JPH032351B2 - - Google Patents

Info

Publication number
JPH032351B2
JPH032351B2 JP6239884A JP6239884A JPH032351B2 JP H032351 B2 JPH032351 B2 JP H032351B2 JP 6239884 A JP6239884 A JP 6239884A JP 6239884 A JP6239884 A JP 6239884A JP H032351 B2 JPH032351 B2 JP H032351B2
Authority
JP
Japan
Prior art keywords
wafer
electrode
emitter
base
ohmic contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6239884A
Other languages
Japanese (ja)
Other versions
JPS60206133A (en
Inventor
Kazuko Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6239884A priority Critical patent/JPS60206133A/en
Publication of JPS60206133A publication Critical patent/JPS60206133A/en
Publication of JPH032351B2 publication Critical patent/JPH032351B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Die Bonding (AREA)

Abstract

PURPOSE:To make highly reliable ohmic contact easily feasible by a method wherein a metal hardly reactive to both Au and Ni as well as to Si is laid between Au and Ni. CONSTITUTION:Both a p type base region 3 and an n type emitter region 4 are diffused in a wafer. After the diffusion process, an SiO2 film 12 of the base and emitter regions 3, 4 is selectively removed to form surface elements and then processed by Al evaporation to form a base electrode 5 and an emitter electrode 6. Then the backside of this wafer is ground conforming to specified thickness. Firstly Au containing e.g. Sb is evaporated on the backside. Secondly Ta 9 is evaporated further to evaporate an Ni 10 and an Ag 11 successively. Thirdly this wafer is heattreated using an enert gas or H2 gas at the temperature around 300-500 deg.C. At this time, Au containing Sb is alloyed with Si to form an Au-Si alloy 8. Finally the wafer may be divided into individual chips.

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体装置に関し、特に電極構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a semiconductor device, and particularly to an electrode structure.

(従来技術) 従来、電極形成は主として拡散層上にNiメツ
キ、Al蒸着、Au蒸着、更にはNi、Ni−Ag蒸着
などを行い、熱処理を行つてオーム性接触を形成
し、このチツプをハンダ付けやボンデングを行う
ことにより、外部リードと接続し、市販される半
導体素子としている。
(Prior art) Conventionally, electrodes were formed mainly by Ni plating, Al evaporation, Au evaporation, or Ni, Ni-Ag evaporation, etc. on the diffusion layer, heat treatment was performed to form ohmic contact, and the chip was soldered. By performing attaching and bonding, it is connected to external leads and becomes a commercially available semiconductor element.

この電極系は要求される性質として、金属自体
の抵抗が小さいこと、シリコンとオーム性接触を
していること、出来た金属−シリコンの系が種々
の熱処理(シンター、組立)の過程で安定である
こと、動作試験や環境試験などの信頼性試験に対
して安定なこと、更にはAl、Au線等のボンデイ
ング線又はAuSi、AgSn、SbSn等のハンダとの
結合状態が良好であることなどである。
The required properties of this electrode system include low resistance of the metal itself, ohmic contact with silicon, and stability of the resulting metal-silicon system during various heat treatments (sintering, assembly). It is stable in reliability tests such as operation tests and environmental tests, and has a good bonding state with bonding wires such as Al and Au wires or solders such as AuSi, AgSn, and SbSn. be.

一般に、オーム性接触は半導体の表面濃度が高
い場合(1019/cm3以上)には問題とならない。そ
れ故、高濃度の拡散層に蒸着した金属とシリコン
基板のオーム接触はほとんど問題なく形成するこ
とができ、蒸着の金属の種類としても選択の自由
度は大きい。
Generally, ohmic contact is not a problem when the surface concentration of the semiconductor is high (10 19 /cm 3 or higher). Therefore, ohmic contact between the metal deposited in the highly concentrated diffusion layer and the silicon substrate can be formed with almost no problem, and there is a large degree of freedom in selecting the type of metal to be deposited.

しかし、拡散工程の省略化やウエハーの大口径
化に伴い、拡散工程でのウエハー歩留を向上させ
るためには、ウエハーの厚さが厚い状態で拡散工
程を施し、最後にウエハーをうすく研磨し裏面に
オーム性接触をとることが可能になれば、工程の
省略化、及び歩留の大巾な向上になる。しかし、
従来使われている金属でそのままオーム性接触を
とるのは基板の不純物濃度が低い場合むずかし
く、何らかの方法で金属がシリコン界面の不純物
濃度を上げることが必要となつてくる。このため
の一方法として、Auがシリコンと低い温度で共
晶を作ることを利用してAuの中に例えばSbのよ
うな不純物を含ませておき、熱処理することによ
り、シリコン界面に不純物を導入することがあ
る。又組立時にソフトソルダーとのなじみを良く
するために、Agを又ソルダーのストツパーとし
てのNiを蒸着したり、あるいはNiのみの単層を
蒸着すると、一応低濃度不純物基板にオーム性接
触がとれ、組立工程でもソルダーとなじみがよく
安定な蒸着系となる。つまりSi・An(Sb)−Ni−
Agといつた蒸着系である。この蒸着系は充分に
実用に耐える系ではあるが、この系の問題点とし
ては、AuがSiと反応しAu−Niの界面までSiが容
易に到達し、又NiはSiと低温度でシリサイドを
形成するため、NixSiyの合金化の反応も進み、
又Ni中へのAuの拡散もおきるなど、積層膜は形
成時の熱処理条件により非常に複雑な様相を呈す
る。又Au中の不純物のSi中への分布という点を
観みても熱処理条件によつて変化をうけやすいた
め同一の状態に管理することは非常に面倒なこと
になる。
However, as the diffusion process is omitted and the diameter of wafers becomes larger, in order to improve the wafer yield in the diffusion process, the diffusion process is performed on a thick wafer, and then the wafer is polished thin at the end. If it were possible to make ohmic contact on the back side, the process would be simplified and the yield would be significantly improved. but,
It is difficult to establish ohmic contact with conventional metals when the impurity concentration of the substrate is low, and it becomes necessary to somehow increase the impurity concentration at the metal-silicon interface. One method for this purpose is to incorporate impurities such as Sb into Au by taking advantage of the fact that Au forms a eutectic with silicon at low temperatures, and then introduce the impurity to the silicon interface by heat treatment. There are things to do. In addition, in order to improve the compatibility with the soft solder during assembly, by depositing Ag or Ni as a solder stopper, or by depositing a single layer of Ni alone, ohmic contact can be established with the low concentration impurity substrate. It becomes a stable vapor deposition system that is compatible with solder during the assembly process. In other words, Si・An(Sb)−Ni−
It is a vapor deposition system called Ag. Although this vapor deposition system is sufficiently durable for practical use, the problems with this system are that Au reacts with Si and Si easily reaches the Au-Ni interface, and Ni silicides with Si at low temperatures. The alloying reaction of NixSiy also progresses to form
In addition, the layered film exhibits a very complicated appearance depending on the heat treatment conditions during formation, such as the diffusion of Au into Ni. Also, from the point of view of the distribution of impurities in Au into Si, it is easy to change depending on the heat treatment conditions, so it is very troublesome to control it to the same state.

(発明の目的) 本発明の目的はこのような問題点を解決し、信
頼性の高いオーム性接触が容易に得られる電極構
造を有する半導体装置を提供するものである。
(Object of the Invention) An object of the present invention is to solve the above-mentioned problems and provide a semiconductor device having an electrode structure in which highly reliable ohmic contact can be easily obtained.

(発明の構成) つまり、本発明によれば、AuとNiの間にAu、
Niのいづれとも反応しにくく又Siとも比較的反
応をしにくい金属を介在させることにより、熱処
理状況が多少変化しても常に安定な金属電極系を
提供するものである。具体的にはAuとNiの間に
Ta(タンタル)を介在させることにより、オーム
性接触をとるためのSi−Au(Sb)の系とソルダー
との接続につかうNi又はNi・Ag系を分離するも
のである。又、Taはシリサイドの出来る温度が
650℃と高いため、500℃程度の熱処理では安定に
存在出来る。
(Structure of the Invention) In other words, according to the present invention, Au, between Au and Ni,
By interposing a metal that does not easily react with either Ni or relatively easily with Si, a metal electrode system that is always stable even if the heat treatment conditions change somewhat is provided. Specifically, between Au and Ni
By interposing Ta (tantalum), the Si-Au (Sb) system for ohmic contact is separated from the Ni or Ni/Ag system used for connection with the solder. Also, Ta has a temperature where silicide is formed.
Since it is as high as 650℃, it can exist stably with heat treatment at about 500℃.

(実施例) 次に、本発明を実施例に基づきより詳細に説明
する。
(Example) Next, the present invention will be explained in more detail based on an example.

第1図はトランジスターの断面図である。大口
径の例えば4インチシリコンウエハーを用いて拡
散を行うことを想定する。ウエハーの歩留安定化
のためには例えば350〜400μ程度の厚いウエハー
を使用することを考える。N+シリコン基板1上
には気相成長させたN-型領域2を有している。
このウエハーにP型のベース領域3の拡散及びN
型エミツター領域4の拡散を行う。拡散終了後、
表面の電極を形成するため、エミツター及びベー
ス領域3,4のSiO2膜12を選択除去した後、
Al蒸着を行い、エミツター電極6及びベース電
極5を形成する。しかるのち、このウエハーの裏
面を研磨して、例えば200μ程度の所望の厚さに
する。次にこの面に例えばSbを0.1〜1ωt%含有
したAuを500〜2000Å程度蒸着する。次にTa9
を、例えば500〜2000Å程度蒸着したのち、この
上に連続的にNi10及びAg11を2000〜1μ程度
蒸着する。次にこのウエハーを300〜500℃程度の
温度で数分〜1時間程度不活性ガス又はH2ガス
を用いて熱処理を行う。この時Sbを含有するAu
はSiと合金化してAu−Si合金8を形成する。そ
の後個々のチツプに分割する。本方法に於いて
AU(Sb)の合金は蒸着だけでなくAuSbの合金を
スパツターによつて付けても、又Au、Sb別々の
ターゲツトを用い、コ・スパツターによつて付け
てもよい。又不純物としてはSbだけでなく、P、
As、Alといつたものも基板の種類に応じて選択
可能である。本説明はSi上にAuを主体とする層
を直接つけたが、量産時のラインの安定性(ハガ
レの発生)からは、自然酸化膜と密着性のよい
Ti、Cr、Vの薄膜をつけることも充分有効であ
る。又、この蒸着系7は高濃度のシリコン面に対
しても問題なく適用可能である。又それぞれの金
属の膜厚Au中の不純物濃度は実施例に示したの
は一例であつて、その範囲を逸脱していても問題
はない。
FIG. 1 is a cross-sectional view of a transistor. It is assumed that diffusion is performed using a large diameter silicon wafer, for example, 4 inches. In order to stabilize the yield of wafers, consider using wafers as thick as 350 to 400 μm, for example. An N - type region 2 is formed on the N + silicon substrate 1 by vapor phase growth.
In this wafer, a P type base region 3 is diffused and N
The mold emitter region 4 is diffused. After spreading,
After selectively removing the SiO 2 film 12 on the emitter and base regions 3 and 4 to form surface electrodes,
Al vapor deposition is performed to form an emitter electrode 6 and a base electrode 5. Thereafter, the back side of this wafer is polished to a desired thickness of, for example, about 200 microns. Next, on this surface, for example, Au containing 0.1 to 1 ωt% of Sb is deposited to a thickness of about 500 to 2000 Å. Next Ta9
After depositing, for example, about 500 to 2,000 Å, Ni 10 and Ag 11 are continuously deposited thereon to a thickness of about 2,000 to 1 μm. Next, this wafer is heat-treated at a temperature of about 300 to 500° C. for about several minutes to one hour using an inert gas or H 2 gas. At this time, Au containing Sb
is alloyed with Si to form Au-Si alloy 8. It is then divided into individual chips. In this method
The AU(Sb) alloy may be applied not only by vapor deposition, but also by sputtering, or by co-sputtering using separate targets for Au and Sb. Also, impurities include not only Sb but also P,
Materials such as As and Al can also be selected depending on the type of substrate. In this explanation, a layer mainly composed of Au is applied directly to Si, but from the viewpoint of line stability (no peeling) during mass production, it is difficult to form a layer that has good adhesion to the natural oxide film.
It is also sufficiently effective to apply thin films of Ti, Cr, and V. Further, this vapor deposition system 7 can be applied to a highly concentrated silicon surface without any problem. Further, the impurity concentration in the film thickness of each metal (Au) shown in the example is just an example, and there is no problem even if it deviates from the range.

本発明はトランジスターだけでなく、ダイオー
ドサイリスターへの適用はもちろん可能であり、
従来のオーム接触のためだけの高濃度拡散は不要
となる。
The present invention can of course be applied not only to transistors but also to diode thyristors.
High concentration diffusion only for conventional ohmic contacts is no longer required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はトランジスターの縦断面図である。 1……シリコン基板、2……エピタキシヤル
層、3……P型ベース領域、4……N型エミツタ
領域、5……ベース電極、6……エミツター電
極、7……コレクター電極、8……Au−Si(Sb)
合金領域、9……Ta層、10……Ni層、11…
…Ag層。
FIG. 1 is a longitudinal cross-sectional view of a transistor. DESCRIPTION OF SYMBOLS 1...Silicon substrate, 2...Epitaxial layer, 3...P type base region, 4...N type emitter region, 5...Base electrode, 6...Emitter electrode, 7...Collector electrode, 8... Au-Si(Sb)
Alloy region, 9... Ta layer, 10... Ni layer, 11...
...Ag layer.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板と、該半導体基板裏面に設けられ
たAuを主成分とする第1の電極層と、該第1の
電極層上に設けられたTaを含む第2の電極層と、
該第2の電極層上に設けられたNiを含む第3の
電極層とを有する電極を有することを特徴とする
半導体装置。
1. a semiconductor substrate, a first electrode layer mainly containing Au provided on the back surface of the semiconductor substrate, and a second electrode layer containing Ta provided on the first electrode layer;
A semiconductor device characterized by having an electrode having a third electrode layer containing Ni provided on the second electrode layer.
JP6239884A 1984-03-30 1984-03-30 Manufacture of semiconductor device Granted JPS60206133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6239884A JPS60206133A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6239884A JPS60206133A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60206133A JPS60206133A (en) 1985-10-17
JPH032351B2 true JPH032351B2 (en) 1991-01-14

Family

ID=13198987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6239884A Granted JPS60206133A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60206133A (en)

Also Published As

Publication number Publication date
JPS60206133A (en) 1985-10-17

Similar Documents

Publication Publication Date Title
JPH0779136B2 (en) Semiconductor device
US2820932A (en) Contact structure
JP3971456B2 (en) Mounting SiC die and SiC die mounting method
JP2010129585A (en) Method for manufacturing semiconductor device
JPS59189625A (en) Manufacture of semiconductor device
JPH032351B2 (en)
JPS61220344A (en) Manufacture of semiconductor device
JPS6148776B2 (en)
JPS61121435A (en) Manufacture of semiconductor device
JPS6016463A (en) Ohmic electrode
JPS63253633A (en) Manufacture of semiconductor device
JPH038346A (en) Brazing material
JPS59227119A (en) Silicon semiconductor device
JPS5838942B2 (en) ShyotsutoshiyouhekigatahandoutaisouchiOyobiSonoseizohou
JPS60136270A (en) Manufacture of semiconductor device
JPS58112336A (en) Process of forming electrode of compound semiconductor device
JP2742686B2 (en) Semiconductor device
JPS6220338A (en) Manufacture of semiconductor device
JPS5860535A (en) Preparation of multilayer electrode
JPS5845814B2 (en) Semiconductor device with laminated metal electrodes
JPH0693466B2 (en) Silicon semiconductor device manufacturing method
JPS6169122A (en) Manufacture of semiconductor device
JPS62234322A (en) Manufacture of semiconductor device
JPH0793327B2 (en) Semiconductor device
JPS5848458A (en) Semiconductor device