishing material (product name: Scotchibrite, manufactured by Sumitomo 3M), immersed in a 1% hydrochloric acid aqueous solution for 30 seconds, thoroughly rinsed with water, dried, and tested. It was a piece. When this test piece was immersed in the treatment liquid for 10 seconds at a liquid temperature of 30°C, washed with water and dried, the chemical conversion coating on the test piece was 0.3μ. This test piece was heated to 55°C.
It was left in a constant temperature and humidity chamber with a humidity of 95% for 500 hours, but
No corrosion was observed on the copper surface.

次いで、この銅張積層板からなる試験片にポス
トフラツクス(商品名「Soldox FR207」トツピ
ーフアスナー社製)を塗布し、255℃の半田浴に
2秒間浸漬したが、銅表面の半田の濡れ性は良好
であつた。
Next, a post flux (product name: "Soldox FR207" manufactured by Totsupifu Asner Co., Ltd.) was applied to the test piece made of this copper-clad laminate, and it was immersed in a solder bath at 255°C for 2 seconds, but the solder on the copper surface did not wet. The condition was good.

比較例 1 2−ウンデシル−4−メチルイミダゾール10g
と酢酸4.5mlを水1中に夫々加え、よく撹拌し
てPH4.70の処理液を調製し、この処理液を用い
て、前記実施例と同様の条件で処理したところ、
試験片の表面における化成被膜の厚みは0.1μであ
つた。
Comparative example 1 2-undecyl-4-methylimidazole 10g
and 4.5 ml of acetic acid were respectively added to 1 part of water and stirred well to prepare a treatment solution with a pH of 4.70. Using this treatment solution, the treatment was carried out under the same conditions as in the previous example.
The thickness of the chemical conversion film on the surface of the test piece was 0.1μ.

この試験片を温度55℃、湿度95%の恒温恒湿槽
に500時間放置したところ、試験片には局部的な
斑点状錆が発生した。
When this test piece was left in a constant temperature and humidity chamber at a temperature of 55°C and a humidity of 95% for 500 hours, spotty rust appeared locally on the test piece.

実施例 2 2−ウンデシルイミダゾール10gをプロピオン
酸20mlに加えて均一に混合し、他方塩化第一銅
0.4g及びトリエタノールアミン1.2gを25%アン
モニア水5mlに加えてよく撹拌し、両溶液を水1
中に夫々加え、よく撹拌して、PH4.45の透明な
処理液を調製した。
Example 2 10 g of 2-undecylimidazole was added to 20 ml of propionic acid and mixed uniformly, and on the other hand cuprous chloride
Add 0.4 g and 1.2 g of triethanolamine to 5 ml of 25% ammonia water, stir well, and dilute both solutions with 1 ml of water.
A clear treatment solution with a pH of 4.45 was prepared by adding each to the solution and stirring well.

次いで実施例1と同様に処理した銅張積層板か
らなる試験片を、前記処理液に液温30℃で10秒間
浸漬したのち、水洗し、乾燥したところ、試験片
の化成被膜は0.35μであり、これを温度55℃、湿
度95%の恒温恒湿槽中で500時間放置したが、銅
表面に腐食は見られなかつた。また実施例1と同
様に銅表面の半田の濡れ性を調べたところ、その
結果も良好であつた。
Next, a test piece made of a copper-clad laminate treated in the same manner as in Example 1 was immersed in the treatment solution at a temperature of 30°C for 10 seconds, washed with water, and dried. The chemical conversion coating on the test piece was 0.35μ. This was left in a constant temperature and humidity chamber at a temperature of 55°C and a humidity of 95% for 500 hours, but no corrosion was observed on the copper surface. Further, the wettability of solder on the copper surface was examined in the same manner as in Example 1, and the results were also good.

なお比較のために2−ウンデシルイミダゾール
10gとプロピオン酸を水1中に夫々加え、よく
撹拌してPH4.45の処理液を調製し、この処理液を
用いて、前記と同じ試験片を液温30℃で10秒間浸
漬したのち、水洗し、乾燥したところ、試験片の
化成被膜は0.05μであり、前記と同様の耐湿試験
を行つたところ、試験片の表面に部分的な錆の発
生があつた。
For comparison, 2-undecylimidazole
Add 10 g of propionic acid and propionic acid to 1 part of water and stir well to prepare a treatment solution with a pH of 4.45. Using this treatment solution, the same test piece as above was immersed for 10 seconds at a solution temperature of 30 ° C. When washed with water and dried, the chemical conversion coating on the test piece was found to be 0.05μ, and when the same moisture resistance test as above was performed, rust was found to be partially generated on the surface of the test piece.

実施例 3 2−ウンデシル−4−メチルイミダゾール10g
と塩化第一銅2.0gを100mlのエタノール中でよく
撹拌して、塩化第一銅を完全に溶解し、この溶液
に酢酸7.7ml及び水300mlを夫々加え、よく撹拌
し、PH4.35の透明な処理液を調製した。
Example 3 2-undecyl-4-methylimidazole 10g
and 2.0 g of cuprous chloride in 100 ml of ethanol to completely dissolve the cuprous chloride. Add 7.7 ml of acetic acid and 300 ml of water to this solution, stir well, and make a clear solution with a pH of 4.35. A treatment solution was prepared.

次いで実施例1と同様に処理した銅張積層板か
らなる試験片を、前記処理液に液温30℃で10秒間
浸漬したのち、水洗し、乾燥したところ、試験片
の化成被膜は0.4μであり、これを温度55℃、湿度
95%の恒温恒湿槽中で500時間放置したが、銅表
面に腐食は見られなかつた。また実施例1と同様
にして銅表面の半田の濡れ性を調べたところ、そ
の結果も良好であつた。
Next, a test piece made of a copper-clad laminate treated in the same manner as in Example 1 was immersed in the treatment solution at a temperature of 30°C for 10 seconds, washed with water, and dried. The chemical conversion coating on the test piece was 0.4μ. Yes, this is done at a temperature of 55℃ and humidity.
Although it was left in a constant temperature and humidity chamber at 95% for 500 hours, no corrosion was observed on the copper surface. Further, the wettability of solder on the copper surface was examined in the same manner as in Example 1, and the results were also good.

比較のために、2−ウンデシル−4−メチルイ
ミダゾール10gをエタノール100mlと水300mlの混
合溶媒中に加え、よく撹拌して完全に溶解し、こ
の溶液に酢酸を加えて、PH4.35の透明な処理液を
調製し、この処理液に前記と同じ試験片を液温30
℃で10秒間浸漬したのち、水洗し、乾燥したとこ
ろ、その試験片の化成被膜は0.13μであり、前記
と同様の耐湿試験を行つたところ、試験片の銅表
面に部分的な錆の発生があつた。
For comparison, 10 g of 2-undecyl-4-methylimidazole was added to a mixed solvent of 100 ml of ethanol and 300 ml of water, stirred well to dissolve completely, and acetic acid was added to this solution to form a transparent solution with a pH of 4.35. Prepare a treatment solution and add the same test piece as above to this treatment solution at a temperature of 30
After immersing it at ℃ for 10 seconds, washing it with water and drying it, the chemical conversion coating on the test piece was found to be 0.13μ, and when the same moisture resistance test as above was performed, it was found that rust had formed partially on the copper surface of the test piece. It was hot.

実施例 4 2−ウンデシルイミダゾール5gと2−ウンデ
シル−4−メチルイミダゾール5gをグリコール
酸20mlに加えて均一に混合し、他方銅粉0.2gを
25%アンモニア水5mlに加えてよく撹拌し、両溶
液を水1中に夫々加え、よく撹拌して、PH4.48
の透明な処理液を調製した。
Example 4 5 g of 2-undecyl imidazole and 5 g of 2-undecyl-4-methylimidazole were added to 20 ml of glycolic acid and mixed uniformly, and 0.2 g of copper powder was added.
Add to 5 ml of 25% ammonia water and stir well, add both solutions to 1 part of water, stir well, and adjust to pH4.48.
A clear treatment solution was prepared.

次いで実施例1と同様に処理した銅張積層板か
らなる試験片を、前記処理液に液温30℃で10秒間
浸漬したのち、水洗し、乾燥したところ、試験片
の化成被膜は0.38μであり、これを温度55℃、湿
度95%の恒温恒湿槽中で500時間放置したが、銅
表面の腐食は見られなかつた。また実施例1と同
様にして銅表面の半田の濡れ性を調べたところ、
その結果も良好であつた。
Next, a test piece made of a copper-clad laminate treated in the same manner as in Example 1 was immersed in the treatment solution at a temperature of 30°C for 10 seconds, washed with water, and dried. The chemical conversion coating on the test piece was 0.38μ. This was left in a constant temperature and humidity chamber at a temperature of 55°C and a humidity of 95% for 500 hours, but no corrosion was observed on the copper surface. In addition, the wettability of solder on the copper surface was investigated in the same manner as in Example 1.
The results were also good.

比較のために、2−ウンデシルイミダゾール5
gと2−ウンデシル−4−メチルイミダゾール5
gを水1中に夫々加え、これに撹拌しながらグ
リコール酸を加えてPH4.48の透明な処理液を調製
した。この処理液を用いて、前記と同じ試験片を
液温30℃で10秒間浸漬したのち、水洗し、乾燥し
たところ、試験片の化成被膜は0.1μであり、前記
と同様に耐湿試験を行つたところ、試験片の表面
に一部錆の発生があつた。
For comparison, 2-undecylimidazole 5
g and 2-undecyl-4-methylimidazole 5
g of each were added to 1 part of water, and glycolic acid was added thereto while stirring to prepare a transparent treatment liquid with a pH of 4.48. Using this treatment liquid, the same test piece as above was immersed for 10 seconds at a liquid temperature of 30°C, washed with water, and dried. The chemical conversion coating on the test piece was 0.1μ, and a moisture resistance test was performed in the same manner as above. Upon inspection, some rust appeared on the surface of the test piece.

実施例 5 2−ウンデシルイミダゾール8gと2−ヘプタ
デシルイミダゾール2gを酢酸22.2mlに加えて均
一に混合し、他方塩化第二銅1.0gを25%アンモ
ニア水12mlに加えてよく撹拌し、両溶液を水1
中に夫々加え、よく撹拌して、PH4.74の処理液を
調製した。
Example 5 8 g of 2-undecylimidazole and 2 g of 2-heptadecyl imidazole were added to 22.2 ml of acetic acid and mixed uniformly. On the other hand, 1.0 g of cupric chloride was added to 12 ml of 25% aqueous ammonia and stirred well to form both solutions. water 1
and stirred well to prepare a treatment solution with a pH of 4.74.

次いで実施例1と同様に処理した銅張積層板か
らなる試験片を、前記処理液に液温30℃で10秒間
浸漬したのち、水洗し、乾燥したところ、試験片
の化成被膜は0.3μであり、これを温度55℃、湿度
95%の恒温恒湿槽中で500時間放置したが、銅表
面に腐食は見られなかつた。また実施例1と同様
にして銅表面の半田の濡れ性を調べたところ、そ
の結果も良好であつた。
Next, a test piece made of a copper-clad laminate treated in the same manner as in Example 1 was immersed in the treatment solution at a temperature of 30°C for 10 seconds, washed with water, and dried. The chemical conversion coating on the test piece was 0.3μ. Yes, this is done at a temperature of 55℃ and humidity.
Although it was left in a constant temperature and humidity chamber at 95% for 500 hours, no corrosion was observed on the copper surface. Further, the wettability of solder on the copper surface was examined in the same manner as in Example 1, and the results were also good.

比較のために、2−ウンデシルイミダゾール8
gと2−ヘプタデシルイミダゾール2gを水1
中に夫々加え、これに撹拌しながら酢酸を加えて
PH4.74の処理液を調製した。この処理液を用い
て、前記と同じ試験片を液温30℃で10秒間浸漬し
たのち、水洗し、乾燥したところ、試験片の化成
被膜は0.05μであり、前記と同様の耐湿試験を行
つたところ、試験片の表面に一部錆の発生が認め
られた。
For comparison, 2-undecylimidazole 8
g and 2 g of 2-heptadecyl imidazole in 1 portion of water
Add acetic acid to this while stirring.
A treatment solution with a pH of 4.74 was prepared. Using this treatment liquid, the same test piece as above was immersed for 10 seconds at a liquid temperature of 30°C, then washed with water and dried. The chemical conversion coating on the test piece was 0.05μ, and the same moisture resistance test as above was performed. Upon inspection, some rust was observed on the surface of the test piece.

実施例 6 2−ウンデシル−4−メチルイミダゾール7g
と2−ヘプタデシル−4−メチルイミダゾール3
gを蟻酸16.5mlに加えて均一に混合し、他方塩化
第二銅0.55gを25%アンモニア水4.6mlに加えて
よく撹拌し、両溶液を水1中に夫々加え、よく
撹拌して、PH4.74の処理液を調製した。
Example 6 7 g of 2-undecyl-4-methylimidazole
and 2-heptadecyl-4-methylimidazole 3
g to 16.5 ml of formic acid and mixed uniformly. On the other hand, add 0.55 g of cupric chloride to 4.6 ml of 25% ammonia water and stir well. Add both solutions to 1 ml of water, stir well, and adjust the pH to 4. A treatment solution of .74 was prepared.

次いで実施例1と同様に処理した銅張積層板か
らなる試験片を、前記処理液に液温30℃で10秒間
浸漬したのち、水洗し、乾燥したところ、試験片
の化成被膜は0.28μであり、これを温度55℃、湿
度95%の恒温恒湿槽中で500時間放置したが、銅
表面に腐食は見られなかつた。また実施例1と同
様にして銅表面の半田の濡れ性を調べたところ、
その結果も良好であつた。
Next, a test piece made of a copper-clad laminate treated in the same manner as in Example 1 was immersed in the treatment solution at a temperature of 30°C for 10 seconds, washed with water, and dried. The chemical conversion coating on the test piece was 0.28μ. This was left in a constant temperature and humidity chamber at a temperature of 55°C and a humidity of 95% for 500 hours, but no corrosion was observed on the copper surface. In addition, the wettability of solder on the copper surface was investigated in the same manner as in Example 1.
The results were also good.

比較のために、2−ウンデシル−4−メチルイ
ミダゾール7gと2−ヘプタデシル−4−メチル
イミダゾール3gを水1中に夫々加え、これに
撹拌しながら蟻酸を加えてPH4.74の処理液を調製
して、前記と同じ試験片を液温30℃で10秒間浸漬
したのち、水洗し、乾燥したところ、試験片の化
成被膜は0.08μであり、前記と同様の耐湿試験を
行つたところ、試験片の表面に多数の斑点状錆が
発生した。
For comparison, 7 g of 2-undecyl-4-methylimidazole and 3 g of 2-heptadecyl-4-methylimidazole were each added to 1 part of water, and formic acid was added to this with stirring to prepare a treatment solution with a pH of 4.74. The same test piece as above was immersed in a solution at a temperature of 30°C for 10 seconds, washed with water, and dried. The chemical conversion coating on the test piece was 0.08μ. When the same moisture resistance test as above was performed, the test piece was Many spots of rust appeared on the surface.

実施例 7 実施例1において調製した処理液を用い、実施
例1と同様の洗浄処理した真鍮板からなる試験片
を、処理液に液温30℃で10秒間浸漬したのち、水
洗し、乾燥したところ、試験片の化成被膜は0.2μ
であつた。これらの試験片を温度55℃、湿度95%
の恒温恒湿槽中で500時間放置したところ、真鍮
表面の腐食は全く見られなかつた。
Example 7 Using the treatment solution prepared in Example 1, a test piece made of a brass plate that had been washed in the same manner as in Example 1 was immersed in the treatment solution at a temperature of 30°C for 10 seconds, then washed with water and dried. However, the chemical conversion coating on the test piece was 0.2μ.
It was hot. These specimens were heated to a temperature of 55℃ and a humidity of 95%.
When left in a constant temperature and humidity chamber for 500 hours, no corrosion was observed on the brass surface.

実施例 8 2−ウンデシル−4−メチルイミダゾール10g
とこれに等モルの酢酸2.5gを適量の水に加えて、
2−ウンデシル−4−メチルイミダゾール酢酸塩
を含む水溶液を造り、他方硫酸銅0.4gを水10ml
に溶解させ、これらを夫々水に加えて総量1と
し、さらに撹拌しながらトリエタノールアミンを
加え、PH4.9の処理液を調製した。
Example 8 2-undecyl-4-methylimidazole 10g
Add 2.5g of equimolar acetic acid to this and an appropriate amount of water,
Prepare an aqueous solution containing 2-undecyl-4-methylimidazole acetate, and add 0.4 g of copper sulfate to 10 ml of water.
These were each added to water to make a total amount of 1, and triethanolamine was added while stirring to prepare a treatment liquid with a pH of 4.9.

次いで実施例1と同様に処理した銅張積層板か
らなる試験片を、前記処理液に液温30℃で10秒間
浸漬したのち、水洗し、乾燥したところ、試験片
の化成被膜は0.3μであり、これを温度55℃、湿度
95%の恒温恒湿槽中で500時間放置したが、銅表
面に腐食は見られなかつた。また実施例1と同様
にして銅表面の半田の濡れ性を調べたところ、そ
の結果も良好であつた。
Next, a test piece made of a copper-clad laminate treated in the same manner as in Example 1 was immersed in the treatment solution at a temperature of 30°C for 10 seconds, washed with water, and dried. The chemical conversion coating on the test piece was 0.3μ. Yes, this is done at a temperature of 55℃ and humidity.
Although it was left in a constant temperature and humidity chamber at 95% for 500 hours, no corrosion was observed on the copper surface. Further, the wettability of solder on the copper surface was examined in the same manner as in Example 1, and the results were also good.

実施例 9 1.6m/m厚のガラスエポキシ両面銅張積層板
〔FR−4、商品名R−1705、(松下電工(株)製)〕に
小孔をあけ無電解銅メツキをし次いで電解銅メツ
キをして、孔の内部及び両面に25〜30μの銅メツ
キを形成した。
Example 9 A small hole was made in a 1.6 m/m thick glass epoxy double-sided copper-clad laminate [FR-4, product name R-1705, (manufactured by Matsushita Electric Works Co., Ltd.]) and electroless copper plating was applied, followed by electrolytic copper plating. Plating was performed to form a copper plating of 25 to 30 μm inside the hole and on both sides.

次にアルカリ可溶のロジン変性フエノール樹脂
を主成分とするレジストインク〔商品名KM−10
(太陽インク製造(株)製)〕をシルクスクリーン印刷
して、厚さ20μ程度の陰画パターン塗膜を形成
し、80℃の温度で10分間乾燥した。
Next, a resist ink whose main component is an alkali-soluble rosin-modified phenolic resin [product name KM-10]
(manufactured by Taiyo Ink Manufacturing Co., Ltd.)] was silk screen printed to form a negative pattern coating film with a thickness of about 20 μm, and dried at a temperature of 80° C. for 10 minutes.

さらに前記基板を5%塩酸水溶液に浸漬、水洗
して、銅表面を洗浄にし、この基板を実施例1に
おいて調製した処理液に液温50℃で60秒間浸漬し
た。
Further, the substrate was immersed in a 5% aqueous hydrochloric acid solution and washed with water to clean the copper surface, and the substrate was immersed in the treatment solution prepared in Example 1 at a temperature of 50° C. for 60 seconds.

その後基板をとり出し水洗し、120℃で10分間
乾燥した。基板のアルキルイミダゾールの膜厚を
測定すると、平均3.5μであつた。
Thereafter, the substrate was taken out, washed with water, and dried at 120°C for 10 minutes. When the thickness of the alkylimidazole film on the substrate was measured, it was 3.5μ on average.

続いて、前記基板を2%の水酸化ナトリウム水
溶液に浸漬してレジストインクを溶解除去し、回
路として残す必要のない部分(陰画部)の銅を露
出させ、次いでアルカリ性エツチング剤〔アンモ
ニア−塩化アンモニウム−銅系、商品名工−プロ
セス(メルテツクス(株)製)〕を用い、これを50℃
の温度で前記基板に120秒間スプレーしてエツチ
ングを行つたのち、5%塩酸水溶液に侵漬し、回
路上のエツチングレジスト膜を溶解除去して、銅
スルーホールプリント配線板を製造した。
Next, the substrate is immersed in a 2% sodium hydroxide aqueous solution to dissolve and remove the resist ink, exposing the copper in areas (negative areas) that do not need to be left as circuits, and then using an alkaline etching agent [ammonium-ammonium chloride]. - Copper-based, product name process (manufactured by Meltex Co., Ltd.)] and heated at 50°C.
The substrate was etched by spraying for 120 seconds at a temperature of 100 mL, and then immersed in a 5% hydrochloric acid aqueous solution to dissolve and remove the etching resist film on the circuit, producing a copper through-hole printed wiring board.

このようにして造つた銅スルーホールプリント
配線板の不良率は1%以下であつた。
The defect rate of the copper through-hole printed wiring board thus produced was 1% or less.

比較のために、2−ウンデシル−4−メチルイ
ミダゾール10gと酢酸4.5mlを水1に夫々加え
て処理液を調製し、この処理液を用いて前記と同
じ銅張積層板を前記と同じ条件で処理して銅スル
ーホールプリント配線板を製造した。基板のアル
キルイミダゾールの膜厚を測定すると平均0.8μで
あり、スルーホール欠損あるいは回路欠損等が多
く発生し、製品不良率は70%であつた。
For comparison, a treatment solution was prepared by adding 10 g of 2-undecyl-4-methylimidazole and 4.5 ml of acetic acid to 1 part of water, and using this treatment solution, the same copper-clad laminate as above was treated under the same conditions as above. A copper through-hole printed wiring board was manufactured by processing. The average thickness of the alkylimidazole film on the substrate was measured to be 0.8μ, and there were many through-hole defects and circuit defects, and the product defect rate was 70%.

発明の効果 本発明方法によつて、銅あるいは銅合金の表面
にイミダゾール化合物の被膜を形成する場合、従
来の方法と比べて、金属と処理液との接触時間を
少なくとも1/3以下に短縮することができ、プリ
ント配線板等の回路部における防錆処理や、エツ
チングレジスト膜の形成工程における生産効率を
飛躍的に高めることができる。
Effects of the Invention When forming an imidazole compound film on the surface of copper or copper alloy by the method of the present invention, the contact time between the metal and the treatment liquid is reduced to at least 1/3 compared to the conventional method. This makes it possible to dramatically improve production efficiency in antirust treatment for circuit parts such as printed wiring boards and in the process of forming etching resist films.

また処理を低温で為しうるので、設備を簡素化
し且つエネルギーの節減が可能である。
Furthermore, since the treatment can be carried out at low temperatures, equipment can be simplified and energy can be saved.

Claims (1)

【特許請求の範囲】 1 銅あるいは銅合金の表面を、2位長鎖アルキ
ルイミダゾール化合物と銅イオンを含む処理液に
接触させることを特徴とする銅及び銅合金の表面
処理方法。 2 処理液中に酸性物質を添加し、処理液のPHを
3ないし6の範囲に調整することを特徴とする請
求項1記載の銅及び銅合金の表面処理方法。 3 処理液中に酸性物質及びアンモニアまたはア
ミン類を添加することを特徴とする請求項1及び
2記載の銅及び銅合金の表面処理方法。 4 酸性物質として有機酸を用いる請求項2及び
3に記載の銅及び銅合金の表面処理方法。 5 銅あるいは銅合金を、2−ウンデシルイミダ
ゾール化合物、塩化第一銅、有機酸及びアンモニ
アを添加した処理液に接触させることを特徴とす
る銅及び銅合金の表面処理方法。
[Scope of Claims] 1. A method for surface treatment of copper and copper alloys, which comprises bringing the surface of copper or copper alloys into contact with a treatment solution containing a 2-position long-chain alkylimidazole compound and copper ions. 2. The method for surface treatment of copper and copper alloys according to claim 1, characterized in that an acidic substance is added to the treatment liquid to adjust the pH of the treatment liquid to a range of 3 to 6. 3. The method for surface treatment of copper and copper alloys according to claims 1 and 2, characterized in that an acidic substance and ammonia or amines are added to the treatment liquid. 4. The method for surface treatment of copper and copper alloys according to claims 2 and 3, wherein an organic acid is used as the acidic substance. 5. A method for surface treatment of copper and copper alloys, which comprises bringing copper or copper alloys into contact with a treatment solution containing a 2-undecylimidazole compound, cuprous chloride, an organic acid, and ammonia.
JP63247247A 1988-09-29 1988-09-29 Surface treatment of copper and copper alloy Granted JPH0293079A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP63247247A JPH0293079A (en) 1988-09-29 1988-09-29 Surface treatment of copper and copper alloy
EP89309866A EP0364132A1 (en) 1988-09-29 1989-09-28 Method for forming conversion coating on surface of copper or copper alloy
KR89013993A KR0142409B1 (en) 1988-09-29 1989-09-29 Method for forming conversion coating on surface of copper or copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63247247A JPH0293079A (en) 1988-09-29 1988-09-29 Surface treatment of copper and copper alloy

Publications (2)

Publication Number Publication Date
JPH0293079A JPH0293079A (en) 1990-04-03
JPH0569914B2 true JPH0569914B2 (en) 1993-10-04

Family

ID=17160647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63247247A Granted JPH0293079A (en) 1988-09-29 1988-09-29 Surface treatment of copper and copper alloy

Country Status (1)

Country Link
JP (1) JPH0293079A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603577B2 (en) * 1992-02-18 1997-04-23 東京特殊電線株式会社 Rust prevention treatment of copper core wire for magnet wire
JPH0681161A (en) * 1992-08-31 1994-03-22 Hitachi Ltd Surface treating agent for copper and copper alloy
KR100428569B1 (en) * 1999-11-25 2004-04-28 주식회사 포스코 Powdered rust inhibitor
JP5656081B2 (en) * 2011-04-18 2015-01-21 メック株式会社 Film forming liquid and film forming method using the same
JP6012393B2 (en) * 2012-10-23 2016-10-25 四国化成工業株式会社 Copper surface treatment agent and surface treatment method
JP6779557B1 (en) 2020-07-20 2020-11-04 メック株式会社 A composition for forming a film, a method for producing a surface-treated metal member, and a method for producing a metal-resin composite.

Also Published As

Publication number Publication date
JPH0293079A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
US9072203B2 (en) Solderability enhancement by silver immersion printed circuit board manufacture
JP3314966B2 (en) Complexing agent for displacement tin plating
EP0428383A1 (en) Process for surface treatment of copper and copper alloy
EP0707093B1 (en) Method for selective plating
JP3387507B2 (en) Pretreatment solution and pretreatment method for electroless nickel plating
JP3337802B2 (en) Direct plating method by metallization of copper (I) oxide colloid
KR101616731B1 (en) Metal surface treatment aqueous solution and method for inhibiting whiskers on a metal surface
US5468515A (en) Composition and method for selective plating
EP0364132A1 (en) Method for forming conversion coating on surface of copper or copper alloy
JPH0569914B2 (en)
EP0861923B1 (en) Activating catalytic solution for electroless plating and method for electroless plating
JPH0218386B2 (en)
JP3540887B2 (en) Selective nickel stripping solution and stripping method using the same
JP2834885B2 (en) Copper and copper alloy surface treatment method
JP2002513090A (en) Method for covering copper or copper alloy surface with tin film or tin alloy film
EP0098472A1 (en) Method for decreasing plated metal defects by treating a metallic surface
JP2686168B2 (en) Surface treatment method for copper and copper alloy and surface treatment agent for soldering
JP3336535B2 (en) Composition and method for selective plating
JP2834884B2 (en) Copper and copper alloy surface treatment method
JPH07330738A (en) Protecting agent for metal surface and production using the same
JPH04231473A (en) Preliminary treatment composition and method for tin-lead immersion plating
JPH04162693A (en) Manufacture of copper plated through hole printed wiring board
JPH03235395A (en) Manufacture of copper through hole printed wiring board
KR100208555B1 (en) Surface treatment method for copper and copper alloys
JP2972295B2 (en) Copper and copper alloy surface treatment method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term