JPH0323518B2 - - Google Patents

Info

Publication number
JPH0323518B2
JPH0323518B2 JP59135771A JP13577184A JPH0323518B2 JP H0323518 B2 JPH0323518 B2 JP H0323518B2 JP 59135771 A JP59135771 A JP 59135771A JP 13577184 A JP13577184 A JP 13577184A JP H0323518 B2 JPH0323518 B2 JP H0323518B2
Authority
JP
Japan
Prior art keywords
furnace
compound semiconductor
temperature
boat
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59135771A
Other languages
Japanese (ja)
Other versions
JPS6114199A (en
Inventor
Mikio Kashiwa
Seiji Mizuniwa
Hiroyuki Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP13577184A priority Critical patent/JPS6114199A/en
Publication of JPS6114199A publication Critical patent/JPS6114199A/en
Publication of JPH0323518B2 publication Critical patent/JPH0323518B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/003Heating or cooling of the melt or the crystallised material

Description

【発明の詳細な説明】 本発明はGaAs、InP、InAsなどの−族化
合物半導体単結晶の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a - group compound semiconductor single crystal such as GaAs, InP, and InAs.

従来、化合物半導体単結晶の製造には水平ブリ
ツジマン法(H・B法)や温度傾斜法(G・F
法)等のボート成長法がよく用いられている。
Traditionally, compound semiconductor single crystals have been manufactured using the horizontal Bridgeman method (H・B method) or the temperature gradient method (G・F method).
Boat growth methods such as the method (method) are often used.

ボート成長法は、低温炉及び高温炉からなる加
熱炉によつてある温度分布を形成しておき、加熱
炉内に配置された反応容器内の低温炉側の一端
に、例えばGaAs等の化合物半導体を構成するAs
等の第1揮発性成分を配置し、反応容器の高温炉
側にGaAs原料融液及び種結晶を収容したボート
を収容し、この状態で、H・B法の場合には加熱
炉を移動させ、G・F法の場合には加熱炉の制御
により温度分布を変化させて、原料融液内の温度
勾配を移動させることにより、原料融液の温度を
種結晶側から冷却して単結晶化させる方法であ
る。
In the boat growth method, a heating furnace consisting of a low-temperature furnace and a high-temperature furnace is used to form a certain temperature distribution, and a compound semiconductor such as GaAs is placed at one end of a reaction vessel placed in the heating furnace on the low-temperature furnace side. As that constitutes
A boat containing the GaAs raw material melt and seed crystals is placed on the high-temperature furnace side of the reaction vessel, and in this state, in the case of the H/B method, the heating furnace is moved. In the case of the G/F method, the temperature distribution is changed by controlling the heating furnace and the temperature gradient within the raw material melt is moved, thereby cooling the temperature of the raw material melt from the seed crystal side and forming a single crystal. This is the way to do it.

H・B法では、反応容器と加熱炉の位置関係を
結晶成長に応じて徐々に移動を行うため、炉体の
設計上高温度で高い応力に耐える炉材が必要であ
り、どうしても炉構造が複雑になり、しかも移動
による微震動の発生は避けられない。
In the H/B method, the positional relationship between the reaction vessel and the heating furnace is gradually moved according to crystal growth, so the design of the furnace body requires a furnace material that can withstand high temperatures and high stress, and the furnace structure inevitably changes. It becomes complicated, and the occurrence of microtremors due to movement is unavoidable.

これに対し、G・F法は加熱炉内の温度分布を
結晶成長に応じて変化させ炉自身の位置変化は伴
わない方法であるため、このような移動による問
題がなく一見好ましく思えるが、炉温度の制御を
を電熱線の電流制御で行うことから固液界面にお
ける熱移動が段階的になりがちであり、結晶成長
が均一な温度条件で行われるか疑わしく、均一な
大型単結晶の成長には必ずしも適していない。
On the other hand, the G/F method is a method that changes the temperature distribution in the heating furnace according to crystal growth and does not involve any change in the position of the furnace itself, so there is no problem with such movement and it seems preferable at first glance. Since the temperature is controlled by controlling the current of a heating wire, heat transfer at the solid-liquid interface tends to be gradual, making it questionable whether crystal growth will occur under uniform temperature conditions, making it difficult to grow uniform large single crystals. is not necessarily suitable.

従つて高品質大型の化合物半導体単結晶を得る
ためには、H・B法、G・F法ともに不十分であ
つた。
Therefore, both the H.B method and the G.F method are insufficient for obtaining high-quality, large-sized compound semiconductor single crystals.

なお、H・B法やG・F法等のボート成長法に
おいて、化合物半導体原料融液の過冷却を抑制
し、融液の上面から単結晶化が進むようにするた
めに、融液を収容したボートの上方の加熱炉に、
発熱体以外のものを全て取り去つた放熱孔或いは
ガス、液体等を流した冷却管等の放熱手段を設け
ることは良く知られている(特公昭56−32272号
公報、特開昭49−115768号公報)。
In addition, in boat growth methods such as the H・B method and the G・F method, in order to suppress supercooling of the compound semiconductor raw material melt and allow single crystallization to proceed from the top surface of the melt, the melt is contained. in the heating furnace above the boat.
It is well known to provide heat dissipation means such as heat dissipation holes from which everything other than the heating element has been removed or cooling pipes through which gas, liquid, etc. Publication No.).

しかし、上記放熱手段は、熱をボート上方に逃
がすことで、ボートの上下に温度差を生じさせる
ものであり、放熱孔手段それ自体が原料融液内の
温度勾配を移動させ原料融液の冷却するものでは
ない。従つて、放熱手段を設けた装置を使用し
て、H・B法を実施する場合には、加熱炉と反応
容器の相対的な移動が必要となり、またG・F法
を実施する場合には、炉内温度分布を時間的に変
化させる必要があるため、結局上述のような問題
が発生する。即ち、加熱炉に放熱手段を設けただ
けでは、上述のH・B法及びG・F法の問題点は
解消しないのである。
However, the heat dissipation means causes a temperature difference between the top and bottom of the boat by dissipating heat upwards, and the heat dissipation hole means itself moves the temperature gradient within the raw material melt to cool the raw material melt. It's not something you do. Therefore, when implementing the H・B method using a device equipped with a heat dissipation means, it is necessary to move the heating furnace and the reaction vessel relative to each other, and when implementing the G・F method, Since it is necessary to temporally change the temperature distribution in the furnace, the above-mentioned problems eventually occur. That is, simply providing a heat radiation means in the heating furnace does not solve the problems of the H.B method and the G.F method described above.

本発明はかかる状況に鑑み、炉体を複雑化する
ことなく、加熱炉の移動及び加熱炉の温度制御に
よる温度勾配移動を伴なうことなく、炉内温度分
布を連続的に変化させることができ、高品質大型
の化合物半導体単結晶を得ることのできる製造方
法を提供することを目的とするものである。
In view of this situation, the present invention is capable of continuously changing the temperature distribution in the furnace without complicating the furnace body and without moving the heating furnace or changing the temperature gradient due to temperature control of the heating furnace. The object of the present invention is to provide a manufacturing method that can produce high-quality, large-sized compound semiconductor single crystals.

本発明の要旨は、低温炉及び高温炉からなる加
熱炉内に配置された反応容器内の前記低温炉側の
一端に化合物半導体を構成する第1揮発性成分を
配置し、上記反応容器の高温炉側に化合物半導体
原料融液及び種結晶を収容したボートを収容し、
上記化合物半導体原料融液の温度を上記種結晶側
から冷却して単結晶化される化合物半導体の製造
方法において、上記種結晶を上記第1揮発性成分
とは反対側の上記ボートの一端に配置し、上記加
熱炉を上記ボートに対して移動させることなくか
つ上記高温炉の温度を操作して温度分布を変化さ
せることにより上記化合物半導体原料融液を冷却
することなく、上記反応容器の上方に該反応容器
の上記ボートが置かれた側の一端から上記第1揮
発性成分側に向つて冷媒を循環させた冷却体を
徐々に挿入することにある。
The gist of the present invention is to arrange a first volatile component constituting a compound semiconductor at one end on the low temperature furnace side of a reaction vessel disposed in a heating furnace consisting of a low temperature furnace and a high temperature furnace, and to A boat containing a compound semiconductor raw material melt and seed crystals is housed on the furnace side,
In the method for producing a compound semiconductor in which the temperature of the compound semiconductor raw material melt is cooled from the seed crystal side to form a single crystal, the seed crystal is arranged at one end of the boat opposite to the first volatile component. The heating furnace is heated above the reaction vessel without moving the heating furnace with respect to the boat, and without cooling the compound semiconductor raw material melt by manipulating the temperature of the high temperature furnace to change the temperature distribution. The purpose is to gradually insert a cooling body in which a refrigerant is circulated from one end of the reaction vessel on the side where the boat is placed toward the first volatile component side.

本発明の一実施例を図面を参照して具体的に説
明する。
An embodiment of the present invention will be specifically described with reference to the drawings.

第1図において、1は反応容器、2はボートで
ある。ボート2内には種結晶3、例えばAs等の
第1揮発性成分と例えばGa等の第2成分とから
なる化合物半導体融液5とが収容されている。
In FIG. 1, 1 is a reaction vessel and 2 is a boat. The boat 2 houses a seed crystal 3 and a compound semiconductor melt 5 comprising a first volatile component such as As and a second volatile component such as Ga.

反応容器1の一端には第1揮発性成分6が収容
されている。
A first volatile component 6 is accommodated at one end of the reaction vessel 1 .

第1揮発性成分6の蒸気圧が化合物の解離圧近
くの蒸気圧となるように低温加熱炉7′によつて
温度制御されている。
The temperature is controlled by a low temperature heating furnace 7' so that the vapor pressure of the first volatile component 6 is close to the dissociation pressure of the compound.

ボート2の配置されている領域は高温加熱炉7
によつて、そのままでは化合物の溶融温度より高
い温度となるよう温度設定されている。
The area where the boat 2 is located is a high temperature heating furnace 7
Therefore, the temperature is set so that the temperature is higher than the melting temperature of the compound as it is.

この高温加熱炉7内の種結晶3側の一端より、
棒状の冷却体8を徐々に挿入する。
From one end of the seed crystal 3 side in this high temperature heating furnace 7,
The rod-shaped cooling body 8 is gradually inserted.

冷却体8は反応容器1及びボート2の上方に挿
入される。
A cooling body 8 is inserted above the reaction vessel 1 and the boat 2.

この冷却体8の内部には、冷媒が循環されてお
り、冷却体8が挿入された部分は炉内温度が低下
し、ボート2内では固定の化合物半導体単結晶4
が徐々に成長している。
A refrigerant is circulated inside the cooling body 8, and the temperature inside the furnace decreases in the part where the cooling body 8 is inserted.
is gradually growing.

冷媒としては、液体、気体のいずれでもよく、
循環させるときの温度、流量を制御するときによ
り、冷却熱量を制御することが可能となる。
The refrigerant can be either liquid or gas.
By controlling the temperature and flow rate during circulation, it is possible to control the amount of cooling heat.

ここで、従来のボート成長法では、種結晶3は
ボート2の第1揮発性成分側の一端におかれてい
るが、本発明においては、第1揮発性成分とは反
対側のボート2の一端に置かれているため、第1
揮発性成分とは反対側の反応容器上方から冷却体
8を挿入することにより種結晶3側から結晶成長
を開始することができる。
Here, in the conventional boat growth method, the seed crystal 3 is placed at one end of the boat 2 on the first volatile component side, but in the present invention, the seed crystal 3 is placed at one end of the boat 2 on the side opposite to the first volatile component. Because it is placed at one end, the first
By inserting the cooling body 8 from above the reaction vessel on the side opposite to the volatile components, crystal growth can be started from the seed crystal 3 side.

この温度分布を第2図及び第3図にて説明す
る。
This temperature distribution will be explained with reference to FIGS. 2 and 3.

第2図は、前記冷却体8を挿入する前の炉内温
度分布を示し、ボート2の配置されている高温ゾ
ーンはほとんど一定温度となつている。
FIG. 2 shows the temperature distribution in the furnace before the cooling body 8 is inserted, and the high temperature zone where the boat 2 is placed has an almost constant temperature.

この段階では、まだ単結晶の成長は進行してい
ない。
At this stage, single crystal growth has not yet progressed.

第3図は、前記冷却体8を挿入した第1図のよ
うな状態での炉内温度分布を示し、ボート2の配
置されている高温ゾーンにおいて種結晶3側が部
分的に若干低温となつている。
FIG. 3 shows the temperature distribution inside the furnace in a state as shown in FIG. There is.

冷却体8の挿入に従つてこの低温部分が広がつ
て行くことになる。
As the cooling body 8 is inserted, this low-temperature portion will spread.

この段階ではすでに第1図のように単結晶の成
長が進行している。
At this stage, growth of the single crystal is already progressing as shown in FIG.

本実施例では、加熱炉に放熱手段を設けなくて
も、ボート2の上方に冷却体8を挿入することに
より上面から冷却結晶化が進行し、高品質の単結
晶が得やすい。
In this example, by inserting the cooling body 8 above the boat 2, cooling crystallization proceeds from the top surface without providing a heat radiation means in the heating furnace, making it easy to obtain a high-quality single crystal.

なお、第1揮発性成分としては例えばAsなど
があり、第2成分としては例えばGaなどがある。
Note that the first volatile component includes, for example, As, and the second volatile component includes, for example, Ga.

以上説明したような本発明の製造方法であれば
次のような顕著の効果を奏する。
The manufacturing method of the present invention as explained above has the following remarkable effects.

(1) 加熱炉が機械的に移動することがないので、
炉体構造が簡単であり、結晶成長中に振動する
という問題もないので、経済的でかつ高品質の
単結晶が得られる。
(1) Since the heating furnace does not move mechanically,
Since the furnace structure is simple and there is no problem of vibration during crystal growth, economical and high quality single crystals can be obtained.

(2) 電熱線の電流を次々に切り替えることがない
ので、炉内部の温度分布が段階的に切り変わる
ことがなく、結晶成長は冷却体の挿入に従つて
均一な温度条件で進行するため、高品高品質の
単結晶が得られる。
(2) Since the current of the heating wire is not switched one after another, the temperature distribution inside the furnace does not change step by step, and crystal growth progresses under uniform temperature conditions as the cooling body is inserted. High quality single crystals can be obtained.

(3) 化合物容器の上方に冷却体を挿入するので、
上面から冷却結晶化が進行し、高品質の単結晶
が得られる。
(3) Since the cooling body is inserted above the compound container,
Cooling crystallization proceeds from the top surface, yielding a high quality single crystal.

(4) 冷却体の内部に冷媒を循環させることによ
り、冷却熱量を制御することができる。
(4) By circulating the refrigerant inside the cooling body, the amount of cooling heat can be controlled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す説明図であ
り、第2図及び第3図は本発明の一実施例におけ
る炉内温度分布を示す線図である。 1:反応容器、2:ボート、3:種結晶、4:
単結晶、5:化合物半導体原料融液、6:第1揮
発性成分、7:高温加熱炉、7′:低温加熱炉、
8:冷却体。
FIG. 1 is an explanatory diagram showing one embodiment of the present invention, and FIGS. 2 and 3 are diagrams showing temperature distribution in the furnace in one embodiment of the present invention. 1: Reaction vessel, 2: Boat, 3: Seed crystal, 4:
Single crystal, 5: compound semiconductor raw material melt, 6: first volatile component, 7: high temperature heating furnace, 7': low temperature heating furnace,
8: Cooling body.

Claims (1)

【特許請求の範囲】[Claims] 1 低温炉及び高温炉からなる加熱炉内に配置さ
れた反応容器内の前記低温炉側の一端に化合物半
導体を構成する第1揮発性成分を配置し、前記反
応容器の高温炉側に化合物半導体原料融液及び種
結晶を収容したボートを収容し、前記化合物半導
体原料融液の温度を前記種結晶側から冷却して単
結晶化させる化合物半導体の製造方法において、
前記種結晶を前記第1揮発性成分とは反対側の前
記ボートの一端に配置し、前記加熱炉を前記ボー
トに対して移動させることなくかつ前記高温炉の
温度を操作して温度分布を変化させることにより
前記化合物半導体原料融液を冷却することなく、
前記反応容器の上方に該反応容器の前記ボートが
置かれた側の一端から前記第1揮発性成分側に向
つて冷媒を循環させた冷却体を徐々に挿入するこ
とを特徴とする化合物半導体単結晶の製造方法。
1 A first volatile component constituting a compound semiconductor is disposed at one end on the low temperature furnace side of a reaction vessel disposed in a heating furnace consisting of a low temperature furnace and a high temperature furnace, and a compound semiconductor is placed on the high temperature furnace side of the reaction vessel. A method for manufacturing a compound semiconductor, in which a boat containing a raw material melt and a seed crystal is accommodated, and the temperature of the compound semiconductor raw material melt is cooled from the seed crystal side to form a single crystal,
The seed crystal is placed at one end of the boat opposite to the first volatile component, and the temperature distribution is changed by manipulating the temperature of the high temperature furnace without moving the heating furnace relative to the boat. By doing so, without cooling the compound semiconductor raw material melt,
A compound semiconductor unit characterized in that a cooling body in which a refrigerant is circulated gradually from one end of the reaction vessel on the side where the boat is placed toward the first volatile component side is inserted above the reaction vessel. Method of manufacturing crystals.
JP13577184A 1984-06-29 1984-06-29 Manufacture of compound semiconductor single crystal Granted JPS6114199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13577184A JPS6114199A (en) 1984-06-29 1984-06-29 Manufacture of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13577184A JPS6114199A (en) 1984-06-29 1984-06-29 Manufacture of compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPS6114199A JPS6114199A (en) 1986-01-22
JPH0323518B2 true JPH0323518B2 (en) 1991-03-29

Family

ID=15159472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13577184A Granted JPS6114199A (en) 1984-06-29 1984-06-29 Manufacture of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPS6114199A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5186911A (en) * 1988-07-05 1993-02-16 Korea Advanced Institute Of Science And Technology Single crystal growing apparatus and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115768A (en) * 1973-03-08 1974-11-05
JPS5632272A (en) * 1979-08-22 1981-04-01 Nat Marine Plastic Transporting bag

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49115768A (en) * 1973-03-08 1974-11-05
JPS5632272A (en) * 1979-08-22 1981-04-01 Nat Marine Plastic Transporting bag

Also Published As

Publication number Publication date
JPS6114199A (en) 1986-01-22

Similar Documents

Publication Publication Date Title
US20120282133A1 (en) Crystal growth apparatus and method
US4904336A (en) Method of manufacturing a single crystal of compound semiconductor and apparatus for the same
JPH0323518B2 (en)
KR101983489B1 (en) Manufacturing method of SiC single crystal
JPH0343236B2 (en)
JPH1087392A (en) Production of compound semiconductor single crystal
JPH0321513B2 (en)
JP3018738B2 (en) Single crystal manufacturing equipment
JP3018429B2 (en) Method and apparatus for producing single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
WO2011043777A1 (en) Crystal growth apparatus and method
JPH0234592A (en) Growing method for compound semiconductor single crystal
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JP2697327B2 (en) Compound semiconductor single crystal manufacturing equipment
JP3515858B2 (en) Boat for liquid phase epitaxial growth
JPH0475880B2 (en)
JPH0251875B2 (en)
JPS63147893A (en) Liquid phase epitaxy
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPH11292680A (en) Production of compound semiconductor single crystal and ampule for producing single crystal
JPS62212289A (en) Method for producing single crystal and vessel therefor
JPH01176291A (en) Apparatus for liquid epitaxial growth
JPH0645517B2 (en) Method for producing compound semiconductor single crystal
JPS5983994A (en) Preparation of single crystal
JPS63112487A (en) Crystal growth method for compound semiconductor and apparatus