JPH032346A - Sintered hard alloy - Google Patents

Sintered hard alloy

Info

Publication number
JPH032346A
JPH032346A JP13548989A JP13548989A JPH032346A JP H032346 A JPH032346 A JP H032346A JP 13548989 A JP13548989 A JP 13548989A JP 13548989 A JP13548989 A JP 13548989A JP H032346 A JPH032346 A JP H032346A
Authority
JP
Japan
Prior art keywords
hard
phase
sintered
nitride
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13548989A
Other languages
Japanese (ja)
Other versions
JP2859891B2 (en
Inventor
Hitoshi Horie
堀江 仁
Yusuke Iyori
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP13548989A priority Critical patent/JP2859891B2/en
Publication of JPH032346A publication Critical patent/JPH032346A/en
Application granted granted Critical
Publication of JP2859891B2 publication Critical patent/JP2859891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered hard alloy excellent in wear resistance in a severe environment by incorporating specific small amounts of hard nitrides of metals, such as Nb, Mo, Ta, and W, to a sintered hard alloy prepared by sintering WC grains as hard phase by using iron group metals as binding phase. CONSTITUTION:One or >=2 kinds among hard metal nitrides, such as NbN, Mo2N, TaN, and WN, are added by 0.1-2.0wt.% to WC as a hard phase, and then, pulverized powders of iron group metals, such as Fe, Co, and Ni, are mixed as binding phase-forming materials at the time of sintering by 6-20wt.% to 80-94wt.% of the above hard phase, and the resulting mixture is mixed sufficiently and subjected to vacuum sintering at a temp., e.g. as high as 1350-1400 deg.C. By this method, the sintered hard alloy in which the average grain size of carbonitride of hard nitride and WC in the sintered alloy is regulated to <=1mum and which is excellent in wear resistance under the environment liable to cause oxidation, corrosion, etc., at high temp., such as hot rolling roll for wire rod, guide roller, and pinch roll, can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

tSS上の利用分野] 本発明は超硬合金の改良に関する。詳細には、耐摩n性
を向上した超硬合金の応用範囲の拡大に関する。 〔従来の技術] WC硬質相と結合相がCOとからなる超硬合金はそのす
ぐれた耐摩耗性と耐衝撃性から様々な用途に実用化され
ている。特に、WC−Ta(Nb)C−Co系は、粒抑
制効果がよく、広く使用されている。 また、P系層硬合金にはTiNを微量添加した合金が広
く用いられ、窒素の添加により、B−1型固溶体相の微
細化が計れ、より靭性が向上している。従来、耐摩耗用
途にはTaC,NbC等の元素は添加せず組成上WC−
Co系の2元系またはCOの一部をNi、Cr等で置換
した系列の合金が使用されてきた。 しかし、耐摩耗用合金は、耐酸化性、耐腐食性の観点よ
り結合相の改善が主であり、窒化物等硬質相からの改善
は、はとんどされていなかった。 〔発明が解決しようとする問題点〕 上記の様に従来の耐摩用超硬合金は4〜8ミクロンの粗
粒WCをCo、Ni、Crで結合したものであり、他の
炭窒化物、窒化物を添加した系列はほとんどなかった。 しかし、最近の耐摩、耐衝撃用の使用される条件はより
高能率化のため、負荷が大きくなり、もともと結合総量
の大きな耐摩耗用合金には、■耐摩耗性が不十分■結合
相からのWC粒子の脱落等による表面の荒れ■繰り返し
加熱冷却による熱亀裂の発生と短寿命化、等問題点も指
摘されている。しかも、耐摩耗用途には高結合相量は必
須であり、結合相の合金化により結合相中の耐食性、耐
酸化性、耐熱性等の合金の特徴を引出していた。すなわ
ち固溶強化合金が主であり、Cr/Ni、Co/Ni/
Cr等結合相中の組成多ご特徴があった。 E問題点を解決する手段〕 しかし1本発明者らはP系超硬合金で実施されている窒
化物を添加した場合の結合相の変化に着目し、結合相自
体の合金化がより大きく、特に結合相中への固溶が増加
し、固溶強化が計られると同時に、この系列合金を単純
系において確認したところ窒化物自身がその一部は固溶
するが多くは分散していることをみいだした。そのため
、同様の効果がW C−Co / N i / Cr系
+添加物の固溶強化合金に応用出来るか、種々の窒化物
について検討した結果、Niの効果により、COの場合
より固溶量が増え、添加元素自体の固溶強化が計れるこ
とをみいだした。 [作用〕 以上のごとく、本発明は窒化ニオブ、窒化モリブデン、
窒化タンタル及び窒化タングステンの一種または2種以
上0.1〜2.0% 残り、炭化タングステンからなる
硬質相80〜94%、鉄族金属からなる結合相6〜20
%(以上重量パーセント)からなる超硬合金において、
最季冬焼結体に於ける上記窒化物及び/または複炭窒化
物の平均粒度が1ミクロン以下よりなることを特徴とす
る超硬合金である。さらに軽い元素はど結合相中への固
溶強化の率がおおきく、重元素はど分散強化の率が高い
ことも本発明合金の特徴である。バナジウム、クロム等
は粒抑制材としても知られ、窒化物を使用しても焼結中
に大半が分解し結合相中にとけこみ固溶強化を計れるが
、分散強化を行うには多大な添加量を要し、その弊害の
ため強度が劣化するため本発明の範囲より除いた。窒化
ニオブ、窒化モリブデン、窒化タンタル、窒化タングス
テンも同様にその一部が分解して結合相中にとけ込むが
、その固溶限は小さい。しかし、周期律表の4a族の窒
化物は他の元素を固溶させる効果は大きいが、それ自体
はほとんど固溶せず、5a、6a族炭窒化物に比較し強
度の低ドを招くため、耐摩耗用途には総合的にマイナス
となるため、本発明合金より除いた。 本発明による超硬合金の組成は以下の理由によりその範
囲が限定される。 l)窒化物添加量は、0.1%未満では分散量が不充分
なため効果が少なく、また2%を越えると粒子の凝集の
ため1粒子が粗くなり著しく靭性をI!JI害するため
に、0.1〜2%とした。 2)鉄族金属の添加量は、6%未満では充分な靭性がf
lられす、20%をこえると耐摩耗性を悪くするため、
6〜20%とした。 3)窒化物相の粒度は、焼結体での粒度が1ミクロンを
こえると、WC相に比較し脆い相なため、強度が劣化す
るため、1ミクロン以下とした。 以下、本発明に関し実施例に基すき具体的に説明する。
Field of Application on tSS] The present invention relates to improvement of cemented carbide. Specifically, the present invention relates to expanding the range of applications of cemented carbide with improved wear resistance. [Prior Art] Cemented carbide comprising a WC hard phase and a binder phase of CO has been put to practical use in a variety of applications due to its excellent wear resistance and impact resistance. In particular, the WC-Ta(Nb)C-Co system has a good grain suppression effect and is widely used. In addition, alloys to which a small amount of TiN is added are widely used as P-based layered hard alloys, and the addition of nitrogen makes the B-1 type solid solution phase finer and improves toughness. Conventionally, elements such as TaC and NbC were not added for wear-resistant applications, and the composition was WC-
Co-based binary systems or alloys in which a portion of CO is replaced with Ni, Cr, etc. have been used. However, in wear-resistant alloys, improvements have mainly been made in the binder phase from the viewpoint of oxidation resistance and corrosion resistance, and improvements in hard phases such as nitrides have not been made much. [Problems to be solved by the invention] As mentioned above, conventional cemented carbides for wear resistance are made by bonding coarse grained WC of 4 to 8 microns with Co, Ni, and Cr, and other carbonitrides and nitrides. There were almost no series in which substances were added. However, in recent years, the conditions used for wear and impact resistance have become higher efficiency, so the load has increased, and wear-resistant alloys that originally have a large total bond amount have insufficient wear resistance. Problems have also been pointed out, such as surface roughness due to shedding of WC particles, etc., occurrence of thermal cracks due to repeated heating and cooling, and shortened lifespan. Moreover, a high amount of binder phase is essential for wear-resistant applications, and alloying the binder phase brings out the characteristics of the alloy such as corrosion resistance, oxidation resistance, and heat resistance in the binder phase. That is, solid solution strengthened alloys are the main ones, Cr/Ni, Co/Ni/
There were various compositional characteristics in the bonded phase, such as Cr. [Means for Solving Problem E] However, the present inventors focused on the change in the binder phase when nitride is added, which is practiced in P-based cemented carbide, and found that the alloying of the binder phase itself is greater, In particular, the solid solution in the binder phase increases and solid solution strengthening is achieved.At the same time, when this series alloy was confirmed in a simple system, it was found that some of the nitrides themselves were dissolved in solid solution, but most of them were dispersed. I found out. Therefore, as a result of examining various nitrides to see if the same effect could be applied to solid solution strengthened alloys of W C-Co/Ni/Cr system + additives, we found that due to the effect of Ni, the amount of solid solution is higher than in the case of CO. It was found that solid solution strengthening of the added element itself can be measured. [Function] As described above, the present invention uses niobium nitride, molybdenum nitride,
0.1 to 2.0% of one or more of tantalum nitride and tungsten nitride, the remainder being 80 to 94% of a hard phase made of tungsten carbide, and 6 to 20% of a binder phase made of an iron group metal.
In cemented carbide consisting of % (or more weight percent),
The present invention is a cemented carbide characterized in that the average grain size of the nitride and/or double carbonitride in the sintered body is 1 micron or less. Another feature of the alloy of the present invention is that light elements have a high rate of solid solution strengthening in the binder phase, and heavy elements have a high rate of dispersion strengthening. Vanadium, chromium, etc. are also known as grain suppressants, and even if nitrides are used, most of them decompose during sintering and dissolve into the binder phase, making it possible to achieve solid solution strengthening, but a large amount of addition is required to achieve dispersion strengthening. It is excluded from the scope of the present invention because it requires a large amount of water and its strength deteriorates. Similarly, some of niobium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride decompose and dissolve into the binder phase, but their solid solubility limit is small. However, although nitrides in group 4a of the periodic table have a great effect on solid solution of other elements, they hardly dissolve in solid solution themselves, resulting in lower strength compared to group 5a and 6a carbonitrides. , was excluded from the alloys of the present invention because it has a negative overall effect on wear-resistant applications. The composition of the cemented carbide according to the present invention is limited in scope for the following reasons. l) If the amount of nitride added is less than 0.1%, the dispersion amount will be insufficient and the effect will be small, and if it exceeds 2%, each particle will become coarse due to agglomeration of the particles, significantly reducing the toughness. It was set at 0.1 to 2% to reduce JI. 2) If the amount of iron group metal added is less than 6%, sufficient toughness will not be achieved.
If it exceeds 20%, the wear resistance will deteriorate.
It was set at 6 to 20%. 3) The grain size of the nitride phase was set to be 1 micron or less, since if the grain size in the sintered body exceeds 1 micron, it is a brittle phase compared to the WC phase and the strength deteriorates. Hereinafter, the present invention will be specifically explained based on examples.

【実施例 1】 市販のWC粉末(平均粒度6μm)Mo2N粉末(同1
μm)、WN粉末(同1μrn) 、 N b N粉末
(同1μm)、TaN粉末(同1μm)、Co粉末(同
1.3p m) 、N i粉末(同1.2μm)、Cr
粉末(同2μm)を用い、第1表に示す組成で混合成型
し、 1350℃〜1400℃の温度で1時間真空焼結
を行なった。 得られた合金の硬さ、抗折力、高温クリープ及び耐熱衝
撃性を試験し、第2表に示す結果を得た。 高温クリープ試験はJIS試片(4x8x24+++m
)を不活性ガス雰囲気中900℃で3点曲げクリープ試
験(スパン距離20mm)を負荷応力50kg/g+2
で行ない破断時間を調べた。耐熱衝撃性は試料を不活性
ガス雰囲気の炉中(900℃)に入れて10分間保持し
た後、約20℃の水中に焼入れし熱クラツクが発生する
までの回数を調べた。 第2表から明らかなように、本発明合金は室温での性能
は比較例と同等であるが、高温での特性に優れた性能を
示している。これらは結合相の分散固溶強化に起因する
ものである。
[Example 1] Commercially available WC powder (average particle size 6 μm) Mo2N powder (average particle size 1
μm), WN powder (1μrn), NbN powder (1μm), TaN powder (1μm), Co powder (1.3pm), Ni powder (1.2μm), Cr
Powder (2 μm) was mixed and molded with the composition shown in Table 1, and vacuum sintered at a temperature of 1350° C. to 1400° C. for 1 hour. The obtained alloy was tested for hardness, transverse rupture strength, high temperature creep, and thermal shock resistance, and the results shown in Table 2 were obtained. The high temperature creep test was conducted using JIS specimens (4x8x24+++m
) was subjected to a three-point bending creep test (span distance 20 mm) at 900°C in an inert gas atmosphere with a load stress of 50 kg/g + 2.
The rupture time was investigated. Thermal shock resistance was determined by placing the sample in a furnace with an inert gas atmosphere (900°C) and holding it there for 10 minutes, then quenching it in water at about 20°C, and checking the number of times until thermal cracks occurred. As is clear from Table 2, the performance of the alloy of the present invention at room temperature is equivalent to that of the comparative example, but it exhibits excellent performance at high temperatures. These are caused by the dispersion solid solution strengthening of the binder phase.

【実施例21 実施例1の合金を用いて直径160wn、厚さ70mm
の圧延用ロールを作った。このロールを用いて鋼線を熱
間圧延した結果を第2表に併記する。第2表より、従来
からのCo−Ni−Crを結合相とした超硬合金ロール
では表面に生ずる肌荒れのためにせいぜい1200 t
on程度の圧延しか出来なかったところで2000 t
on〜3000 tonの圧延が可能となり、また肌荒
れも少なく良好な面が得られたCo−Ni−Crを結合
相としたロールでは亀裂の開きが大きく、かつ硬質層の
脱落が多くamされるのに対し1本発明のロールでは亀
裂の開きは小さく、また脱落も少ない。 【実施例3】 実施例I Aで得た混合粉末から、直径45mm、厚さ
25mのガイドローラーを作り、これを鋼線熱間圧延の
際のガイドに用いたところ従来のCo−Ni−Crを結
合相とした超硬合金のガイドローラーでは肌荒れのため
2500 ton程度で寿命となっていた箇所で480
0tonまでの使用に耐えることが出来た。
[Example 21 Using the alloy of Example 1, the diameter was 160wn and the thickness was 70mm.
We made rolling rolls. Table 2 also shows the results of hot rolling a steel wire using this roll. From Table 2, it can be seen that the conventional cemented carbide roll with Co-Ni-Cr as a binder phase has a capacity of 1200 t at most due to the roughness that occurs on the surface.
2000 t when only about 2000 t of rolling was possible.
Rolls using Co-Ni-Cr as a binder phase are capable of rolling up to 3,000 tons and provide a good surface with little surface roughness. On the other hand, in the roll of the present invention, the opening of cracks is small and the number of dropouts is small. [Example 3] A guide roller with a diameter of 45 mm and a thickness of 25 m was made from the mixed powder obtained in Example I A, and this was used as a guide during hot rolling of steel wire. The guide roller made of cemented carbide with a binder phase had a rough surface and had a lifespan of 480 tons at a point where it had a lifespan of about 2,500 tons.
It was able to withstand use up to 0 tons.

【発明の効果】【Effect of the invention】

上述の如く、本発明超硬合金はロール等の線材の熱間圧
延ロール、ガイドローラー、ピンチロールなど、熱間ま
たは温間で過度の負荷がかかり。 かつ酸化、腐食等の環境が起こしやすい状態ですぐれた
性能を発揮する超硬合金を提供するものである。
As mentioned above, the cemented carbide of the present invention is subjected to an excessive load in hot or warm conditions, such as hot rolling rolls of wire rods, guide rollers, pinch rolls, etc. The present invention also provides a cemented carbide that exhibits excellent performance in environments prone to oxidation, corrosion, etc.

Claims (1)

【特許請求の範囲】[Claims] 窒化ニオブ、窒化モリブデン、窒化タンタル及び窒化タ
ングステンの一種または2種以上0.1〜2.0%残り
、炭化タングステンからなる硬質相80〜94%、鉄族
金属からなる結合相6〜20%(以上重量パーセント)
からなる超硬合金において、最終焼結体に於ける上記窒
化物及び/または複炭窒化物の平均粒度が1ミクロン以
下よりなることを特徴とする超硬合金。
0.1 to 2.0% of one or more of niobium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride remain, 80 to 94% of the hard phase consisting of tungsten carbide, and 6 to 20% of the binder phase consisting of iron group metals ( weight percentage)
A cemented carbide characterized in that the average grain size of the nitride and/or double carbonitride in the final sintered body is 1 micron or less.
JP13548989A 1989-05-30 1989-05-30 Cemented carbide Expired - Fee Related JP2859891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13548989A JP2859891B2 (en) 1989-05-30 1989-05-30 Cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13548989A JP2859891B2 (en) 1989-05-30 1989-05-30 Cemented carbide

Publications (2)

Publication Number Publication Date
JPH032346A true JPH032346A (en) 1991-01-08
JP2859891B2 JP2859891B2 (en) 1999-02-24

Family

ID=15152928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13548989A Expired - Fee Related JP2859891B2 (en) 1989-05-30 1989-05-30 Cemented carbide

Country Status (1)

Country Link
JP (1) JP2859891B2 (en)

Also Published As

Publication number Publication date
JP2859891B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US4727740A (en) Thermal and wear resistant tough nickel based alloy guide rolls
US4466829A (en) Tungsten carbide-base hard alloy for hot-working apparatus members
US4353742A (en) Cobalt-containing alloys
KR100436327B1 (en) Sintered hard alloy
US4832912A (en) Thermal and wear resistant tough alloy
JP2660455B2 (en) Heat resistant hard sintered alloy
US6652674B1 (en) Oxidation resistant molybdenum
US3917463A (en) Nickel-base heat resistant and wear resistant alloy
US20230151461A1 (en) Cobalt-free tungsten carbide-based hard-metal material
US3677722A (en) Cemented carbide composition and method of preparation
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
US4191562A (en) Wear-resistant nickel-base alloy
JPS6137946A (en) Composite material and its production
JP2611177B2 (en) Cemented carbide with high hardness and excellent oxidation resistance
JPS61194147A (en) Sintered hard alloy
JPH04358046A (en) High speed steel base sintered alloy
JPH02179843A (en) Tool material for hot tube making
JPH032346A (en) Sintered hard alloy
JPS61183439A (en) Wear resistant sintered hard alloy having superior oxidation resistance
JP7205257B2 (en) Mold for plastic working made of cemented carbide and its manufacturing method
JPS60125348A (en) Tool material
JPS5831061A (en) Superhard tungsten carbide alloy with high strength and high oxidation resistance
JPS609849A (en) Sintered hard alloy with high strength and oxidation resistance
JPS61183438A (en) Wear resistant sintered hard alloy having superior oxidation resistance
JPH02277746A (en) Wear-resistant low thermal expansion sintered alloy and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees