JP2859891B2 - Cemented carbide - Google Patents

Cemented carbide

Info

Publication number
JP2859891B2
JP2859891B2 JP13548989A JP13548989A JP2859891B2 JP 2859891 B2 JP2859891 B2 JP 2859891B2 JP 13548989 A JP13548989 A JP 13548989A JP 13548989 A JP13548989 A JP 13548989A JP 2859891 B2 JP2859891 B2 JP 2859891B2
Authority
JP
Japan
Prior art keywords
nitride
cemented carbide
binder phase
solid solution
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13548989A
Other languages
Japanese (ja)
Other versions
JPH032346A (en
Inventor
仁 堀江
裕介 井寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Tools Ltd
Original Assignee
Hitachi Tools Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tools Ltd filed Critical Hitachi Tools Ltd
Priority to JP13548989A priority Critical patent/JP2859891B2/en
Publication of JPH032346A publication Critical patent/JPH032346A/en
Application granted granted Critical
Publication of JP2859891B2 publication Critical patent/JP2859891B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[産業上の利用分野] 本発明は超硬合金の改良に関する。詳細には、耐摩耗
性を向上した超硬合金の応用範囲の拡大に関する。 [従来の技術] WC硬質相と結合相がCoとからなる超硬合金はそのすぐ
れた耐摩耗性と耐衝撃性から様々な用途に実用化されて
いる。特に、WC−Ta(Nb)C−Co系は、粒抑制効果がよ
く、広く使用されている。 また、P系超硬合金にはTiNを微量添加した合金が広
く用いられ、窒素の添加により、B−1型固溶体相の微
細化が計れ、より靭性が向上している。従来、耐摩耗用
途にはTaC,NbC等の元素は添加せず組成上WC−Co系の2
元系またはCoの一部をNi、Cr等で置換した系列の合金が
使用されてきた。 しかし、耐摩耗用合金は、耐酸化性、耐腐食性の観点
より結合相の改善が主であり、窒化物等硬質相からの改
善は、ほとんどされていなかった。 [発明が解決しようとする問題点〕 上記の様に従来の耐摩用超硬合金は4〜8ミクロンの
粗粒WCをCo、Ni、Crで結合したものであり、他の炭窒化
物、窒化物を添加した系列はほとんどなかった。しか
し、最近の耐摩、耐衝撃用の使用される条件はより高能
率化のため、負荷が大きくなり、もともと結合総量の大
きな耐摩耗用合金には、耐摩耗性が不十分結合相か
らのWC粒子の脱落等による表面の荒れ繰り返し加熱冷
却による熱亀裂の発生と短寿命化、等問題点も指摘され
ている。しかも、耐摩耗用途には高結合相量は必須であ
り、結合相の合金化により結合相中の耐食性、耐酸化
性、耐熱性等の合金の特徴を引出していた。すなわち固
溶強化合金が主であり、Cr/Ni、Co/Ni/Cr等結合相中の
組成に特徴があった。 [問題点を解決する手段〕 しかし、本発明者らはP系超硬合金で実施されている
窒化物を添加した場合の結合相の変化に着目し、結合相
自体の合金化がより大きく、特に結合相中への固溶が増
加し、固溶強化が計られると同時に、この系列合金を単
純系において確認したところ窒化物自身がその一部は固
溶するが多くは分離していることをみいだした。そのた
め、同様の効果がWC−Co/Ni/Cr系+添加物の固溶強化合
金に応用出来るか、種々の窒化物について検討した結
果、Niの効果により、Coの場合より固溶量が増え、添加
元素自体の固溶強化が計れることをみいだした。 [作用〕 以上のごとく、本発明は窒化ニオブ、窒化モリブデ
ン、窒化タンタル及び窒化タングステンの一種または2
種以上0.1〜2.0% 残り、炭化タングステンからなる硬
質相80〜94%、鉄族金属からなる結合相6〜20%(以上
重量パーセント)からなる超硬合金において、最終焼結
体に於ける上記窒化物及び/または複炭窒化物の平均粒
度が1ミクロン以下よりなることを特徴とする超硬合金
である。さらに軽い元素ほど結合相中への固溶強化の率
がおおきく、重元素ほど分散強化の率が高いことも本発
明合金の特徴である。バナジウム、クロム等は粒抑制材
としても知られ、窒化物を使用しても焼結中に大半が分
解し結合相中にとけこみ固溶強化を計れるが、分散強化
を行うには多大な添加量を要し、その弊害のため強度が
劣化するため本発明の範囲より除いた。窒化ニオブ、窒
化モリブデン、窒化タンタル、窒化タングステンも同様
にその一部が分解して結合相中にとけ込むが、その固溶
限は小さい。しかし、周期律表の4a族の窒化物は他の元
素を固溶させる効果は大きいが、それ自体はほとんど固
溶せず、5a、6a族炭窒化物に比較し強度の低下を招くた
め、耐摩耗用途には総合的にマイナスとなるため、本発
明合金より除いた。 本発明による超硬合金の組成は以下の理由によりその
範囲が限定される。 1)窒化物添加量は、0.1%未満では分散量が不充分な
ため効果が少なく、また2%を越えると粒子の凝集のた
め1粒子が粗くなり著しく靭性を阻害するために、0.1
〜2%とした。 2)鉄族金属の添加量は、6%未満では充分な靭性が得
られず、20%をこえると耐摩耗性を悪くするため、6〜
20%とした。 3)窒化物相の粒度は、焼結体での粒度が1ミクロンを
こえると、WC相に比較し脆い相なため、強度が劣化する
ため、1ミクロン以下とした。 以下、本発明に関し実施例に基ずき具体的に説明す
る。
[Industrial application field] The present invention relates to improvement of cemented carbide. More specifically, the present invention relates to expanding the application range of cemented carbide with improved wear resistance. [Prior Art] A cemented carbide comprising a WC hard phase and a binder phase of Co has been put to practical use in various applications because of its excellent wear resistance and impact resistance. In particular, the WC-Ta (Nb) C-Co system has a good effect of suppressing grains and is widely used. An alloy containing a small amount of TiN is widely used as a P-type cemented carbide. By adding nitrogen, the B-1 type solid solution phase can be refined, and the toughness is further improved. Conventionally, elements such as TaC and NbC have not been added for wear resistance and the composition is WC-Co based.
Alloys of the original system or a series in which a part of Co is replaced with Ni, Cr, etc. have been used. However, the wear-resistant alloy mainly improves the binder phase from the viewpoint of oxidation resistance and corrosion resistance, and hardly improves the hard phase such as nitride. [Problems to be Solved by the Invention] As described above, the conventional hard metal for wear resistance is obtained by combining coarse-grained WC of 4 to 8 microns with Co, Ni, and Cr. There were few series in which the substance was added. However, in recent years, the conditions used for wear resistance and impact resistance have been increased due to higher efficiency, and the load has been increased. Problems have been pointed out, such as the occurrence of thermal cracks due to repeated heating and cooling of the surface and shortening of the service life due to falling off of particles. In addition, a high binder phase content is essential for wear resistance, and alloying of the binder phase has brought out the characteristics of the alloy such as corrosion resistance, oxidation resistance, and heat resistance in the binder phase. That is, the solid solution strengthened alloy was mainly used, and the composition in the combined phase such as Cr / Ni and Co / Ni / Cr was characteristic. [Means for Solving the Problems] However, the present inventors focused on the change in the binder phase when a nitride, which is used for a P-based cemented carbide, was added, and the alloying of the binder phase itself was larger, In particular, the solid solution in the binder phase increased, and solid solution strengthening was measured.At the same time, when this series of alloys was confirmed in a simple system, the nitride itself was partially dissolved but was largely separated. Was found. Therefore, whether the same effect can be applied to solid solution strengthened alloys of WC-Co / Ni / Cr system and additives, we examined various nitrides and found that the effect of Ni increased the amount of solid solution compared to Co. It was found that the solid solution strengthening of the added element itself can be measured. [Operation] As described above, the present invention provides one or more of niobium nitride, molybdenum nitride, tantalum nitride and tungsten nitride.
0.1 to 2.0% or more of the cemented carbide consisting of 80 to 94% of the hard phase composed of tungsten carbide and 6 to 20% (more than the weight percentage) of the binder phase composed of iron group metal. The cemented carbide is characterized in that the average grain size of the nitride and / or double carbonitride is less than 1 micron. It is also a feature of the alloy of the present invention that a lighter element has a higher solid solution strengthening rate in the binder phase, and a heavy element has a higher dispersion strengthening rate. Vanadium, chromium, etc. are also known as grain suppressants, and even when nitrides are used, most of them decompose during sintering and merge into the binder phase to measure solid solution strengthening, but a large amount of dispersion strengthening is required. Since the amount required and the strength deteriorated due to the adverse effect, it was excluded from the scope of the present invention. Similarly, niobium nitride, molybdenum nitride, tantalum nitride, and tungsten nitride partially decompose and melt into the binder phase, but their solid solubility is small. However, although the nitride of group 4a of the periodic table has a large effect of dissolving other elements in a solid solution, it hardly forms a solid solution itself and causes a decrease in strength as compared with the group 5a and 6a carbonitrides. Since it is negative for wear resistance, it was excluded from the alloy of the present invention. The range of the composition of the cemented carbide according to the present invention is limited for the following reasons. 1) When the amount of added nitride is less than 0.1%, the effect is small because the amount of dispersion is insufficient, and when it exceeds 2%, one particle becomes coarse due to agglomeration of particles and remarkably inhibits toughness.
22%. 2) If the addition amount of the iron group metal is less than 6%, sufficient toughness cannot be obtained, and if it exceeds 20%, the wear resistance deteriorates.
20%. 3) When the particle size of the nitride phase exceeds 1 micron in the sintered body, it is a brittle phase as compared with the WC phase, and the strength is deteriorated. Hereinafter, the present invention will be specifically described based on examples.

【実施例 1】 市販のWC粉末(平均粒度6μm)Mo2N粉末(同1μ
m)、WN粉末(同1μm)、NbN粉末(同1μm)、TaN
粉末(同1μm)、Co粉末(同1.3μm)、Ni粉末(同
1.2μm)、Cr粉末(同2μm)を用い、第1表に示す
組成で混合成型し、1350℃〜1400℃の温度で1時間真空
焼結を行なった。 得られた合金の硬さ、坑折力、高温クリープ及び耐熱
衝撃性を試験し、第2表に示す結果を得た。 高温クリープ試験はJIS試片(4x8x24mm)を不活性ガ
ス雰囲気中900℃で3点曲げクリープ試験(スパン距離2
0mm)を負荷応力50kg/mm2で行ない破断時間を調べた。
耐熱衝撃性は試料を不活性ガス雰囲気の炉中(900℃)
に入れて10分間保持した後、約20℃の水中に焼入れし熱
クラックが発生するまでの回数を調べた。 第2表から明らかなように、本発明合金は室温での性
能は比較例と同等であるが、高温での特性に優れた性能
を示している。これらは結合相の分散固溶強化に起因す
るものである。
Example 1 Commercially available WC powder (average particle size: 6 μm) Mo 2 N powder (1 μm)
m), WN powder (1 μm), NbN powder (1 μm), TaN
Powder (1 μm), Co powder (1.3 μm), Ni powder (1 μm)
1.2 μm) and a Cr powder (2 μm) were mixed and molded with the composition shown in Table 1 and vacuum-sintered at a temperature of 1350 ° C. to 1400 ° C. for 1 hour. The resulting alloy was tested for hardness, bending force, high temperature creep and thermal shock resistance, and the results shown in Table 2 were obtained. The high temperature creep test is a three-point bending creep test of a JIS specimen (4x8x24mm) at 900 ° C in an inert gas atmosphere (span distance 2
0 mm) at a load stress of 50 kg / mm 2 and the fracture time was examined.
For thermal shock resistance, place the sample in a furnace in an inert gas atmosphere (900 ° C)
, And quenched in water at about 20 ° C., and examined the number of times until a thermal crack was generated. As is clear from Table 2, the alloy of the present invention has the same performance at room temperature as the comparative example, but shows excellent performance at high temperatures. These are due to the dispersion-solid solution strengthening of the binder phase.

【実施例 2】 実施例1の合金を用いて直径160mm、厚さ70mmの圧延
用ロールを作った。このロールを用いて鋼線を熱間圧延
した結果を第2表に併記する。第2表より、従来からの
Co−Ni−Crを結合相とした超硬合金ロールでは表面に生
ずる肌荒れのためにせいぜい1200ton程度の圧延しか出
来なかったところで200ton〜3000tonの圧延が可能とな
り、また肌荒れも少なく良好な面が得られたCo−Ni−Cr
を結合相としたロールでは亀裂の開きが大きく、かつ硬
質層の脱落が多く観察されるのに対し、本発明のロール
では亀裂の開きは小さく、また脱落も少ない。
Example 2 A roll for rolling having a diameter of 160 mm and a thickness of 70 mm was produced using the alloy of Example 1. The results of hot rolling a steel wire using this roll are also shown in Table 2. From Table 2, the conventional
In the case of cemented carbide rolls with Co-Ni-Cr as the binder phase, rolling of only about 1200 tons was possible at most because of the surface roughness that occurred on the surface, and rolling of 200 to 3000 tons was possible. Co-Ni-Cr
On the other hand, a roll having a binder phase of has a large crack opening and many hard layer drops are observed, whereas the roll of the present invention has a small crack opening and a small drop.

【実施例 3】 実施例1 Aで得た混合粉末から、直径45mm、厚さ25
mmのガイドローラーを作り、これを鋼線熱間圧延の際の
ガイドに用いたところ従来のCo−Ni−Crを結合相とした
超硬合金のガイドローラーでは肌荒れのため2500ton程
度で寿命となっていた箇所で4800tonまでの使用に耐え
ることが出来た。
Example 3 From the mixed powder obtained in Example 1 A, the diameter was 45 mm and the thickness was 25.
mm guide roller was used as a guide during hot rolling of steel wire.When using a conventional cemented carbide guide roller with Co-Ni-Cr as a binder phase, the service life was about 2500 tons due to rough surface. It was able to withstand the use of up to 4800 ton in the place where it was.

【発明の効果】【The invention's effect】

上述の如く、本発明超硬合金はロール等の線材の熱間
圧延ロール、ガイドローラー、ピンチロールなど、熱間
または温間で過度の負荷がかかり、かつ酸化、腐食等の
環境が起こしやすい状態ですぐれた性能を発揮する超硬
合金を提供するものである。
As described above, the cemented carbide according to the present invention is in a state where an excessive load is applied in a hot or warm state such as a hot rolling roll of a wire such as a roll, a guide roller, and a pinch roll, and an environment such as oxidation and corrosion is easily caused. The purpose of the present invention is to provide a cemented carbide exhibiting excellent performance.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】窒化ニオブ、窒化モリブデン、窒化タンタ
ル及び窒化タングステンの一種または2種以上0.1〜2.0
% 残り、炭化タングステンからなる硬質相80〜94%、
鉄族金属からなる結合相6〜20%(以上重量パーセン
ト)からなる超硬合金において、最終焼結体に於ける上
記窒化物及び/または複炭窒化物の平均粒度が1ミクロ
ン以下よりなることを特徴とする超硬合金。
1. One or two or more of niobium nitride, molybdenum nitride, tantalum nitride and tungsten nitride.
80% to 94% of the hard phase consisting of tungsten carbide
In a cemented carbide comprising 6 to 20% (or more by weight) of a binder phase composed of an iron group metal, the average grain size of the nitride and / or double carbonitride in the final sintered body is 1 micron or less. A hard metal characterized by the following.
JP13548989A 1989-05-30 1989-05-30 Cemented carbide Expired - Fee Related JP2859891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13548989A JP2859891B2 (en) 1989-05-30 1989-05-30 Cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13548989A JP2859891B2 (en) 1989-05-30 1989-05-30 Cemented carbide

Publications (2)

Publication Number Publication Date
JPH032346A JPH032346A (en) 1991-01-08
JP2859891B2 true JP2859891B2 (en) 1999-02-24

Family

ID=15152928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13548989A Expired - Fee Related JP2859891B2 (en) 1989-05-30 1989-05-30 Cemented carbide

Country Status (1)

Country Link
JP (1) JP2859891B2 (en)

Also Published As

Publication number Publication date
JPH032346A (en) 1991-01-08

Similar Documents

Publication Publication Date Title
US4727740A (en) Thermal and wear resistant tough nickel based alloy guide rolls
TWI280284B (en) Hot-working tool steel
EP0062311B1 (en) Tungsten carbide-base hard alloy for hot-working apparatus members
US4832912A (en) Thermal and wear resistant tough alloy
TW524860B (en) Steel material for hot work tools
JP2660455B2 (en) Heat resistant hard sintered alloy
KR20000029801A (en) Hard sintered alloy
US3917463A (en) Nickel-base heat resistant and wear resistant alloy
JP2001514703A (en) Steel manufactured by integrated powder metallurgy and its heat treatment tool and use of the steel for the tool
JP2837798B2 (en) Cobalt-based alloy with excellent corrosion resistance, wear resistance and high-temperature strength
JP2859891B2 (en) Cemented carbide
JP2611177B2 (en) Cemented carbide with high hardness and excellent oxidation resistance
JPH07197180A (en) High strength and high hardness sintered hard alloy excellent in corrosion resistance
JP2019116688A (en) Powder high speed tool steel
JP7205257B2 (en) Mold for plastic working made of cemented carbide and its manufacturing method
JP6537342B2 (en) High-speed nitrided powder tool steel with excellent hardness, toughness and wear resistance
JPS6086237A (en) Cu-alloy for slide member
Huang et al. NbC-based cermets: influence of secondary carbide addition and metal binder
JPS6053098B2 (en) Wear-resistant Cu alloy with high strength and toughness
JPH05171373A (en) Powder high speed tool steel
US6238620B1 (en) Ni3Al-based alloys for die and tool application
JPS5831061A (en) Superhard tungsten carbide alloy with high strength and high oxidation resistance
JP3207082B2 (en) Cr-based heat-resistant alloy
JP4156230B2 (en) Cobalt-based sintered braking material with excellent wear resistance
JPH101753A (en) Heat resistant alloy for skid button in heating furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees