JPH03234303A - Manufacture of electro-resistance-welded tube for heat transfer - Google Patents

Manufacture of electro-resistance-welded tube for heat transfer

Info

Publication number
JPH03234303A
JPH03234303A JP3176390A JP3176390A JPH03234303A JP H03234303 A JPH03234303 A JP H03234303A JP 3176390 A JP3176390 A JP 3176390A JP 3176390 A JP3176390 A JP 3176390A JP H03234303 A JPH03234303 A JP H03234303A
Authority
JP
Japan
Prior art keywords
grooves
heat transfer
groove
electric resistance
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3176390A
Other languages
Japanese (ja)
Other versions
JP2701957B2 (en
Inventor
▲こう▼田 俊緑
Toshitsuka Kouda
Seizou Masukawa
桝川 清慥
Haruo Kono
幸野 晴夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2031763A priority Critical patent/JP2701957B2/en
Priority to US07/574,490 priority patent/US5052476A/en
Publication of JPH03234303A publication Critical patent/JPH03234303A/en
Application granted granted Critical
Publication of JP2701957B2 publication Critical patent/JP2701957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H8/00Rolling metal of indefinite length in repetitive shapes specially designed for the manufacture of particular objects, e.g. checkered sheets

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)

Abstract

PURPOSE:To improve the heat-transfer performance of tube by rolling forming a lot of parallel primary grooves and the secondary grooves which are crossed in the primary grooves on the surface of bar stock of metallic plate and making into a tubular body by electric resistance welding after turning the surface where the grooves are formed inward after the width of opening of the primary grooves is intermittently narrowed between the secondary grooves in the manufacture of electro-resistance-welded tube for heat transfer. CONSTITUTION:A lot of parallel primary grooves 2 and a lot of parallel secondary grooves 3 which are crossed in the primary grooves at a certain angle are rolling formed on the surface of bar stock 1 of metallic plate. And, after the width of opening of the primary groove 2 is intermittently narrowed at the parts between these secondary grooves 3, a tubular body is made by electric resistance welding the bar stock 1 of metallic plate after turning the surface where grooves are formed inward. In this way, the evaporation efficiency of heating medium liquid can be raised and the heat transfer performance can be improved when the tubular body is used for the evaporation part of heat exchanger.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、熱交換器等の蒸発管や凝縮管、ヒートバイブ
等として使用される伝熱用電縫管の製造方法に係わり、
特に伝熱性能を向上するための改良に関する。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a method of manufacturing an electric resistance welded heat transfer tube used as an evaporation tube, a condensation tube, a heat vibrator, etc. of a heat exchanger, etc.
In particular, it relates to improvements to improve heat transfer performance.

「従来の技術」 伝熱管の伝熱性能を高める手段としては、従来から、銅
製等の管体の内面に、転造や引抜加工によって螺旋状ま
たは直線状の溝を多数形成する方性が周知であり、この
ような溝を形成することにより以下の効果が得られる。
``Prior art'' As a means to improve the heat transfer performance of heat transfer tubes, it has been well known that many spiral or linear grooves are formed on the inner surface of a tube body made of copper or the like by rolling or drawing. By forming such a groove, the following effects can be obtained.

■ この伝熱管を凝縮管として使用した場合には、凝縮
管内を流れる熱媒蒸気を溝の間の突条部により乱流とし
、ざらに突条部を凝縮核として凝縮効率を増し、液化を
促進する。また、凝縮した熱媒液体を、溝内における表
面張力を利用して効率的に伝熱管の長平方向に流し、還
流効果を増す。
■ When this heat transfer tube is used as a condensing tube, the heat medium vapor flowing inside the condensing tube is made into a turbulent flow by the ridges between the grooves, and the ridges serve as condensation nuclei to increase condensation efficiency and reduce liquefaction. Facilitate. Furthermore, the condensed heat transfer liquid is efficiently flowed in the longitudinal direction of the heat transfer tube by utilizing the surface tension within the grooves, thereby increasing the reflux effect.

■ 一方、蒸発管として使用した場合には、溝内のエツ
ジが気泡を発する蒸発核となり、核沸騰を促進して伝熱
管内に供給される熱媒液体の気化効率が増す。また、溝
内における表面張力を利用して熱媒液体を効率的に伝熱
管の長手方向に流し、その供給効果を増す。
On the other hand, when used as an evaporation tube, the edges within the grooves become evaporation nuclei that generate bubbles, promoting nucleate boiling and increasing the vaporization efficiency of the heat medium liquid supplied into the heat transfer tube. Furthermore, the surface tension within the grooves is used to efficiently flow the heat medium liquid in the longitudinal direction of the heat transfer tube, increasing the supply effect.

「発明が解決しようとする課題」 ところで、この種の溝付き伝熱管の性能を向上するには
、溝の開口幅を狭めて溝の底幅よりも小さくし、管状に
近付けることが有効であると予想される。このような管
状であれば、この管状溝の内部に気泡か発生しやすく、
この気泡が核となり蒸発を促進することにより、気化効
率が大幅に高められる。また、溝内での表面張力による
熱媒i&体の輸送効率か増し、総合的な伝熱性能が顕著
に増大すると考えられる。
``Problems to be Solved by the Invention'' By the way, in order to improve the performance of this type of grooved heat exchanger tube, it is effective to narrow the opening width of the groove to make it smaller than the bottom width of the groove so that it approaches a tubular shape. It is expected to be. With such a tubular shape, air bubbles are likely to occur inside the tubular groove.
These bubbles serve as nuclei and promote evaporation, thereby greatly increasing the evaporation efficiency. It is also believed that the transport efficiency of the heat medium i and body due to the surface tension within the groove increases, and the overall heat transfer performance increases significantly.

しかし、前述の機械加工により単純溝を形成する方法で
は、加工上の制約から溝の開口幅が底部の幅よりも大き
くならざるを得ず、溝を管状に形成することは不可能で
、伝熱性能の向上には限界があった。
However, in the method of forming simple grooves by machining described above, the opening width of the groove must be larger than the width of the bottom due to processing constraints, making it impossible to form the groove into a tubular shape. There were limits to the improvement of thermal performance.

「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、金
属板条材の表面に、多数の平行な主溝を圧延形成した後
、さらにこれら主溝と一定角度で交差する多数の平行な
副溝を圧延形成することにより、これら副溝間の部分で
断続的に前記主溝の開口幅を狭めたうえ、溝形成面を内
側に向けて前記板条材を電縫加工して管体にすることを
特徴としている。
"Means for Solving the Problems" The present invention has been made to solve the above problems, and after forming a large number of parallel main grooves on the surface of a metal plate strip material by rolling, By rolling and forming a large number of parallel minor grooves that intersect at an angle, the opening width of the main groove is intermittently narrowed in the areas between these minor grooves, and the strip material is rolled with the groove forming surface facing inward. It is characterized by being made into a tube body by electric resistance welding.

なお、前記主溝は断面U字状に形成するとともに、前記
副溝は断面V字状に形成することが望ましい。
Note that it is preferable that the main groove is formed to have a U-shaped cross section, and the sub-grooves are formed to have a V-shaped cross section.

「作用」 この伝熱用電縫管の製造方法によれば、各主溝の開口幅
を、長平方向に間隔を空けて溝の底幅に比して相対的に
狭め、管状部を形成することが可能である。そしてこの
伝熱用電縫管を特に熱交換器等の蒸発部に使用した場合
には、主溝の管状部の内部に気泡が発生しやすく、この
気泡が核となり蒸発を促進して、熱媒液体の気化効率が
大幅に高められる。
"Function" According to this method of manufacturing an electric resistance welded tube for heat transfer, the opening width of each main groove is narrowed relative to the bottom width of the groove at intervals in the longitudinal direction to form a tubular part. Is possible. When this heat transfer electric resistance welded tube is used particularly in the evaporation part of a heat exchanger, etc., air bubbles are likely to form inside the tubular part of the main groove, and these air bubbles act as nuclei and promote evaporation, causing heat The vaporization efficiency of the liquid medium is greatly increased.

また、蒸発部および凝縮部のいずれに使用した場合にも
、前記管状部により主溝内での表面張力による液体の輸
送効率が増すから、単純な溝付き伝熱管に比して、総合
的な伝熱性能が大幅に向上できる。
In addition, when used in either the evaporation section or the condensation section, the tubular section increases the efficiency of liquid transport due to surface tension within the main groove, making it more efficient overall than a simple grooved heat exchanger tube. Heat transfer performance can be significantly improved.

「実施例」 以下、本発明に係わる伝熱用電縫管の製造方法の一実施
例を説明する。
"Example" Hereinafter, an example of the method for manufacturing an electric resistance welded tube for heat transfer according to the present invention will be described.

この方法てはまず、第1図に示すように、金属板条材1
を主溝形成ロールR1および副溝形成ロールR2で順次
圧延し、その表面に多数の平行な主溝2、およびそれと
一定角度で交差する副溝3をそれぞれ形成する。
In this method, first, as shown in Fig. 1, a metal plate strip 1
is sequentially rolled with a main groove forming roll R1 and a sub-groove forming roll R2, and a large number of parallel main grooves 2 and sub-grooves 3 intersecting the main grooves at a constant angle are respectively formed on the surface thereof.

板条材lは、銅および銅合金、アルミニウム等の従来か
ら使用されている材質のもので、その幅は電縫加工によ
って所望径の管体が得られる値に設定されている。
The plate material l is made of a conventionally used material such as copper, copper alloy, aluminum, etc., and its width is set to a value that allows a tubular body of a desired diameter to be obtained by electric resistance welding.

主溝形成a−ルR1の外周面には、第2図に示すように
断面U字状の突条部T1が、ロールR1の周方向に対し
て一定角度傾斜して平行に多数形成されており、これに
より板条材1の表面には、第4図に示すように長手方向
に対し傾斜した断面コ字状の主溝2が形成される。主溝
2の断面形状は、コ字形に近い方がその開口幅を狭めて
管状部4を形成し易い。
As shown in FIG. 2, on the outer circumferential surface of the main groove forming a-rule R1, a large number of protrusions T1 having a U-shaped cross section are formed parallel to each other and inclined at a certain angle with respect to the circumferential direction of the roll R1. As a result, a main groove 2 having a U-shaped cross section and inclined with respect to the longitudinal direction is formed on the surface of the strip material 1, as shown in FIG. The closer the cross-sectional shape of the main groove 2 is to a U-shape, the easier it is to narrow the opening width and form the tubular portion 4.

主溝2の幅w1は、深さDIの40〜140%、望まし
くは80〜120とされる。40%未満ては1り溝3の
形成にまり主溝2か漬れ易くなり、140%より大では
管状部4の開口幅を十分狭めることができない。主溝2
の間隔P1は、主溝幅W1の1.5〜3倍、望ましくは
1.8〜22倍とされる。1.5倍未満では副溝3を形
成すると主溝2間の突条部の倒れか生じて管状部4の形
成が困難になる。また、3倍より大では主溝2の形成密
度が小さくなり、伝熱性能の向上効果が減少する。
The width w1 of the main groove 2 is 40 to 140% of the depth DI, preferably 80 to 120%. If it is less than 40%, it will get stuck in the formation of the single groove 3 and the main groove 2 will be easily swamped, and if it is more than 140%, the opening width of the tubular portion 4 cannot be sufficiently narrowed. Main groove 2
The interval P1 is 1.5 to 3 times, preferably 1.8 to 22 times, the main groove width W1. If it is less than 1.5 times, forming the minor grooves 3 will cause the protrusions between the main grooves 2 to collapse, making it difficult to form the tubular portion 4. Moreover, if it is larger than 3 times, the formation density of the main grooves 2 becomes small, and the effect of improving heat transfer performance is reduced.

具体的には、通常の伝熱管の場合、主溝2の深さD!=
0.2〜Q 、 3 xx、幅Wl=0.2〜0゜5z
z、P 1=0.4〜1.5xx、底部の断面角度は7
5°以上が適当である。
Specifically, in the case of a normal heat exchanger tube, the depth D of the main groove 2! =
0.2~Q, 3xx, width Wl=0.2~0°5z
z, P 1 = 0.4 to 1.5xx, bottom section angle is 7
5° or more is appropriate.

一方、副溝形成ロールR2の外周面には、第3図に示す
ように断面V字状の突条部T2が多数平行に形成されて
いる。これら突条部T2はロールR2の周方向に対して
主溝形成ロールR1とは逆の方向に傾斜しており、この
ため板条材1には第4図に示すように、主溝2と一定角
度αて交差する多数の平行な断面V字状の副溝3か形成
される。
On the other hand, as shown in FIG. 3, a large number of parallel protrusions T2 having a V-shaped cross section are formed on the outer circumferential surface of the sub-groove forming roll R2. These protrusions T2 are inclined in the direction opposite to the main groove forming roll R1 with respect to the circumferential direction of the roll R2, so that the strip material 1 has the main groove 2 as shown in FIG. A large number of parallel sub-grooves 3 having a V-shaped cross section are formed, intersecting each other at a constant angle α.

副溝3のピッチP2は主溝2と同等でよいか、必ずしも
主溝2と等しくする必要はない。副溝3の幅W2は主溝
幅Wl’の25〜90%、望ましくは50〜70%とさ
れる。25%未満では主溝2の開口幅を十分狭めること
ができず、90%より大では主溝2の開口部を閉じてし
まうおそれがある。また、副溝3の厖さD2は主溝深さ
Dlの40〜100%、望ましくは80〜100%とさ
れる。40%未満では主溝2の開口幅を十分狭めること
ができず、100%より犬では主溝2を閉じてしまうお
それがある。
The pitch P2 of the sub-grooves 3 may be equal to that of the main groove 2, or does not necessarily need to be equal to that of the main groove 2. The width W2 of the sub groove 3 is 25 to 90%, preferably 50 to 70%, of the main groove width Wl'. If it is less than 25%, the opening width of the main groove 2 cannot be sufficiently narrowed, and if it is more than 90%, the opening of the main groove 2 may be closed. Further, the depth D2 of the sub-groove 3 is set to 40 to 100%, preferably 80 to 100%, of the main groove depth Dl. If it is less than 40%, the opening width of the main groove 2 cannot be sufficiently narrowed, and if it is more than 100%, there is a risk that the main groove 2 will be closed in dogs.

具体的には、通常の伝熱管の場合、副溝3の深さD2−
0.15〜Q 、 3 xz、ピッチP2=0.4〜1
.5RR,V字の断面角度は45〜90’程度か好適で
ある。
Specifically, in the case of a normal heat exchanger tube, the depth D2- of the sub-groove 3 is
0.15~Q, 3xz, pitch P2=0.4~1
.. 5RR, the cross-sectional angle of the V-shape is preferably about 45 to 90'.

なお、主溝2と副溝3の交差角度αは20〜60°、特
に30〜400であることが望ましい。
In addition, it is desirable that the intersection angle α between the main groove 2 and the sub-groove 3 is 20 to 60 degrees, particularly 30 to 400 degrees.

この範囲を外れると、管状部4の形成が困難になる。ま
た、主溝2は伝熱用電縫管の製造方法の長平方向に対し
て30’以内であることか望ましい。
Outside this range, it becomes difficult to form the tubular portion 4. Further, it is desirable that the main groove 2 is within 30' in the longitudinal direction of the manufacturing method of the electric resistance welded tube for heat transfer.

これより大では管の長平方向への熱媒液体の流通か悪く
なる。
If it is larger than this, the flow of the heat medium liquid in the longitudinal direction of the tube will be poor.

これら副溝3により、副溝3の間の部分において第5図
ないし第8図、および第9図ないし第14図に示すよう
に主溝2の両側壁が内側に傾斜し、主溝2の開口幅が狭
まって管状部4が形成される。
As shown in FIGS. 5 to 8 and 9 to 14, both side walls of the main groove 2 are inclined inward in the portion between the sub grooves 3, and the main groove 2 is The opening width is narrowed and a tubular portion 4 is formed.

これら管状部4の最小開口幅は、主溝2の幅W1の75
%以下に狭められている。これが75%より犬では気泡
を発生させる効果が低下し、従来の溝付き伝熱管に比し
ての伝熱性能向上効果か低下する。
The minimum opening width of these tubular portions 4 is 75 of the width W1 of the main groove 2.
% or less. When this rate is 75%, the effect of generating air bubbles in dogs decreases, and the effect of improving heat transfer performance compared to conventional grooved heat transfer tubes decreases.

なお、副溝形成ロールR2の突条部11の間は、第3図
図中二点鎖線イで示すように曲面状としてもよい。こう
すれば副溝形成時に、この曲面12に沿って主溝2の側
壁部が円滑に変形し、主溝2の開口幅を狭める効果が増
す。また、各突条部11の先端には、符号口に示すよう
に幅の狭い平坦部を形成してもよい。
Note that the space between the protrusions 11 of the sub-groove forming roll R2 may be curved as shown by the two-dot chain line A in FIG. In this way, when forming the sub-groove, the side wall portion of the main groove 2 is smoothly deformed along this curved surface 12, increasing the effect of narrowing the opening width of the main groove 2. Furthermore, a narrow flat portion may be formed at the tip of each protruding portion 11 as shown at the end of the numeral.

次に、主/I42および副溝3の圧延か終わったら、溝
形成面を内面側に向けた状態で板条材lを電縫装置にセ
ットし、駆動ロールおよびアイドラの間を多段階に通し
て板条材lを幅方向に丸めていき、最終的に板条材の両
側縁部を溶接して円管形に成形する。電縫装置としては
通常使用されているものでよく、また電縫条件も通常の
加工と同じでよい。その後、必要に応じて管の外周面の
溶接部を整形したうえ、ロール状に巻きとるか所定の長
さて切断し、長尺の伝熱管を得る。
Next, after rolling the main/I42 and sub-grooves 3, set the plate material l in the electric resistance welding device with the groove forming surface facing the inner side, and pass it between the drive roll and idler in multiple stages. The plate material l is rolled up in the width direction, and finally both side edges of the plate material are welded to form it into a circular tube shape. The electric resistance stitching device may be one that is commonly used, and the electric resistance stitching conditions may be the same as those for normal processing. Thereafter, the welded portion on the outer circumferential surface of the tube is shaped as necessary, and then the tube is wound into a roll or cut to a predetermined length to obtain a long heat exchanger tube.

上記の伝熱用電縫管の製造方法によれば、第9図に示す
ように各主溝2の長手方向に間隔を空けて、開口幅が主
溝2の内幅に比して相対的に狭い管状部4を多数形成す
ることができるため、特にこの伝熱用電縫管を熱交換器
等の蒸発部に使用した場合には、第15図に示す内面が
平滑な伝熱管の場合、第16図に示す単純溝付きの伝熱
管の場合に比して、第17図に示すように各管状部4の
内部に気泡か発生しやすく、これら気泡が蒸発部として
作用し、熱媒液体(例えばフロンなど)の蒸発を促進し
て気化効率か格段に高められる。
According to the above method for manufacturing an electric resistance welded tube for heat transfer, as shown in FIG. Since a large number of narrow tubular portions 4 can be formed in the heat transfer tube, especially when this heat transfer electric resistance welded tube is used in the evaporation section of a heat exchanger, etc., it is possible to form a heat transfer tube with a smooth inner surface as shown in Fig. 15. , compared to the case of a heat exchanger tube with simple grooves shown in FIG. 16, bubbles are more likely to be generated inside each tubular portion 4 as shown in FIG. It accelerates the evaporation of liquids (such as fluorocarbons) and greatly increases the evaporation efficiency.

また、管状部4か断続的に設けられているので各主溝2
内に流れ込んた熱媒液体は、その側壁部から表面張力を
受けて毛細管現象にまり主溝2に沿って速やかに輸送さ
れる。このため、熱媒液体の輸送効率が単純溝付き伝熱
管の場合に比して向上する。
In addition, since the tubular portions 4 are provided intermittently, each main groove 2
The heat medium liquid flowing into the main groove 2 is quickly transported along the main groove 2 by capillary action due to surface tension from the side wall. Therefore, the transport efficiency of the heat medium liquid is improved compared to the case of a simple grooved heat exchanger tube.

また、2種の溝2,3 を交差状態で形成したことによ
り、単純溝付き伝熱管に比して内面積か増すうえ、谷溝
2,3 のエツジが鋭利になって表面活性が高まる。し
たがって、凝縮部に使用した場合には、これらエツジ部
の液切れが良く、熱媒蒸気の凝縮を促進し、液化効率が
高められる。
Furthermore, by forming the two types of grooves 2 and 3 in an intersecting state, the inner area is increased compared to a simple grooved heat exchanger tube, and the edges of the valley grooves 2 and 3 are sharpened, increasing surface activity. Therefore, when used in a condensing section, these edge sections can be easily drained of liquid, promoting condensation of heat medium vapor and increasing liquefaction efficiency.

さらに、この伝熱用電縫管の製造方法では、圧延工程お
よび電縫工程の2工程を一つのラインとして連続させる
ことができるので、長尺かつ細径の伝熱管を効率良く得
ることができ、量産により製造コストの低減が図れる。
Furthermore, in this method for manufacturing electric resistance welded heat transfer tubes, the two processes of rolling and electric resistance welding can be continuous as one line, so long and small diameter heat transfer tubes can be efficiently obtained. , mass production can reduce manufacturing costs.

なお、上記実施例では伝熱用電縫管の形状を断面円形と
していたが、本発明は円形に限らず、断面楕円形や偏平
管状等としても実施可能である。
In the above embodiment, the heat transfer electric resistance welded tube has a circular cross section, but the present invention is not limited to a circular cross section, but can also be implemented with an elliptical cross section, a flat tubular shape, etc.

また、上記実施例では伝熱管1本分の幅の板条材1を用
いていたか、その代わりに、十分幅広の板条材に谷溝2
,3 を形成した後、スリ7ターにかけて細幅の板条材
に裁断し、これら板条材に電縫加工を施して伝熱管とし
てもよい。その場合には、さらに生産性を向上すること
ができる。
In addition, in the above embodiment, the plate material 1 with the width of one heat exchanger tube was used, or instead, the plate material 1 with the valley grooves 2 was used in a sufficiently wide plate material.
, 3 are formed, then cut into narrow strips using a slitting machine, and these strips may be subjected to electric resistance welding to form heat exchanger tubes. In that case, productivity can be further improved.

「実験例」 厚さ0.50■、幅38■の脱酸銅製の板条材を用い、
主溝形成ロールおよび副溝形成ロールで連続して圧延を
行ない、この板条材を切断して断面の形状を確認した。
"Experiment example" Using a deoxidized copper strip with a thickness of 0.50cm and a width of 38cm,
Rolling was performed continuously using a main groove forming roll and a sub groove forming roll, and the strip material was cut to confirm the cross-sectional shape.

なお、主溝の深さは0.251旧こ統一し、副溝の深さ
は0.05xx、0IQxx、0. 15zx、 0.
 20xzの4段階に変え、管状部の形状変化を見た。
The depth of the main groove is the same as 0.251, and the depth of the minor groove is 0.05xx, 0IQxx, 0. 15zx, 0.
It was changed to 4 stages of 20xz and the shape change of the tubular part was observed.

主溝形成ロール°および副溝形成ロールのいずれも外径
120+yx、厚さ38ixで、主溝形成ロールの断面
は第22図に示す断面U字状、副溝形成ロールは第23
図に示す断面V字状とした。
Both the main groove forming roll and the minor groove forming roll have an outer diameter of 120+yx and a thickness of 38ix, the main groove forming roll has a U-shaped cross section as shown in FIG.
The cross section was V-shaped as shown in the figure.

得られた板条材の管状部の断面形状を第18図ないし第
21図に示す。図示の通り、副溝の深さを0.10■以
上としたものは全て良好な管状部か形成された。
The cross-sectional shape of the tubular portion of the obtained strip material is shown in FIGS. 18 to 21. As shown in the figure, good tubular portions were formed in all cases in which the depth of the sub-groove was 0.10 square meters or more.

「発明の効果」 以上説明したように、本発明の伝熱用電縫管の製造方法
によれば、主溝の長手方向に間隔を空けて、開口幅が溝
の内幅に比して相対的に狭い管状部を多数形成すること
ができるから、この伝熱用電縫管を特に熱交換器等の蒸
発部に使用した場合には、各管状部の内部に気泡が発生
しやすく、これら気泡が蒸発部として作用し、熱媒液体
の蒸発を促進して気化効率が格段に高められる。
"Effects of the Invention" As explained above, according to the method of manufacturing an electric resistance welded tube for heat transfer of the present invention, the main groove is spaced apart in the longitudinal direction, and the opening width is relatively small compared to the inner width of the groove. Since a large number of narrow tubular sections can be formed, especially when this heat transfer electric resistance welded tube is used in the evaporation section of a heat exchanger, air bubbles are likely to occur inside each tubular section. The bubbles act as an evaporator, promoting the evaporation of the heat transfer liquid and greatly increasing the evaporation efficiency.

また、管状部が断続的に設けられているので、各主溝内
に流れ込んだ熱媒液体は、その側壁部から表面張力を受
けて毛細管現象により主溝に沿って速やかに輸送され、
熱媒液体の輸送効率が向上する。
In addition, since the tubular portions are provided intermittently, the heat transfer liquid that has flowed into each main groove receives surface tension from the side wall portions and is quickly transported along the main groove by capillary action.
The transport efficiency of heat transfer liquid is improved.

また、主溝と副溝を交差状態で形成したことにより、単
純溝付き伝熱管に比して内面積が増すうえ、谷溝のエツ
ジか鋭利になって表面活性が高まるため、この伝熱用電
縫管を#輪部に使用した場合には、これら二ノンか凝縮
核となって熱媒蒸気の凝縮を促進し、酸化効率が高めら
れる。
In addition, by forming the main grooves and sub-grooves in an intersecting state, the internal area increases compared to a simple grooved heat exchanger tube, and the edges of the valley grooves become sharper, increasing surface activity. When an electric resistance welded tube is used in the #ring, these dinones act as condensation nuclei to promote condensation of heat medium vapor and improve oxidation efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる伝熱用電縫管の製造方法の説明
図、第2図は主溝形成ロールの外周面の断面拡大図、第
3図は副溝形成ロールの外周面の断面拡大図、第4図な
いし第8図は管状部が形成される様子の説明図、第9図
はこの方法で得られた伝熱用電縫管の内面の拡大図、第
10図ないし第14図は第9図中イーイないしホーホ線
断面図、第15図ないし第17図は本発明の効果を示す
説明図、第18図ないし第21図は実験例で得られた伝
熱用電縫管の断面拡大図、第22図および第23図は実
験例で使用した主溝形成a−ルおよび副溝形成ロールの
断面図である。 1・・・金属板条材、2・・・主溝、3・・・副溝、4
・・・管状部、R1−・・主溝形成ロール、R2・・副
溝形成ロール。
FIG. 1 is an explanatory diagram of the method for manufacturing an electric resistance welded heat transfer tube according to the present invention, FIG. 2 is an enlarged cross-sectional view of the outer circumferential surface of the main groove forming roll, and FIG. 3 is a cross-sectional view of the outer circumferential surface of the sub-groove forming roll. Enlarged views, Figures 4 to 8 are explanatory views of how the tubular portion is formed, Figure 9 is an enlarged view of the inner surface of the electric resistance welded tube for heat transfer obtained by this method, and Figures 10 to 14. The figure is a cross-sectional view taken along the line Ei to Hoh in Fig. 9, Figs. 15 to 17 are explanatory diagrams showing the effects of the present invention, and Figs. 18 to 21 are electric resistance welded tubes for heat transfer obtained in experimental examples. 22 and 23 are cross-sectional views of the main groove forming roll and the sub groove forming roll used in the experimental example. 1... Metal plate strip, 2... Main groove, 3... Minor groove, 4
...Tubular portion, R1--Main groove forming roll, R2...Sub-groove forming roll.

Claims (2)

【特許請求の範囲】[Claims] (1)金属板条材の表面に、多数の平行な主溝を圧延形
成した後、さらにこれら主溝と一定角度で交差する多数
の平行な副溝を圧延形成することにより、これら副溝間
の部分で断続的に前記主溝の開口幅を狭めたうえ、溝形
成面を内側に向けて前記板条材を電縫加工して管体にす
ることを特徴とした伝熱用電縫管の製造方法。
(1) After forming a large number of parallel main grooves on the surface of a metal plate strip by rolling, a large number of parallel sub-grooves that intersect with these main grooves at a certain angle are formed by rolling. An electric resistance welded tube for heat transfer, characterized in that the opening width of the main groove is intermittently narrowed at the part, and the plate material is subjected to electric resistance welding with the groove forming surface facing inward to form a tube body. manufacturing method.
(2)前記主溝は断面U字状に形成するとともに、前記
副溝は断面V字状に形成することを特徴とする請求項1
記載の伝熱用電縫管の製造方法。
(2) The main groove is formed to have a U-shaped cross section, and the minor groove is formed to have a V-shaped cross section.
The method for manufacturing the electric resistance welded tube for heat transfer described above.
JP2031763A 1990-02-13 1990-02-13 Manufacturing method of ERW pipe for heat transfer Expired - Fee Related JP2701957B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2031763A JP2701957B2 (en) 1990-02-13 1990-02-13 Manufacturing method of ERW pipe for heat transfer
US07/574,490 US5052476A (en) 1990-02-13 1990-08-28 Heat transfer tubes and method for manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2031763A JP2701957B2 (en) 1990-02-13 1990-02-13 Manufacturing method of ERW pipe for heat transfer

Publications (2)

Publication Number Publication Date
JPH03234303A true JPH03234303A (en) 1991-10-18
JP2701957B2 JP2701957B2 (en) 1998-01-21

Family

ID=12340075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2031763A Expired - Fee Related JP2701957B2 (en) 1990-02-13 1990-02-13 Manufacturing method of ERW pipe for heat transfer

Country Status (1)

Country Link
JP (1) JP2701957B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136893A (en) * 2007-12-05 2009-06-25 Kobe Steel Ltd Method of manufacturing metal plate for heat exchange

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136893A (en) * 2007-12-05 2009-06-25 Kobe Steel Ltd Method of manufacturing metal plate for heat exchange

Also Published As

Publication number Publication date
JP2701957B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
US2347957A (en) Heat exchange unit
US5052476A (en) Heat transfer tubes and method for manufacturing
EP0603108B1 (en) Heat exchanger tube
US4330036A (en) Construction of a heat transfer wall and heat transfer pipe and method of producing heat transfer pipe
JPH109789A (en) Heat exchanger tube
EP0591094A1 (en) Internally ribbed heat transfer tube
US5275234A (en) Split resistant tubular heat transfer member
JP2701956B2 (en) ERW pipe for heat transfer
JP2010256000A (en) Internally-grooved pipe for heat pipe, and heat pipe
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JPH03234303A (en) Manufacture of electro-resistance-welded tube for heat transfer
JP2948515B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH04116391A (en) Heat transferring tube and method for manufacturing heat transferring tube
JPH11325754A (en) Heat-exchanger and u-shaped pipe for heat-exchanger
JP3130964B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JP2731624B2 (en) Heat exchange equipment
JPH04254192A (en) Heat transfer tube provided with internal surface groove
US3455379A (en) Finned tube produced from continuous strip
JP2758567B2 (en) Heat transfer tube with internal groove
JPH06101986A (en) Heat exchanger tube with grooved internal wall
TW386049B (en) Heat transfer tube with cross-grooved and method of manufacturing thereof
JPH0275427A (en) Method for forming heating surface
JP3226182B2 (en) Heat exchanger tubes for heat exchangers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees