JPH03233405A - Polarizer - Google Patents

Polarizer

Info

Publication number
JPH03233405A
JPH03233405A JP19271790A JP19271790A JPH03233405A JP H03233405 A JPH03233405 A JP H03233405A JP 19271790 A JP19271790 A JP 19271790A JP 19271790 A JP19271790 A JP 19271790A JP H03233405 A JPH03233405 A JP H03233405A
Authority
JP
Japan
Prior art keywords
wave
polarizing element
retardation plate
light
birefringent medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19271790A
Other languages
Japanese (ja)
Inventor
Jieiu Jin
ジン ジェイウ
Shoichi Uchiyama
正一 内山
Yoshitaka Ito
嘉高 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP19271790A priority Critical patent/JPH03233405A/en
Publication of JPH03233405A publication Critical patent/JPH03233405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Abstract

PURPOSE:To make the polarizer compact, inexpensive and widely applicable by forming the polarizer with a polarized medium, a transparent substrate having a rugged surface and a phase-difference substrate. CONSTITUTION:This polarizer consists of the polarized light separating part formed with an optically transparent substrate 103 having ruggednesses on one surface and a polarlized medium 102 covering the ruggednesses and the phase-difference plate 104 provided on the rear of the polarized light separating part. Since the incident angles to the phase-difference plate of the light wave (P wave) having parallel vibrating surfaces and light wave (S wave) having a vertical vibrating surface are different from each other, the optical path differences in the phase-difference plate 104 are dissimilar from each other. Accordingly, the phase differences generated by the P wave and S wave are dissimilar from each other. Consequently, the polarizer is made compact, inexpensive and widely applicable.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ランダムな光の偏光特性を1方向の直線偏光
に変える光学素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical element that changes the polarization characteristics of random light into linearly polarized light in one direction.

〔従来の技術〕[Conventional technology]

従来、通常の光源が発する自然光から直線偏光を得る場
合には、ウオラストン形、ローション形などの複屈折プ
リズム、あるいは光吸収の二色性を利用した一方向延伸
配向フィルム等が利用されてきた。
Conventionally, when obtaining linearly polarized light from natural light emitted by a normal light source, birefringent prisms such as Wollaston type or lotion type, or unidirectionally stretched oriented films that utilize dichroism of light absorption, etc. have been used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、複屈折性プリズムは大きな単結晶体を精密加工
して作る必要があることから非常に高価であるばかりか
、特定の用途に要求される望ましい形状または配置に容
易に形成できない。更に、得られる単結晶体の大きさに
限度があるため、それが又利用の範囲を著しく限定して
いるなどの問題を有していた。一方、延伸配向フィルム
は有機重合体物質により形成されているため、量産性に
優れ安価である反面、光吸収の二色性を利用しているた
め、フィルム自体が入射光の一部を吸収することになり
光透過率が低い。更に、強い光に対しては、光吸収にと
もなう発熱作用により、フィルム自身が自己破壊を生じ
る場合があるなどの欠点を有していた。
However, birefringent prisms are not only very expensive because they must be manufactured by precision machining of large single crystals, but also cannot be easily formed into the desired shape or arrangement required for a particular application. Furthermore, since there is a limit to the size of the single crystal that can be obtained, this also has the problem of significantly limiting the range of use. On the other hand, stretched oriented films are made of organic polymer materials, making them easy to mass produce and being inexpensive. However, since they utilize dichroism in light absorption, the film itself absorbs a portion of the incident light. As a result, the light transmittance is low. Furthermore, the film itself has the disadvantage that it may self-destruct when exposed to strong light due to the heat generation effect that accompanies light absorption.

そこで、本発明は以上のような問題点を解決するもので
、その目的とするところは、本質的に光吸収がなくコン
パクトかつ安価な偏光素子を提供することにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a compact and inexpensive polarizing element that essentially does not absorb light.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の偏光素子は、一方の面に凹凸構造が形成されて
いる光学的に透明な基板及び前記凹凸構造を覆う複屈折
媒体により構成される偏光分離部、前記偏光分離部の凹
凸構造を形成してある面の裏面に設けられた位相差板か
らなることを特徴とする。また、前記凹凸構造の断面構
造が鋸歯形状のアレイであることを特徴とする。また、
前記複屈折媒体が、一軸性複屈折媒体であることを特徴
とする。また、前記複屈折媒体の主屈折率の一方が、前
記基板の屈折率と等しい屈折率であることを特徴とする
。また、前記複屈折媒体が、液晶であることを特徴とす
る。また、前記偏光分離部が、光学異方性を有するプリ
ズムもしくはその組合せからなることを特徴とする。ま
た、前記位相差板が一軸性複屈折結晶であることを特徴
とする。また、前記位相差板が、液晶であることを特徴
とする。
The polarizing element of the present invention includes a polarization separation section formed of an optically transparent substrate having an uneven structure formed on one surface and a birefringent medium covering the uneven structure, and an uneven structure of the polarization separation section. It is characterized by consisting of a retardation plate provided on the back side of the front side. Further, the cross-sectional structure of the uneven structure is a sawtooth array. Also,
The birefringent medium is a uniaxial birefringent medium. Further, one of the principal refractive indices of the birefringent medium is characterized in that the refractive index is equal to the refractive index of the substrate. Further, the birefringent medium is a liquid crystal. Further, the polarization separation section is characterized by being composed of a prism having optical anisotropy or a combination thereof. Further, the retardation plate is a uniaxially birefringent crystal. Further, the retardation plate is a liquid crystal.

また、前記位相差板が、所望の形状を有する透明媒質で
おおわれていることを特徴とする。
Further, the retardation plate is covered with a transparent medium having a desired shape.

〔作用〕[Effect]

本発明の作用を図に沿って説明する。第1図は、本発明
の偏光素子の作用を説明する概念図である。
The operation of the present invention will be explained with reference to the drawings. FIG. 1 is a conceptual diagram illustrating the operation of the polarizing element of the present invention.

ランダムな偏光成分を有する入射光105が、偏光素子
101に入射する。この偏光素子101は、複屈折媒体
102、片面に凹凸構造を形成してある透明基板103
、位相差板104からなる。複屈折媒体102の、紙面
に平行な振動面を持つ光波(以f! P波とする)に対
する屈折率をn2、紙面に垂直な振動面を持つ光波(以
後S波とする)に対する屈折率をnsとする。また、基
板103の屈折率をnbとし、np:nbとなるように
する。  すると、入射した光波のうち、P波は、複屈
折媒体102と基板103の屈折率が等しいため直進す
るが、S波は複屈折媒体102と基板103の屈折率が
異なるために、境界面で屈折作用を受ける。
Incident light 105 having random polarization components enters polarizing element 101 . This polarizing element 101 includes a birefringent medium 102 and a transparent substrate 103 having an uneven structure formed on one side.
, and a retardation plate 104. The refractive index of the birefringent medium 102 for light waves with a vibration plane parallel to the plane of paper (hereinafter referred to as f! P waves) is n2, and the refractive index for light waves with a vibration plane perpendicular to the plane of paper (hereinafter referred to as S waves) is n2. Let it be ns. Further, the refractive index of the substrate 103 is set to nb, so that np:nb is satisfied. Then, among the incident light waves, the P wave travels straight because the refractive index of the birefringent medium 102 and the substrate 103 are the same, but the S wave travels straight at the interface because the refractive index of the birefringent medium 102 and the substrate 103 is different. Subject to refraction.

これらの光波は、位相差板104に入射する。この位相
差板104は、例えば液晶、方解石などの一軸性複屈折
媒体からなる。ここで、P波、S波は位相差板104へ
の入射角度が異なるため、位相差板104内における光
路差が異なる。従ってP波、S波で生じる位相差がこと
なる。従って、位相差板の光学軸方向、位相差板への光
線入射角度、位相差板の主屈折率、光波の波長を調整す
ることにより、 δ。=2nπ  δ、=(2m+1)  πここで δ。・・・・P波の受ける位相変化 δ3・・・・S波の受ける位相変化 n、  m・・・・整数 となるようにし、且つ光学軸の方向をS波と45°をな
すようにすれば、発生位相差によりP波はP波のまま出
射し、S波はP波となって出射する。以上を分かりやす
く分解して描いたのが、第2図である。つまり、ランダ
ムな偏光成分を有する入射光204は、複屈折媒体20
1及び表面に凹凸構造を有する基板202により偏光分
離作用を受けP波205とS波206とに分かれる。
These light waves are incident on the retardation plate 104. This retardation plate 104 is made of, for example, a uniaxial birefringent medium such as liquid crystal or calcite. Here, since the P wave and the S wave have different incident angles to the retardation plate 104, the optical path difference within the retardation plate 104 is different. Therefore, the phase difference caused by the P wave and the S wave is different. Therefore, by adjusting the optical axis direction of the retardation plate, the angle of incidence of light rays on the retardation plate, the principal refractive index of the retardation plate, and the wavelength of the light wave, δ can be adjusted. =2nπ δ, = (2m+1) πwhere δ. ...The phase change experienced by the P wave δ3...The phase change experienced by the S wave n, m...Integer, and the direction of the optical axis is set at 45 degrees with the S wave. For example, due to the generation phase difference, a P wave is emitted as a P wave, and an S wave is emitted as a P wave. Figure 2 shows an easy-to-understand breakdown of the above. That is, the incident light 204 having random polarization components is transmitted to the birefringent medium 20
1 and a substrate 202 having an uneven structure on its surface, the polarized light is separated into a P wave 205 and an S wave 206.

これらは、位相差板203に入射するが、前述の理由に
より、P波は見かけ上全く位相差を生じない。一方S波
には位相差が生じP波となる。従って、出射光207は
全てP波となる。以上は、本発明の一例により作用を説
明したものであるが、本発明は、この例に限定されるも
のではない。本発明の本質は、偏光成分のエネルギー伝
搬方向を角度分離し、異方性媒質中へ入射させることに
より、各偏光成分の光路長をことならせしめ、そのこと
によって両偏光成分間に生じる発生位相差の差を利用し
て、見かけ上一方の偏光にのふ偏光面回転を起こさせ、
単一方向直線偏光を得ることにある。従って、この本質
を逸脱しない範囲に於て種々の素子構成の変更が可能で
ある。このような例については、実施例で述べることと
する。また、本発明の偏光素子では、出射光がある広が
りを持つことは避けられない。この広がりを最小限に抑
えるために第3図に示すように位相差板303の外側に
、所望の形状を有する素子を作製することも考えられる
These are incident on the phase difference plate 203, but for the reason mentioned above, the P waves apparently produce no phase difference at all. On the other hand, a phase difference occurs in the S wave and it becomes a P wave. Therefore, all of the emitted light 207 becomes P waves. Although the operation of the present invention has been explained above using one example, the present invention is not limited to this example. The essence of the present invention is to angle-separate the energy propagation directions of polarized light components and make them enter an anisotropic medium, thereby making the optical path lengths of each polarized light component different. By using the difference in phase difference, the plane of polarization is rotated to appear to be one polarized light.
The purpose is to obtain unidirectional linearly polarized light. Therefore, various changes in the element configuration are possible without departing from this essence. Such an example will be described in Examples. Further, in the polarizing element of the present invention, it is inevitable that the emitted light has a certain spread. In order to minimize this spread, it is conceivable to fabricate an element having a desired shape outside the retardation plate 303 as shown in FIG. 3.

[実施例−1] 第4図に、その断面構造を示す偏光素子を作成した。素
子の各構成要素の諸元は以下の通りである。複屈折媒体
401はネマチック液晶を使用し、P波に対する屈折率
は、70、S波に対する屈折率は、50である。基板4
02は、屈折率、70のランタンフリントガラスを使用
し表面の凹凸形状は鋸歯形状とした。この部分に光波が
入射するとP波はそのまま直進しS波は複屈折媒体40
1と基板の界面で屈折作用を受は角度分離されて位相差
板403に入射する。位相差板403は液晶セルを使用
した。液晶は基板に対してホモジニアス配列とし、光学
軸はS波に対して450にとっである。ここで液晶セル
の構成についてのべる。液晶の複屈折率をΔn、セル厚
をdとし、作用で述べた条件式(P6)で、n=m=N
とすれば、次式が成り立つ。
[Example-1] A polarizing element whose cross-sectional structure is shown in FIG. 4 was created. The specifications of each component of the device are as follows. The birefringent medium 401 uses nematic liquid crystal, and has a refractive index of 70 for P waves and 50 for S waves. Board 4
In No. 02, lanthanum flint glass with a refractive index of 70 was used, and the uneven shape of the surface was made into a sawtooth shape. When a light wave enters this part, the P wave goes straight and the S wave goes straight to the birefringent medium 40.
1 and the substrate, the light is angularly separated and enters the retardation plate 403. A liquid crystal cell was used as the retardation plate 403. The liquid crystal is homogeneously aligned with respect to the substrate, and the optical axis is at 450 degrees relative to the S wave. Here we will talk about the structure of the liquid crystal cell. Let the birefringence of the liquid crystal be Δn, the cell thickness be d, and in the conditional expression (P6) described in the operation, n=m=N
Then, the following formula holds true.

Δnd’ =、(N+1/2)λ・・・S波Δnd= 
 Nλ    ・・・P波 従って、Δn=0.2、N=1000、λ=630nm
とすれば、d=3.15mm、  偏光分離角度は、8
1’となる。この偏光分離角度を実現するため、基板4
02に形成してある鋸歯形状をピッチ、85M高さ0.
5mmの直角三角形と設定した。この偏光素子に波長6
30nmのランダム偏光を垂直に入射したところ、出射
光の90%がP偏光であった。
Δnd' =, (N+1/2)λ...S wave Δnd=
Nλ...P wave Therefore, Δn=0.2, N=1000, λ=630nm
Then, d=3.15mm, polarization separation angle is 8
It becomes 1'. In order to achieve this polarization separation angle, the substrate 4
The sawtooth shape formed on 02 has a pitch of 85M and a height of 0.
It was set as a 5mm right triangle. This polarizing element has a wavelength of 6
When 30 nm random polarized light was vertically incident, 90% of the emitted light was P-polarized light.

[実施例−2] 実施例−1と基本的な構成が同様であるが各パラメータ
ーの異なる偏光素子を作製した。複屈折媒体のネマチッ
ク液晶は、P波に対する屈折率は、49、S波に対する
屈折率は、74、基板は屈折率、49のPMMAを使用
した。基板に形成してある直角二等辺三角形の鋸歯形状
のサイズはピッチ0.867mm、  高さ0.5mm
である。位相差板としてはΔn=0.2の液晶セルを使
用しN=100と設定してある。この偏光素子に波長6
30nmのランダム偏光を垂直に入射したところ、出射
光の86%がP偏光であった。
[Example 2] A polarizing element having the same basic configuration as Example 1 but having different parameters was produced. The nematic liquid crystal used as the birefringent medium had a refractive index of 49 for P waves and 74 for S waves, and PMMA with a refractive index of 49 was used for the substrate. The size of the right-angled isosceles triangular sawtooth shape formed on the board is 0.867 mm in pitch and 0.5 mm in height.
It is. A liquid crystal cell with Δn=0.2 is used as the retardation plate, and N=100 is set. This polarizing element has a wavelength of 6
When 30 nm randomly polarized light was vertically incident, 86% of the emitted light was P-polarized light.

[実施例−3] 前例とは偏光分離部の異なる偏光素子を作製した。この
偏光素子の概要を第5図に示す。この偏光素子の偏光分
離部501は要素部分のアレイからなっており、その要
素部分の拡大図を第6図に示す。プリズムアレイ601
は等方性媒体からなっており屈折率はn日、このプリズ
ムアレイ601と位相差板602の形成する空間に液晶
603が、基板に対して平行に配向して封入されており
、P波605に対する屈折率はn3、S波606に対す
る屈折率はn5であり、nlI”npである。プリズム
アレイの頂角604をβに設定しておけば、この要素部
分に光線が垂直入射すると、プリズムアレイと液晶の界
面に角度βで入射入射することとなり、P波は直進する
が、S波は屈折し、両波は角度αで分離される。α、β
は以下の式から導かれる。
[Example 3] A polarizing element having a polarization separation section different from that of the previous example was manufactured. An outline of this polarizing element is shown in FIG. The polarization separation section 501 of this polarizing element consists of an array of element parts, and an enlarged view of the element parts is shown in FIG. Prism array 601
is made of an isotropic medium with a refractive index of n days, and a liquid crystal 603 is sealed in the space formed by the prism array 601 and the retardation plate 602, oriented parallel to the substrate. The refractive index for the S wave 606 is n3, and the refractive index for the S wave 606 is n5, which is nlI''np.If the apex angle 604 of the prism array is set to β, when a light ray is perpendicularly incident on this element part, the prism array The P wave will be incident on the interface of the liquid crystal at an angle β, and the P wave will travel straight, but the S wave will be refracted, and both waves will be separated at an angle α. α, β
is derived from the following formula.

nl1sinβ: netts i n  (β−α)
n e r t ” n p n s / [n s 
2COS 2(7C/ 2− (1)+n、’5in2
(π/2−(Z)]”2ここで、実施例−1で使用した
位相差板と全く同じ位相差板を使用すると、α=、81
°が要求される。従って、ns:np=、 50、n5
=、70  とすると、β=15.1’  となる。プ
リズムアレイはアクリル樹脂を使用し、ピッチを50μ
mとした。液晶はネマチック液晶を使用した。この偏光
素子に波長630r+mのランダム偏光を垂直に入射し
たところ、出射光の82%がP偏光であった・ [実施例−4] 実施例−3と基本的な構成は同様であるが、各パラメー
ターの異なる偏光素子を作製した。位相差板は、実施例
−2で使用したものと全く同様なものを使用し、偏光分
離部のプリズムアレイ材料としてn=、49のPMMA
を使用し、液晶は、n p= 、49  n s= 、
74である。
nl1sinβ: nets in (β−α)
n er t ” n p n s / [n s
2COS 2(7C/ 2- (1)+n,'5in2
(π/2−(Z)]”2Here, if the exact same retardation plate as that used in Example-1 is used, α=,81
° is required. Therefore, ns:np=, 50, n5
=,70, then β=15.1'. The prism array uses acrylic resin and has a pitch of 50μ.
It was set as m. A nematic liquid crystal was used for the liquid crystal. When randomly polarized light with a wavelength of 630r+m was perpendicularly incident on this polarizing element, 82% of the output light was P-polarized light. [Example-4] The basic configuration was the same as Example-3, but each We created polarizing elements with different parameters. The retardation plate used was exactly the same as that used in Example-2, and the prism array material of the polarization separation section was PMMA with n=49.
and the liquid crystal is n p= , 49 n s= ,
It is 74.

β=35.Q° プリズムピッチ150μmと設定した
。この偏光素子に波長630nmのランダム偏光を垂直
に入射したところ、出射光の80%がP偏光であった。
β=35. Q° The prism pitch was set to 150 μm. When randomly polarized light with a wavelength of 630 nm was perpendicularly incident on this polarizing element, 80% of the emitted light was P-polarized light.

[発明の効果] 以上説明したように、本発明の偏光素子は、複屈折媒体
、表面に凹凸形状を有する透明基板、位相差板の3層か
らなるきわめて簡素な構成により、ランダムな偏光成分
を有する入射光を、はとんど損失なく一方向の偏光成分
のみを有する出射光に変換することが可能である。本発
明の光学素子は上記の特性を生かして、偏光を必要とす
る各種表示体、特に液晶表示体、光アイソレータ−光ス
ィッチ、光学フィルタや、それらを構成要素とする各種
光学測定機等、広範囲の応用が可能である。
[Effects of the Invention] As explained above, the polarizing element of the present invention has a very simple structure consisting of three layers: a birefringent medium, a transparent substrate with an uneven surface, and a retardation plate, and can generate random polarized light components. It is possible to convert incident light having a polarization component into output light having only a polarization component in one direction with almost no loss. The optical element of the present invention can be used in a wide range of applications, such as various displays that require polarized light, especially liquid crystal displays, optical isolators/optical switches, optical filters, and various optical measuring instruments that use these components as components. can be applied.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の偏光素子の作用を説明するための構成
断面図。第2図は、本発明の偏光素子の作用を説明する
ための構成断面図。第3図は、本発明の偏光素子の、光
束の広がりを抑えるための構成の構成断面図。第4図、
第5図、第6図は、本発明の詳細な説明図。 101・・・偏光素子 102・・・複屈折媒体 103・・・表面に凹凸形状を有する基板104・・・
位相差板 105・・・入射光 106・・・出射光 201・・・複屈折媒体 202・・・基板 203・・・位相差板 204・・・入射光 205・・・P波 206・・・S波 207・・・出射光 301・・・複屈折媒体 302・・・基板 303・・・位相差板 304・・・所望の形状を有する素子 401・・・ネマチック液晶 402・・・基板 403・・・液晶セル位相差板 501・・・偏光分離部 502・・・位相差板 601・・・ブリズムアレイ 602 603 04 05 06 ・位相差板 ・液晶 ・プリズムアレイの頂角 ・・P波 ・・S波 以上
FIG. 1 is a cross-sectional view of the configuration of the polarizing element of the present invention for explaining its function. FIG. 2 is a cross-sectional view of the structure for explaining the function of the polarizing element of the present invention. FIG. 3 is a cross-sectional view of the configuration of the polarizing element of the present invention for suppressing the spread of light flux. Figure 4,
5 and 6 are detailed explanatory diagrams of the present invention. 101...Polarizing element 102...Birefringent medium 103...Substrate 104 having an uneven surface shape
Retardation plate 105...Incoming light 106...Outgoing light 201...Birefringent medium 202...Substrate 203...Retardation plate 204...Incoming light 205...P wave 206... S wave 207... Outgoing light 301... Birefringent medium 302... Substrate 303... Retardation plate 304... Element having a desired shape 401... Nematic liquid crystal 402... Substrate 403... ...Liquid crystal cell retardation plate 501...Polarization separation unit 502...Retardation plate 601...Brism array 602 603 04 05 06 - Vertex angle of retardation plate, liquid crystal, prism array...P wave...S more than waves

Claims (9)

【特許請求の範囲】[Claims] (1)一方の面に凹凸構造が形成されている光学的に透
明な基板及び前記凹凸構造を覆う複屈折媒体により構成
される偏光分離部、前記偏光分離部の凹凸構造を形成し
てある面の裏面に設けられた位相差板からなることを特
徴とする偏光素子。
(1) An optically transparent substrate having a concavo-convex structure formed on one surface, a polarization separation section composed of a birefringent medium covering the concavo-convex structure, and a surface of the polarization separation section on which the concave-convex structure is formed. A polarizing element comprising a retardation plate provided on the back surface of the polarizing element.
(2)前記凹凸構造の断面構造が鋸歯形状のアレイであ
ることを特徴とする請求項1記載の偏光素子。
(2) The polarizing element according to claim 1, wherein the cross-sectional structure of the uneven structure is a sawtooth array.
(3)前記複屈折媒体が、一軸性複屈折媒体であること
を特徴とする請求項1記載の偏光素子。
(3) The polarizing element according to claim 1, wherein the birefringent medium is a uniaxial birefringent medium.
(4)前記複屈折媒体の主屈折率の一方が、前記基板の
屈折率と等しい屈折率であることを特徴とする請求項1
記載の偏光素子。
(4) Claim 1, wherein one of the principal refractive indices of the birefringent medium has a refractive index equal to the refractive index of the substrate.
The polarizing element described.
(5)前記複屈折媒体が、液晶であることを特徴とする
請求項1記載の偏光素子。
(5) The polarizing element according to claim 1, wherein the birefringent medium is a liquid crystal.
(6)前記偏光分離部が、光学異方性を有するプリズム
もしくはその組合せからなることを特徴とする請求項1
記載の偏光素子。
(6) Claim 1, characterized in that the polarization separation section is composed of a prism having optical anisotropy or a combination thereof.
The polarizing element described.
(7)前記位相差板が一軸性複屈折媒体よりなることを
特徴とする請求項(1)又は(6)記載の偏光素子。
(7) The polarizing element according to claim (1) or (6), wherein the retardation plate is made of a uniaxially birefringent medium.
(8)前記位相差板が、液晶であることを特徴とする請
求項(1)又は(6)記載の偏光素子。
(8) The polarizing element according to claim (1) or (6), wherein the retardation plate is a liquid crystal.
(9)前記位相差板が、所望の形状を有する透明媒質で
おおわれていることを特徴とする請求項(1)又は(6
)記載の偏光素子。
(9) Claim (1) or (6) characterized in that the retardation plate is covered with a transparent medium having a desired shape.
) described polarizing element.
JP19271790A 1989-12-18 1990-07-20 Polarizer Pending JPH03233405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19271790A JPH03233405A (en) 1989-12-18 1990-07-20 Polarizer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-327608 1989-12-18
JP32760889 1989-12-18
JP19271790A JPH03233405A (en) 1989-12-18 1990-07-20 Polarizer

Publications (1)

Publication Number Publication Date
JPH03233405A true JPH03233405A (en) 1991-10-17

Family

ID=26507490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19271790A Pending JPH03233405A (en) 1989-12-18 1990-07-20 Polarizer

Country Status (1)

Country Link
JP (1) JPH03233405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900977A (en) * 1995-06-29 1999-05-04 U.S. Philips Corporation Polarizing element including layer having alternating areas of birefringent and isotropic materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900977A (en) * 1995-06-29 1999-05-04 U.S. Philips Corporation Polarizing element including layer having alternating areas of birefringent and isotropic materials

Similar Documents

Publication Publication Date Title
US7079202B2 (en) Multi-layer diffraction type polarizer and liquid crystal element
JPH03132603A (en) Polarizer
JPH0766121B2 (en) Electric field control type liquid crystal cell
JP3122111B2 (en) Optical isolator
JPS61124834A (en) Light applied sensor
JP2002031716A (en) Polarizing element and method for manufacturing the same
JPH04116521A (en) Prism optical element and polarizing optical element
JP2718057B2 (en) Polarizing element
JPWO2019004295A1 (en) High speed optical switching engine
JP2790669B2 (en) Polarizer
CA2059553A1 (en) Birefringent polarizing device
US20110261457A1 (en) Optical device configured by bonding first and second transparent members having birefringent property
US6351296B1 (en) Liquid crystal beam polarizer and method for manufacturing thereof
JP2004037480A (en) Liquid crystal element and optical attenuator
JPH03233405A (en) Polarizer
JP5150992B2 (en) Liquid crystal device and optical attenuator
JP2541014B2 (en) Polarizing prism
JPH10282337A (en) Sheet-like polarization separation and transformation polarizing element, and liquid crystal display device using same
JPH0391715A (en) Optical isolator
RU2759577C1 (en) Method for reflecting laser beams maintaining the polarisation and reflector based thereon
JP2900896B2 (en) Polarizing element and lighting device
JPH04240804A (en) Polarizing element
JPS63262602A (en) Diffraction grating type optical polarizing plat
JPH04172305A (en) Polarizer element
RU2164704C2 (en) Linear polarizer built around nematic liquid crystal