JPH032338A - Composite reinforced alloy and its manufacture - Google Patents
Composite reinforced alloy and its manufactureInfo
- Publication number
- JPH032338A JPH032338A JP13470389A JP13470389A JPH032338A JP H032338 A JPH032338 A JP H032338A JP 13470389 A JP13470389 A JP 13470389A JP 13470389 A JP13470389 A JP 13470389A JP H032338 A JPH032338 A JP H032338A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- oxide
- diameter
- composite reinforced
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 36
- 239000000956 alloy Substances 0.000 title claims abstract description 36
- 239000002131 composite material Substances 0.000 title claims abstract description 19
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 22
- 239000000835 fiber Substances 0.000 claims abstract description 17
- 239000011159 matrix material Substances 0.000 claims abstract description 17
- 238000005551 mechanical alloying Methods 0.000 claims abstract description 9
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910001175 oxide dispersion-strengthened alloy Inorganic materials 0.000 claims abstract description 8
- 238000009826 distribution Methods 0.000 claims abstract description 7
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 6
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 6
- 229910001069 Ti alloy Inorganic materials 0.000 claims abstract description 6
- 239000004917 carbon fiber Substances 0.000 claims abstract description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 5
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 5
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 25
- 238000002156 mixing Methods 0.000 claims description 6
- 239000006185 dispersion Substances 0.000 claims description 2
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 5
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000000463 material Substances 0.000 description 19
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 239000002657 fibrous material Substances 0.000 description 12
- 238000000034 method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000007769 metal material Substances 0.000 description 7
- 238000005728 strengthening Methods 0.000 description 6
- 229910000796 S alloy Inorganic materials 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 239000002905 metal composite material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、繊維により複合強化された酸化物分散強化合
金及びその製造法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an oxide dispersion strengthened alloy compositely reinforced with fibers and a method for producing the same.
従来、高強度の金属材料には、析出物を金属マトリック
ス中に分散させたいわゆる析出強化型金属がある。Conventionally, high-strength metal materials include so-called precipitation-strengthened metals in which precipitates are dispersed in a metal matrix.
この析出物は金属材料の高強度化に寄与するため、多く
の金属材料では、この析出物を金属マトリックス中に分
散させた析出強化型の金属となっている。Since these precipitates contribute to increasing the strength of metal materials, many metal materials are precipitation-strengthened metals in which these precipitates are dispersed in a metal matrix.
ところで、近年の金属材料の高強度化に伴って、セラミ
ックス粒子(YZ[]ff、^LII+ 、Til]z
等)を金属マトリックス中に分散させたいわゆるOD
S合金の研究1;1発が盛んになって来ている。By the way, with the recent increase in the strength of metal materials, ceramic particles (YZ[]ff, ^LII+, Til]z
etc.) dispersed in a metal matrix.
Research on S alloys 1:1 is becoming more popular.
○l) S合金は、粒子径が0.4μ■以−ド、より望
ましくは200〜600人のセラミックス粒子を、金属
マトリックス中に分散させて強1yを高めたものである
。○l) The S alloy has ceramic particles having a particle size of 0.4 μm or larger, preferably 200 to 600 particles, dispersed in a metal matrix to increase the strength 1y.
一般に、セラミックス粒子は、高強度であり、また高温
(> 1000℃〕においても高強度を有するため、金
属材料に分散させていた従来の析出物に代わって、金属
材料マトリックスをより強化するための、より有望な分
散物として期待されている。In general, ceramic particles have high strength and also have high strength at high temperatures (>1000°C), so they can be used to further strengthen the metal material matrix, replacing the conventional precipitates dispersed in the metal material. , is expected to be a more promising dispersion.
金属マトリックス中に分散された析出物やセラミックス
粒子は、該金属マトリックス中の転位運動を抑制する作
用があり、これによっ゛C金属マトリックスを強化させ
る効果を奏する。The precipitates and ceramic particles dispersed in the metal matrix have the effect of suppressing the movement of dislocations in the metal matrix, and thereby have the effect of strengthening the C metal matrix.
このように、従来のODS合金は、金属マトリックスを
強化させる作用を有しており、これにより多くの合金、
例えばCu、 AI、 Ni系の合金が強化され、高強
度ODS合金としての研究開発、用途の開発等が行われ
ている。In this way, conventional ODS alloys have the effect of strengthening the metal matrix, and as a result, many alloys,
For example, Cu, AI, and Ni-based alloys are being strengthened, and research and development as high-strength ODS alloys and development of applications are being conducted.
一方、従来から、金属中にウィスカやSiC等の高強度
繊維を配合して金属材料を強化する金属の複合材料強化
技術も行われている。On the other hand, metal composite material strengthening technology has also been practiced in which metal composite materials are strengthened by blending high-strength fibers such as whiskers and SiC into the metal.
この技術は2O3、Al2O1)S合金のように金属マ
トリックスを強化するものとは違い、高強度のウィスカ
やSiC等を軟らかい金属マトリックス中に含ませるこ
とにより、f)強度のウィスカやSiCと軟らかい金属
マトリックスとの中間の強度を持たせるものである。Unlike 2O3, Al2O1)S alloys that strengthen the metal matrix, this technology incorporates high-strength whiskers, SiC, etc. into a soft metal matrix. It has a strength intermediate between that of the matrix.
材料の強化法から見れば、マトリックスの強化ではなく
、材料の構造力学的な強化法と言えるものである。From a material strengthening method, it can be said that this method is not a matrix strengthening method, but a structural mechanical strengthening method of the material.
その証明の1つは、材料物性(材料硬度や強度等)値に
複合則が成立することである。One of the proofs is that the compound law holds true for material properties (material hardness, strength, etc.).
すなわち、
σ=aAf 4+σm f m (1)(ここで
、σは複合材の強度、σ7と
σ、は夫々A材とB材の強度や硬度、
fAとf、は夫々A材とB材の体積率)の式が成立する
。That is, σ=aAf 4+σm f m (1) (where σ is the strength of the composite material, σ7 and σ are the strength and hardness of material A and B, respectively, and fA and f are the strength and hardness of material A and B, respectively. The formula (volume ratio) holds true.
〔発明が解決し7ようとする課題〕
ところで、最近の技術の高度化に伴い、高機能部品の作
成の必要性が生じている。[Problems to be Solved by the Invention] Incidentally, with the recent advancement of technology, there is a need to create highly functional parts.
このような高機能部品の作成のためには、前述の01)
S合金、あるいは金属と高強度繊維との複合材料でさ
えも強度が不充分であり、史に金属材料の高強度化が要
求され、この要求に対応するために、より新しい材料開
発の必要性が生じている。In order to create such high-performance parts, the above-mentioned 01)
Even S-alloys or composite materials of metal and high-strength fibers have insufficient strength, and historically there has been a demand for higher strength metal materials, and in order to meet this demand, there is a need to develop new materials. is occurring.
本発明は、このような必要性に応えるべ(なされたもの
で、OD S合金を高強度繊維により強化し、より高強
度化した合金を提案することを[1的とする。The present invention has been made in response to such needs, and one object thereof is to propose an alloy with even higher strength by reinforcing the ODS alloy with high-strength fibers.
[課題を解決するための手段〕
上記目的を、本発明では、20VOI%以上が直径0.
4μ■以下である粒度分布を持つ酸化物粒子を0.3〜
5wt%含む酸化物分散強化合金中に、直径が10μ諺
以Eの炭素繊維、炭化ケイ素ウィスカ、窒化ケイ素ウィ
スカ、又はごれらにB又はB、Cを化学蒸着させた繊維
を3〜35vol%含むことを特徴とする複合強化合金
により達成する。[Means for Solving the Problem] To achieve the above object, in the present invention, 20 VOI% or more has a diameter of 0.
Oxide particles with a particle size distribution of 4 μ■ or less are
In an oxide dispersion strengthened alloy containing 5 wt%, 3 to 35 vol% of carbon fibers, silicon carbide whiskers, silicon nitride whiskers, or fibers having B or B or C chemically deposited on them, with a diameter of 10 μ or more. This is achieved by a composite reinforced alloy characterized by containing.
また、本発明は、20VO1%以上が直径0.4μm以
下である粒度分布を持つ酸化物粉末を用いてメカニカル
アロイング法により作成した該酸化物粒子を0.3〜5
wt%含むメカニカルアロイング粉末と、直径が10μ
醜以1−の炭素繊維、炭化ケイ素ウィスカ、窒化ケイ素
ウィスカ、又はこれらにB又はB、Cを化学蒸着させた
繊維を3〜35vol%となるように混合し、上記メカ
ニカルアロイング粉末の融点の1/2以上の温度におい
て熱間押出することを特徴とする複合強化合金の製造法
に関する。Further, the present invention provides oxide particles of 0.3 to 5 μm, which are produced by a mechanical alloying method using an oxide powder having a particle size distribution in which 1% or more of 20VO is 0.4 μm or less in diameter.
Mechanical alloying powder containing wt% and a diameter of 10μ
Carbon fibers, silicon carbide whiskers, silicon nitride whiskers, or fibers having B, B, or C chemically deposited thereon are mixed at a concentration of 3 to 35 vol%, and the melting point of the mechanical alloying powder is The present invention relates to a method for producing a composite reinforced alloy characterized by hot extrusion at a temperature of 1/2 or higher.
ところで、前述のODS合金の概念と、高強度繊維と金
属との複合強化材料の概念を単に結び付けるというよう
な発想では高強度化は実現しなかった。By the way, high strength has not been achieved by simply combining the concept of the above-mentioned ODS alloy with the concept of a composite reinforcing material of high-strength fibers and metal.
その理由の1つは、ODS合金中の酸化物及び繊維の大
きさの制御が充分なされていない点を挙げることができ
る。One of the reasons for this is that the sizes of oxides and fibers in ODS alloys are not sufficiently controlled.
また、他の理由は、この2つの概念を結び付けて材料設
計を行うと言う発想がない点を挙げることができる。Another reason is that there is no concept of linking these two concepts to perform material design.
本発明では、酸化物及び繊維の大きさを充分制御し、ま
たその配合割合等も充分考慮した設計として、従来のO
DS合金、繊mi化複合材料では得ることのできない高
強度の合金を提供するものである。In the present invention, the size of the oxide and fibers are sufficiently controlled, and the blending ratio of the oxides and fibers is fully considered.
This provides a high-strength alloy that cannot be obtained with DS alloys or fiberized composite materials.
本発明は、金属として005合金を用い、該合金を繊維
で複合させて強化するものである。The present invention uses 005 alloy as the metal and strengthens the alloy by compositing it with fibers.
すなわち、前記(])式のA材としてODS合金を用い
、13材としてSiCウィスカ等の高強度繊維を用いる
のである。That is, an ODS alloy is used as the material A in the formula ( ), and a high-strength fiber such as SiC whisker is used as the material 13.
本発明では、前述のように、ODS合金におけるマトリ
ックスの転位運動の抑制により強化を行う酸化物の大き
さと、複合材料における構造力学的な作用により強化を
行うウィスカ等の繊維状物の大きさの制御が1つの技術
上のポイントになる。In the present invention, as described above, the size of the oxide that strengthens the ODS alloy by suppressing the dislocation movement of the matrix, and the size of the fibrous materials such as whiskers that strengthen the composite material through structural mechanical action are determined. Control becomes one technical point.
研究の結果、OD S合金中の酸化物の大きさは、その
20vol%以上が直径0.4μ鍾以下の大きさである
ことが重要である。As a result of research, it is important that 20 vol% or more of the oxides in the ODS alloy have a diameter of 0.4 μm or less.
直径が0.4u膳より大きい酸化物であると、ODS合
金としての本来の性能が十分に発揮できない、なぜなら
材料を変形した際に起こる転位運動の酸化物によるピニ
ングが十分でなくなるからである。If the diameter of the oxide is larger than 0.4 μm, the original performance of the ODS alloy cannot be fully exhibited because the pinning of the dislocation movement caused by the oxide when the material is deformed is not sufficient.
直径0.4#層以下の小粒径の酸化物であっても、その
量が20vol%未満であると、酸化物粒子間距離が大
きくなり過ぎ、ODS合金として不適となり、所期の強
度を得ることができない、この理由もまた上述の転化の
酸化物によるピニングが十分に起きなくなるからである
。Even if the oxide has a small particle size with a diameter of 0.4# layer or less, if the amount is less than 20 vol%, the distance between the oxide particles will become too large, making it unsuitable as an ODS alloy, making it difficult to achieve the desired strength. The reason for this is also that the pinning by the oxide of the above-mentioned conversion does not occur sufficiently.
また、5asi状物の大きさは、直径10ugi以上で
あることが重要である。直径10μ−未満であると、O
DSの強化繊維物としての効果が十分でないからである
。Furthermore, it is important that the size of the 5asi-like material is 10 ugi or more in diameter. If the diameter is less than 10μ, O
This is because the effect of DS as a reinforcing fiber material is not sufficient.
以ト、述べた酸化物の粒径や繊維状物の大きさについて
の説明は、いずれもその範囲を超えても本発明の効果が
全くなくなるといった性質のものではないが範囲内であ
ることが望ましい。The above explanations regarding the particle size of the oxide and the size of the fibrous material do not mean that the effect of the present invention will be completely lost even if the size is exceeded, but it is possible that the size is within the range. desirable.
E記のような大きさの酸化物と繊維状物を、酸化物は0
.3〜5wt%、繊維状物は3〜35vol%の範囲か
ら、その用途に応じて選択し、配合する。Oxide and fibrous material with the size as shown in E, oxide is 0
.. The amount of the fibrous material is selected from the range of 3 to 5 wt%, and the amount of the fibrous material is selected from the range of 3 to 35 vol.% depending on the intended use.
但し、酸化物のにが0.3wt%未満であると、酸化物
粒子間の距離が太き(なり過ぎOf) S合金として不
適となり、5wt%よりも多いとメカニカルアロイ粉末
が細かくなり過ぎ、酸素による汚染が多くなってメカニ
カルアロイ粉末を固化成形した材料の延性に悪影響を及
ぼす場合が多い。However, if the oxide content is less than 0.3 wt%, the distance between the oxide particles becomes too large (too much), making it unsuitable for use as an S alloy, and if it is more than 5 wt%, the mechanical alloy powder becomes too fine. Oxygen contamination increases, which often has a negative effect on the ductility of the material made by solidifying and molding mechanical alloy powder.
また、繊維状物の量は、3 vol%未満であると少
な過ぎて繊維状物を配合する意味がなくなり、35 v
oJ%より多くてもODS合金中に繊維を均一に分散さ
せることが難しくなるだけである。またODSよりも繊
維の特性の影響が強くなり酸化物を含むODS合金と複
合化させた利点が少なくなる。In addition, if the amount of fibrous material is less than 3 vol%, it is too small and there is no point in incorporating the fibrous material;
More than oJ% only makes it difficult to uniformly disperse the fibers in the ODS alloy. Moreover, the influence of the fiber properties is stronger than that of ODS, and the advantage of combining it with an ODS alloy containing an oxide is reduced.
以上のように、酸化物及び繊維状物の大きさ及び配合比
率は、主に強度向上のためであるが、他の必要特性と併
せて考慮することが好ましい。As mentioned above, the size and blending ratio of the oxide and the fibrous material are mainly for improving strength, but it is preferable to consider them in conjunction with other necessary properties.
例えば、強度と共に延性を特に必要とする場合には酸化
物量や繊維状物の配合比率は少ない方が良い等酸化物や
繊維状物は強度以外の特性にも影響すると思われる。For example, when ductility as well as strength is particularly required, it is better to reduce the amount of oxides and the blending ratio of fibrous materials.Oxides and fibrous materials are thought to affect properties other than strength.
また、本発明方法では、ODS合金を、いわゆるメカニ
カル“?ロイング法(以下MA法)によりメカニカルア
ロイング粉末(以下M A 15) 末)を作成し、該
粉末を押出して作成する。In addition, in the method of the present invention, the ODS alloy is produced by creating a mechanical alloying powder (hereinafter referred to as MA 15 powder) by a so-called mechanical alloying method (hereinafter referred to as MA method), and extruding the powder.
このODS合金に繊維状物を含有させるために、上記押
出に先立って、MA粉末、!!−繊維状物を上記の配合
比率で混合しておけばよい。In order to contain fibrous materials in this ODS alloy, MA powder,! ! - The fibrous material may be mixed in the above blending ratio.
更に、本発明において、酸化物粒子としては、YよOs
、 AItOコ、Zr口2、Tin□等を使用すること
ができる。Furthermore, in the present invention, the oxide particles include Y and Os.
, AItO, Zrmouth 2, Tin□, etc. can be used.
中でもY2O3、Al□0.又はそれらの複合酸化物を
使用することが好ましい。Among them, Y2O3, Al□0. Alternatively, it is preferable to use a composite oxide thereof.
何故なら、高温(> 1000℃)においても分解しな
い安定な酸化物であり、比較的安価な粉末であるからで
ある。 YzOxとAl2ozの複合酸化物はMA法中
に生成するもので Y□0.・ AhO□のほかにいく
つかの種類が生成する。This is because it is a stable oxide that does not decompose even at high temperatures (>1000°C) and is a relatively inexpensive powder. The composite oxide of YzOx and Al2oz is generated during the MA method, and Y□0.・Several types are generated in addition to AhO□.
また、本発明において、複合強化合金のマトリックスと
しては、Ni合金、純Cu、 Al合金、Ti合金が好
適である。これらの合金系ではY2O3や^1t03を
分散させたODSが知られており、これらのODSを複
合化させることによりさらに高強度化を達成することが
できる。Further, in the present invention, Ni alloy, pure Cu, Al alloy, and Ti alloy are suitable as the matrix of the composite reinforced alloy. Among these alloy systems, ODS in which Y2O3 and ^1t03 are dispersed is known, and even higher strength can be achieved by compounding these ODS.
〔実施例)
実施例1
50vol%、30vol%、1Qvol%が直径0.
4μ諺以下である粒度分布を持つ3種のY2O3、Al
2O゜粉末を3wt%、(ii++L%含むNi合金(
Ni−20Cr−0,6AI−0,37i) 、純Cu
(純度〉99%) 、Al合金(Al−67n−2,1
Mg−0,2Cu) 、 Ti合金(Ti−6AI−4
V)を、MA法によりアトライタを用いて作成した。[Example] Example 1 50vol%, 30vol%, and 1Qvol% have a diameter of 0.
Three types of Y2O3, Al with particle size distribution below 4μ
Ni alloy containing 3 wt% (ii++L%) of 2O° powder (
Ni-20Cr-0,6AI-0,37i), pure Cu
(purity>99%), Al alloy (Al-67n-2,1
Mg-0,2Cu), Ti alloy (Ti-6AI-4
V) was created using an attritor by the MA method.
この時のMAはA「雰囲気中で50時間アジテークを2
50rρ膳回転させて行い、原料は各元素の粉末(純度
〉99%)を用いた。The MA at this time was A, ``50 hours of agitation in the atmosphere, 2
The test was carried out by rotating at 50 rpm, and powders of each element (purity>99%) were used as raw materials.
得られたMA絹粉末15vol%の直径74μ麺のSi
ウィスカ、SiNウィスカを夫々加え、ボールミルで1
0時間撹拌混合した。Si of the obtained MA silk powder 15vol% diameter 74μ noodles
Add whiskers and SiN whiskers, and use a ball mill to
The mixture was stirred and mixed for 0 hours.
この混合粉末を、Ni合金は1000°Cで、純Cuは
780°Cで、Al合金は440°Cで、Ti合金は8
00℃で夫々押出し、得られた押出材の組織を調べた。This mixed powder was heated to 1000°C for Ni alloy, 780°C for pure Cu, 440°C for Al alloy, and 8°C for Ti alloy.
Each material was extruded at 00°C, and the structure of the obtained extruded material was examined.
この結果、T20.を6wt%含むものは、いずれもM
A絹粉末−33(]メツシュと細かかっただ酸素による
汚染が多かった(〉3%)。As a result, T20. All those containing 6wt% of M
A Silk Powder-33 () Contamination by mesh and fine oxygen was high (>3%).
一方、Y2O3を3wt、%含むものは、いずれもMA
絹粉末上250メツシエであったため酸素による1η染
も少なかった(く2%)。On the other hand, those containing 3wt% of Y2O3 are all MA
Since it was 250 mesh on silk powder, 1η dyeing with oxygen was also small (2%).
このことから、T20.を6wt%含有させると多過ぎ
ることが明らかとなった。From this, T20. It became clear that 6 wt% of the content was too large.
また、直径0.4μm以下のY2O3を1Qvol%し
か含まないものでは、いずれもYzOs粒子間の距離が
100n■以上もあり、ODS合金としては不敵であっ
た。(酸化物粒子間距離が大き過ぎると、材料の変形に
伴う転位の動きを効果的に止めることができない為強度
が低くなり高強度を有すべきODS合金としては適さな
い)一方、直径0./1μml以下のY 2111を5
0VO1%、30vol%含むものでは、いずれもY2
O1粒子間の距離がlOnw〜70nmと好ましく、O
DS合金として好適であった。In addition, in those containing only 1 Qvol% of Y2O3 with a diameter of 0.4 μm or less, the distance between YzOs particles was 100 n■ or more, making them invincible as ODS alloys. (If the distance between oxide particles is too large, the movement of dislocations due to material deformation cannot be effectively stopped, resulting in low strength, making it unsuitable for an ODS alloy that should have high strength). /1 μml or less of Y 2111 in 5
For those containing 0VO1% and 30vol%, both Y2
The distance between O1 particles is preferably lOnw~70nm, and O
It was suitable as a DS alloy.
また、直径0.4μ■以下の粒径のT20.を50vo
l%、30 vat%含むY2O1を3wt%と、15
vol%の直径74μ■のSiCウィスカ、SiNウィ
スカとを含む一ヒ記いずれの押出材も、Y2O1、Si
Cウィスカ、SiNウィスカを含まない上記Ni合金、
純Cu、AI合金、Ti合金押出材の強度より、20〜
83%も高い強度を示すことが明らかとなった。In addition, T20. 50vo
1%, 3wt% of Y2O1 containing 30vat%, 15
Each of the extruded materials mentioned above contains SiC whiskers and SiN whiskers with a diameter of 74μ■ in vol%, Y2O1, Si
The above Ni alloy does not contain C whiskers and SiN whiskers,
From the strength of pure Cu, AI alloy, and Ti alloy extruded material, 20~
It was revealed that the strength was as high as 83%.
なお、YxOiは上記Ni合金、Al合金、T1合金中
において、その全てがAl.Offとの複合酸化物(3
YJz ・5AItOx、Y2O3・AlzOz )を
作っていることが明らかとなった。In addition, YxOi is all Al. Complex oxide with Off (3
It has become clear that YJz・5AItOx, Y2O3・AlzOz) are being produced.
[発明の効果]
以ト詳述したように、本発明によれば、最近の高度な技
術で必要とされる高機能部品の作成に適した高強度を有
する新規な複合強化合金を提供することができる。[Effects of the Invention] As detailed above, according to the present invention, it is possible to provide a novel composite reinforced alloy having high strength suitable for producing high-performance parts required by recent advanced technologies. I can do it.
Claims (4)
度分布を持つ酸化物粒子0.3〜5wt%含む酸化物分
散強化合金中に、直径が10μm以上の炭素繊維、炭化
ケイ素ウィスカ、窒化ケイ素ウィスカ、又はこれらにB
又はB_4Cを化学蒸着させた繊維を3〜35vol%
含むことを特徴とする複合強化合金。(1) Carbon fibers, silicon carbide whiskers, and silicon nitride with a diameter of 10 μm or more are contained in an oxide dispersion strengthened alloy containing 0.3 to 5 wt% of oxide particles with a particle size distribution in which 20 vol% or more have a diameter of 0.4 μm or less. Whiskers or B
Or 3 to 35 vol% of fibers chemically vapor-deposited with B_4C.
A composite reinforced alloy characterized by comprising:
それらの複合酸化物である請求項(1)記載の複合強化
合金。(2) The composite reinforced alloy according to claim (1), wherein the oxide particles are Y_2O_3, Al_2O_3, or a composite oxide thereof.
金、純Cu、Al合金又はTi合金である請求項(1)
、(2)記載の複合強化合金。(3) Claim (1) wherein the matrix of the oxide particle dispersion strengthened alloy is a Ni alloy, pure Cu, an Al alloy, or a Ti alloy.
, (2) The composite reinforced alloy described in (2).
度分布を持つ酸化物粉末を用いてメカニカルアロイング
法により作成した該酸化物粒子を0.3〜5wt%含む
メカニカルアロイング粉末と、直径10μm以上の炭素
繊維、炭化ケイ素ウィスカ、窒化ケイ素ウィスカ、又は
これらにB又はB_4Cを化学蒸着させた繊維を3〜3
5vol%となるように混合し、前記メカニカルアロイ
ング粉末の融点の1/2以上の温度において熱間押出す
ることを特徴とする複合強化合金の製造法。(4) A mechanical alloying powder containing 0.3 to 5 wt% of oxide particles prepared by a mechanical alloying method using an oxide powder having a particle size distribution in which 20 vol% or more have a diameter of 0.4 μm or less; 3 to 3 carbon fibers of 10 μm or more, silicon carbide whiskers, silicon nitride whiskers, or fibers with B or B_4C chemically deposited on them.
A method for producing a composite reinforced alloy, comprising mixing the mechanically alloyed powders at a concentration of 5 vol % and hot extruding at a temperature of 1/2 or more of the melting point of the mechanical alloying powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13470389A JPH032338A (en) | 1989-05-30 | 1989-05-30 | Composite reinforced alloy and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13470389A JPH032338A (en) | 1989-05-30 | 1989-05-30 | Composite reinforced alloy and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH032338A true JPH032338A (en) | 1991-01-08 |
Family
ID=15134623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13470389A Pending JPH032338A (en) | 1989-05-30 | 1989-05-30 | Composite reinforced alloy and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH032338A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5424595A (en) * | 1993-05-04 | 1995-06-13 | General Electric Company | Integrated magnetic bearing/switched reluctance machine |
US6635357B2 (en) * | 2002-02-28 | 2003-10-21 | Vladimir S. Moxson | Bulletproof lightweight metal matrix macrocomposites with controlled structure and manufacture the same |
WO2005066382A1 (en) * | 2004-01-12 | 2005-07-21 | Mtu Aero Engines Gmbh | Semifinished product made of a fiber-reinforced composite material and method for the production thereof |
GB2419605A (en) * | 2002-07-18 | 2006-05-03 | Honda Motor Co Ltd | Making copper composites by extrusion |
CN102051561A (en) * | 2011-01-14 | 2011-05-11 | 南京信息工程大学 | Heat-resistant titanium alloy material and preparation method thereof |
-
1989
- 1989-05-30 JP JP13470389A patent/JPH032338A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5424595A (en) * | 1993-05-04 | 1995-06-13 | General Electric Company | Integrated magnetic bearing/switched reluctance machine |
US6635357B2 (en) * | 2002-02-28 | 2003-10-21 | Vladimir S. Moxson | Bulletproof lightweight metal matrix macrocomposites with controlled structure and manufacture the same |
GB2419605A (en) * | 2002-07-18 | 2006-05-03 | Honda Motor Co Ltd | Making copper composites by extrusion |
GB2419605B (en) * | 2002-07-18 | 2006-10-18 | Honda Motor Co Ltd | Method of manufacturing composite copper material |
WO2005066382A1 (en) * | 2004-01-12 | 2005-07-21 | Mtu Aero Engines Gmbh | Semifinished product made of a fiber-reinforced composite material and method for the production thereof |
US7955712B2 (en) | 2004-01-12 | 2011-06-07 | Mtu Aero Engines Gmbh | Semifinished product made of a composite material and method for producing a semifinished product from a composite material |
CN102051561A (en) * | 2011-01-14 | 2011-05-11 | 南京信息工程大学 | Heat-resistant titanium alloy material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5595616A (en) | Method for enhancing the oxidation resistance of a molybdenum alloy, and a method of making a molybdenum alloy | |
EP0990054B1 (en) | Method of manufacturing a dispersion-strengthened aluminium alloy | |
JPS63157831A (en) | Heat-resisting aluminum alloy | |
JP2002003977A (en) | TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD | |
JPH0387301A (en) | Material processing and manufacture | |
JPH032338A (en) | Composite reinforced alloy and its manufacture | |
US5397533A (en) | Process for producing TiB2 -dispersed TiAl-based composite material | |
US4676830A (en) | High strength material produced by consolidation of rapidly solidified aluminum alloy particulates | |
JPS63312901A (en) | Heat resistant high tensile al alloy powder and composite ceramics reinforced heat resistant al alloy material using said powder | |
JPH055142A (en) | Titanium-based composite material and production thereof | |
JPH0578762A (en) | Tial-based composite material having excellent strength and its production | |
JPS58193335A (en) | Dispersion strengthened type nickel base heat resistant sintered alloy and preparation thereof | |
JPH0593233A (en) | Aluminum-modified titanium/titanium alloy microcomposite material | |
CN1796589A (en) | Duplexing sized high temperature resisting aluminium based composite material enhanced by granules of ceramics | |
JPS60125345A (en) | Aluminum alloy having high heat resistance and wear resistance and manufacture thereof | |
JP3743019B2 (en) | Titanium aluminide for precision casting containing Fe and V | |
JPS62192548A (en) | Dispersion strengthening heat resistant copper alloy material | |
JPH0739615B2 (en) | Method for producing Zn-22A1 superplastic powder-potassium titanate composite material | |
JPH02270931A (en) | Ceramic grains reinforced titanium composite material | |
JPH05171214A (en) | Production of reinforced titanium | |
JP3225252B2 (en) | Method for producing particle-dispersed sintered titanium-based composite material | |
JPH0196338A (en) | Manufacture of carbide dispersion-strengthened copper alloy | |
JPH02258948A (en) | Ceramic grain reinforced titanium composite material | |
JPS61113741A (en) | High strength corrosion resistant nickel base alloy and its production | |
JP2580689B2 (en) | Ti-Al alloy powder sintered body and method for producing the same |