JP2541014B2 - Polarizing prism - Google Patents

Polarizing prism

Info

Publication number
JP2541014B2
JP2541014B2 JP2341086A JP34108690A JP2541014B2 JP 2541014 B2 JP2541014 B2 JP 2541014B2 JP 2341086 A JP2341086 A JP 2341086A JP 34108690 A JP34108690 A JP 34108690A JP 2541014 B2 JP2541014 B2 JP 2541014B2
Authority
JP
Japan
Prior art keywords
prism
crystal
viewing angle
triangular
uniaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2341086A
Other languages
Japanese (ja)
Other versions
JPH04208901A (en
Inventor
勝 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2341086A priority Critical patent/JP2541014B2/en
Publication of JPH04208901A publication Critical patent/JPH04208901A/en
Application granted granted Critical
Publication of JP2541014B2 publication Critical patent/JP2541014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、各種分光装置等や光学実験等で直線偏光を
取り出す際に必要とされる偏光プリズムに関する。
TECHNICAL FIELD The present invention relates to a polarizing prism required for extracting linearly polarized light in various spectroscopic devices and optical experiments.

〔従来技術〕[Prior art]

回折格子で単色化した光を試料に照射し、透過率や反
射率を測る分光光度計では、特に斜入射で測定するとき
に入射光の偏光状態が問題になる。回折格子で分光され
た光は波長ごとに異なる楕円偏光になる。しかし、測定
量として重要なのはS波やP波に対しての透過率,反射
率である場合が多い。そこで、こうした測定のために回
折格子の後に偏光プリズムを挿入し、プリズムを回転さ
せてS波入射光やP波入射光を作る。分光光度計は紫外
から赤外にわたる広い波長領域の光を測定に用いるた
め、こうした偏光プリズムは広い透過波長域を持ち、し
かも偏光子として機能しなければならない。さらに、回
折格子で分光されて弱くなった光の強度を落とさずに効
率よく使うために視野角は広い方が好ましい。
In a spectrophotometer for measuring transmittance and reflectance by irradiating a sample with light monochromaticized by a diffraction grating, the polarization state of incident light becomes a problem especially when measuring with oblique incidence. The light split by the diffraction grating becomes elliptically polarized light that differs for each wavelength. However, it is often the case that the transmittance and reflectance for S-waves and P-waves are important as measurement quantities. Therefore, for such measurement, a polarizing prism is inserted after the diffraction grating and the prism is rotated to generate S-wave incident light or P-wave incident light. Since a spectrophotometer uses light in a wide wavelength range from ultraviolet to infrared for measurement, such a polarizing prism must have a wide transmission wavelength range and function as a polarizer. Further, it is preferable that the viewing angle is wide in order to efficiently use the light that has been separated by the diffraction grating and has been weakened.

グランタイプの偏光プリズムの視野角について第4図
に従って説明する。グランプリジムは図のように光学軸
がプリズムの側面に垂直な方向に向いた2つの三角プリ
ズム(頂角S)を屈折率Nの接合層を介してはりあわせ
たものである。
The viewing angle of the Gran type polarizing prism will be described with reference to FIG. The Grand Prix Jim is a structure in which two triangular prisms (apex angle S) whose optical axes are oriented in a direction perpendicular to the side surfaces of the prisms are bonded via a bonding layer having a refractive index N as shown in the figure.

一軸性結晶の常光線,異常光線の主屈折率nω,nεの
うち小さい方をn1,大きい方をn2とする。一軸性負結晶
においてはn1=nε,n2=nωであり、一軸性正結晶に
おいてはn1=nω,n2=nεである。主屈折率n1の光線
(光線1)が接合界面で全反射をおこすための臨界入射
角をI1,主屈折率n2の光線(光線2)が全反射をおこす
ための臨界入射角をI2とする。
The smaller one of the principal refractive indices nω and nε of the ordinary ray and the extraordinary ray of the uniaxial crystal is n 1 , and the larger one is n 2 . In the uniaxial negative crystal, n 1 = nε, n 2 = nω, and in the uniaxial positive crystal, n 1 = nω, n 2 = nε. I 1 is the critical incident angle for total reflection of a ray having a main refractive index n 1 (ray 1) at the bonding interface, and is the critical incident angle for total reflection of a ray having a main refractive index n 2 (ray 2). I 2

プリズムが偏光子として作用するには、少なくともn2
>Nでなければならないが、必ずしもn1>Nである必要
はない。n2>N>n1の場合にn2>n1>Nの場合について
偏光プリズムの臨界入射角I1,I2は次のように与えられ
る。
For the prism to act as a polarizer, at least n 2
> N, but not necessarily n 1 > N. When n 2 >N> n 1 and n 2 > n 1 > N, the critical incident angles I 1 and I 2 of the polarizing prism are given as follows.

(i) n2>N>n1のとき このとき光線1は接合界面で全反射しないのでプリズ
ム内への屈折角が頂角Sに等しくなるような入射角をI1
と考えることができる。
(I) When n 2 >N> n 1 At this time, since the light ray 1 is not totally reflected at the junction interface, the incident angle at which the refraction angle into the prism is equal to the apex angle S is I 1
Can be considered.

(ii) n2>n1>Nのとき このときは両光線とも接合界面で全反射をおこすので なお、視野角はI1+I2で与えられる。 (Ii) When n 2 > n 1 > N At this time, both rays undergo total internal reflection at the junction interface. The viewing angle is given by I 1 + I 2 .

視野角の大きい偏光プリズムとして従来からよく知ら
れているものに方解石製グラントムソンプリズムがあ
る。これは接合部を接着剤としたもので、接着剤の屈折
率にもよるが、可視域で約20゜前後の広い視野角をとる
ことができる。
The Glan-Thompson prism made of calcite is a well-known polarizing prism with a wide viewing angle. This uses an adhesive at the joint, and depending on the refractive index of the adhesive, a wide viewing angle of about 20 ° can be taken in the visible range.

また、紫外光でも使える偏光プリズムとしては接合部
を空気層としたグランフーコープリズムがよく知られて
いる。
As a polarizing prism that can be used even in ultraviolet light, a Gran Foucault prism having an air layer at its junction is well known.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかし、グラントムソンプリズムのような接着剤を接
合層とした偏光プリズムでは接着剤の吸収により波長30
0nm以下の紫外光は透過しないという欠点を持ってい
る。接着層を薄くすればある程度透過させることはでき
るが、そうすれば消光比が落ち偏光子としての性能がそ
こなわれる。消光比を確保するには接着層にある程度以
上の厚みが必要で、そのため接着剤の粘度は高くなけれ
ばならない。さらに、接着剤の屈折率n2>Nを満足しな
ければならない等偏光プリズムの接着剤に対する要求は
厳しい。仮に、紫外光透過性、屈折率の適合性、高粘度
のうちどれかを満足する接着剤はあっても全てを満足す
る接着剤は存在しない。また、接着剤の厚みのために接
合層を平行にすることはきわめてむつかしく、N=n1
ないかぎり透過光のフレはさけられないものだった。
However, a polarizing prism with an adhesive layer such as the Glan-Thompson prism has a wavelength of 30 due to the absorption of the adhesive.
It has the drawback that it does not transmit UV light below 0 nm. If the adhesive layer is made thin, it can be transmitted to some extent, but then the extinction ratio is reduced and the performance as a polarizer is impaired. To secure the extinction ratio, the adhesive layer needs to have a certain thickness or more, and therefore the viscosity of the adhesive must be high. Furthermore, the requirements for the adhesive of the equal polarization prism, which must satisfy the refractive index n 2 > N of the adhesive, are severe. Even if there is an adhesive satisfying any one of ultraviolet light transmittance, suitability of refractive index, and high viscosity, no adhesive satisfies all of them. Further, it is extremely difficult to make the bonding layers parallel to each other due to the thickness of the adhesive, and the blur of the transmitted light is unavoidable unless N = n 1 .

次に、波長589.3nmにおいて視野角が光軸に対して対
称(I1=I2)となるように設計した方解石製グランフー
コープリズムの視野角の波長依存性を第5図に示す。こ
のとき、プラズムの頂角はS=50.46゜になる。
Next, FIG. 5 shows the wavelength dependence of the viewing angle of a Calcite-Gran Foucault prism designed so that the viewing angle is symmetrical (I 1 = I 2 ) with respect to the optical axis at the wavelength of 589.3 nm. At this time, the apex angle of the plasm becomes S = 50.46 °.

グランフーコープリズムでは接合層を空気層とするた
め、波長300nm以下の紫外光を透過させることはでき
る。しかし、接合層の屈折率がN=1と接着剤よりも小
さいため視野角が8゜前後と狭くなる欠点がある。
In the Gran Foucault prism, since the bonding layer is an air layer, it is possible to transmit ultraviolet light having a wavelength of 300 nm or less. However, since the refractive index of the bonding layer is N = 1, which is smaller than that of the adhesive, the viewing angle is narrowed to around 8 °.

しかも、プリズムを構成する方解石の屈折率は分散が
あるために波長とともに変化するのに対し、接合層の屈
折率はどの波長でもN=1と変化せず一定であるため、
設計波長からずれた波長域において視野角の非対称性が
著しくなるという欠点もある。
Moreover, the refractive index of the calcite that composes the prism changes with wavelength due to dispersion, whereas the refractive index of the bonding layer is constant at N = 1 and does not change at any wavelength.
There is also a drawback that the asymmetry of the viewing angle becomes remarkable in the wavelength range deviated from the design wavelength.

結局、従来の偏光プリズムには紫外光から赤外光まで
及ぶ広い透過波長域を有し、かつ広い視野角を持つもの
はなかった。
After all, no conventional polarizing prism has a wide transmission wavelength range from ultraviolet light to infrared light and a wide viewing angle.

本発明は広い透過波長域、広い視野角を実現ししかも
視野角の対称性を保ち、透過光のフレの少ない偏光プリ
ズムを提供することを目標とする。
An object of the present invention is to provide a polarizing prism which realizes a wide transmission wavelength range and a wide viewing angle, maintains the symmetry of the viewing angle, and has a small deflection of transmitted light.

〔問題を解決するための手段〕[Means for solving problems]

本発明の偏光プリズムの構成を第1図に示す。2つの
三角プリズムと1枚の平板型スペーサーは全て一軸性結
晶で、光学軸の方向は全て側面に垂直な方向にとる。三
角プリズムの常光線,異常光線の主屈折率をそれぞれn
ω,nε,スペーサーの主屈折率をそれぞれnω′,nε′
とする。
The structure of the polarizing prism of the present invention is shown in FIG. The two triangular prisms and one flat plate type spacer are all uniaxial crystals, and the optical axes are all perpendicular to the side surface. The principal refractive indices of ordinary and extraordinary rays of a triangular prism are n
Let ω, nε and the main refractive index of the spacer be nω ′, nε ′, respectively.
And

三角プリズムを負結晶としたとき、スペーサーはnω
>nω′を満足する正結晶とする。また、三角プリズム
を正結晶としたときスペーサーはnε>nε′を満足す
る負結晶とする。
When the triangular prism is a negative crystal, the spacer is nω
A positive crystal satisfying> nω ′. When the triangular prism is a positive crystal, the spacer is a negative crystal satisfying nε> nε '.

なお、三角プリズムとスペーサーは光学的に接合する
か、紫外光を透過する接着剤で接合するものとする。
It should be noted that the triangular prism and the spacer are optically bonded or bonded by an adhesive that transmits ultraviolet light.

〔作 用〕[Work]

(2)式から明らかなようにn2>n1>NのときNがn1
に近く大きいほど光線1の視野角I1は大きくなり、また
Nが小さいほど光線2の視野角I2は大きくなる。そこ
で、接合層を光線2でNが異なる一軸性結晶とすれば、
上記条件を満たし、視野角を大きくとることができる。
As is clear from the equation (2), when n 2 > n 1 > N, N is n 1
The larger the value is, the larger the viewing angle I 1 of the light ray 1, and the smaller the value of N, the larger the viewing angle I 2 of the light ray 2. Therefore, if the bonding layer is a uniaxial crystal in which N is different in the light ray 2,
The viewing angle can be widened by satisfying the above conditions.

スペーサーの一軸性結晶の常光線,異常光線の主屈折
率nω′,nε′のうち小さい方をn1′,大きい方をn2
とすると少なくともn2>n1′でなければ偏光プリズムと
して作用しないが、このときもn2′>n1のときとn1
n2′のときで場合分けが必要である。
The smaller of the principal refractive indices nω ′ and nε ′ of the ordinary and extraordinary rays of the uniaxial crystal of the spacer is n 1 ′, and the larger one is n 2 ′.
Then, if it is at least n 2 > n 1 ′, it does not work as a polarizing prism, but at this time also when n 2 ′> n 1 and n 1 >
Case classification is necessary when n 2 ′.

(i) n2′>n1とき 光線1は界面で全反射しないから また、光線1と光線2の視野角が光軸に対して対称に
なるプリズムの頂角は で与えられる。
(I) When n 2 ′> n 1 Ray 1 does not totally reflect at the interface Also, the apex angle of the prism where the viewing angles of rays 1 and 2 are symmetric with respect to the optical axis is Given in.

(ii)n1>n2′のとき 両光線とも界面で全反射をおこすので また、両光線の視野角が対称になるためのプリズムの
頂角Sは次式で与えられる。
(Ii) When n 1 > n 2 ′, both rays are totally reflected at the interface. Further, the apex angle S of the prism for making the viewing angles of both rays symmetrical is given by the following equation.

三角プリズムを負結晶としたときnω>nεであり、
このときスペーサーは正結晶とするのでnω′>nε′
となり、(3)〜(6)式においてn1=nε,n2=nω,
n1′=nω′,n2′=nε′とおけばよい。また、三角
プリズムを正結晶、スペーサーを負結晶としたたときも
同様にしてn1=nω,n2=nε,n1′=nε′,n2′=n
ω′とおけばよい。
When the triangular prism is a negative crystal, nω> nε,
At this time, since the spacer is a positive crystal, nω ′> nε ′
In the equations (3) to (6), n 1 = nε, n 2 = nω,
It is sufficient to set n 1 ′ = nω ′ and n 2 ′ = nε ′. When the triangular prism is a positive crystal and the spacer is a negative crystal, n 1 = nω, n 2 = nε, n 1 ′ = nε ′, n 2 ′ = n
ω '

〔実 施 例〕〔Example〕

負結晶三角プリズム、正結晶スペーサーの構成例とし
て、方解石三角プリズム、人工水晶スペーサーの組み合
わせをとったときの視野角の波長依存性を第2図に示
す。このときnω>nε′>nω′>nεとなるので視
野角は(3)式より計算される。
As a structural example of the negative crystal triangular prism and the positive crystal spacer, FIG. 2 shows the wavelength dependence of the viewing angle when a combination of a calcite triangular prism and an artificial quartz spacer is taken. At this time, since nω> nε ′> nω ′> nε, the viewing angle is calculated by the equation (3).

視野角が対称になるためのプリズムの頂角は(4)式
より計算され、設計波長を589.3nmとするとS=11.28゜
になる。
The apex angle of the prism for making the viewing angle symmetrical is calculated from the equation (4), and S = 11.28 ° when the design wavelength is 589.3 nm.

また、正結晶三角プリズム、負結晶スペーサーの構成
例として人工水晶三角プリズム、ADPスペーサーの組み
合わせをとったときの視野角の波長依存性を第3図に示
す。このときnε>nω>nω′>nε′となるので視
野角は(5)式より計算される。波長589.3nmで視野角
が対称になるには頂角はS=13.54゜であればよい。
Further, FIG. 3 shows the wavelength dependence of the viewing angle when a combination of a positive crystal triangular prism and an artificial crystal triangular prism as an example of a negative crystal spacer and an ADP spacer is taken. At this time, since nε>nω> nω ′> nε ′, the viewing angle is calculated by the equation (5). In order to make the viewing angle symmetrical at the wavelength of 589.3 nm, the apex angle should be S = 13.54 °.

実施例では負結晶として方解石、ADPを正結晶として
人工水晶をあげたが、正結晶も負結晶もこれらに限定さ
れるものではない。
In the examples, calcite was used as the negative crystal and artificial quartz was used as the ADP positive crystal, but the positive crystal and the negative crystal are not limited to these.

〔発明の効果〕〔The invention's effect〕

方解石製グランフーコープリズムにくらべて本発明の
偏光プリズムはいずれも広い視野角がとれることが明ら
かである。また、フーコープリズムのようなエアーギャ
ップ型の偏光プリズムと異なり、接合層にも分散媒質を
使うので、三角プリズムと接合層の屈折率比の波長によ
る変化が小さく従って視野角の対称性のくずれは小さ
い。しかも適当な結晶を選択することによってエアーギ
ャップ型プリズムと同様波長300nm以下の紫外光でも使
うことができる。
It is clear that the polarizing prisms of the present invention can have a wider viewing angle than the Calcite-Gran Foucault prism. Also, unlike an air-gap type polarizing prism such as the Foucault prism, since a dispersion medium is also used for the bonding layer, the change in the refractive index ratio between the triangular prism and the bonding layer due to the wavelength is small, so that the symmetry of the viewing angle is not broken. small. Moreover, by selecting an appropriate crystal, it is possible to use ultraviolet light with a wavelength of 300 nm or less as well as the air gap type prism.

また、グラントムソンプリズムに代表される接着剤接
合型偏光プリズムと比べても、紫外光で使えるという利
点がある。さらに、接合層が結晶の平板なので接着剤の
場合と異なり、接合層の平行度は容易に確保できる。そ
のため、透過光線の屈折率が三角プリズムと接合層とで
多少異なっていても透過光のフレは従来の偏光プリズム
より小さくなる。スペーサーの厚みも接着剤より厚く、
任意にとれるので消光比も従来型偏光プリズムよりもあ
がる。
Further, it has an advantage that it can be used with ultraviolet light as compared with an adhesive-bonding type polarizing prism represented by Glan-Thompson prism. Further, since the bonding layer is a flat crystal plate, the parallelism of the bonding layer can be easily ensured unlike the case of using an adhesive. Therefore, even if the refractive index of the transmitted light is slightly different between the triangular prism and the bonding layer, the deflection of the transmitted light is smaller than that of the conventional polarizing prism. The spacer is thicker than the adhesive,
Since it can be arbitrarily set, the extinction ratio is higher than that of the conventional polarizing prism.

また、仮に三角プリズムとスペーサーを接着剤で接合
したとしても接着剤が薄ければ影響はなく光学的に接合
した場合と特性は変わらない。このとき接着剤に必要と
される特性も紫外光透過性だけで従来のグラントムソン
プリズムに必要とされた屈折率の適合性、高粘度等の特
性は全く必要ない。
Further, even if the triangular prism and the spacer are bonded with an adhesive, there is no effect as long as the adhesive is thin, and the characteristics are the same as when optically bonded. At this time, the characteristics required for the adhesive are only the ultraviolet light transmittance, and the characteristics such as the compatibility of the refractive index and the high viscosity required for the conventional Glan-Thompson prism are not necessary at all.

本発明の偏光プリズムは広い透過波長域と広い視野角
という2つの特性をあわせもつ従来にない優れた偏光プ
リズムである。従って、分光装置や偏光解析装置、ある
いは光学実験等で広汎に用いることができる。
The polarizing prism of the present invention is an unprecedented excellent polarizing prism having two characteristics of a wide transmission wavelength range and a wide viewing angle. Therefore, it can be widely used in a spectroscopic device, an ellipsometer, or an optical experiment.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の偏光プリズムの構成を示す図第2図、
第3図は本発明の実施例の偏光プリズムの視野角の波長
依存性を示すグラフで、第2図は方解石三角プリズム,
人工水晶スペーサーの構成をとったとき、第3図は人工
水晶三角プリズム、ADPスペーサーの構成をとったとき
のものである。 第4図は従来型の偏光プリズムを説明する図、第5図は
方解石製グランフーコープリズムの視野角の波長依存性
を示すグラフである。
FIG. 1 is a diagram showing the structure of a polarizing prism of the present invention, FIG.
FIG. 3 is a graph showing the wavelength dependence of the viewing angle of the polarizing prism of the embodiment of the present invention, and FIG. 2 is a calcite triangular prism,
FIG. 3 shows the structure of the artificial crystal spacer and the structure of the artificial crystal triangular prism and the ADP spacer. FIG. 4 is a diagram for explaining a conventional polarizing prism, and FIG. 5 is a graph showing the wavelength dependence of the viewing angle of a calcite-made Gran Foucault prism.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一軸性負結晶または一軸性正結晶の2つの
三角プリズムを接合して作られるグランタイプのプリズ
ムであって、 前記三角プリズムが一軸性負結晶の場合には接合部分を
三角プリズムの結晶と平行な方向に光学軸を有し、か
つ、常光線の主屈折率がプリズム結晶のものより小さい
一軸性正結晶とし、前記三角プリズムが一軸性正結晶の
場合には接合部分を三角プリズムの結晶と平行な方向に
光学軸を有し、かつ、異常光線の主屈折率がプリズム結
晶のものより小さい一軸性負結晶としたことを特徴とす
る偏光プリズム。
1. A Gran type prism made by joining two triangular prisms of a uniaxial negative crystal or a uniaxial positive crystal, wherein when the triangular prism is a uniaxial negative crystal, the joining portion is a triangular prism. Uniaxial positive crystal having an optical axis in a direction parallel to the crystal and having a main refractive index of ordinary rays smaller than that of a prism crystal, and when the triangular prism is a uniaxial positive crystal, the joint portion is triangular. A polarizing prism having an optic axis in a direction parallel to the prism crystal, and a uniaxial negative crystal having an extraordinary ray main refractive index smaller than that of the prism crystal.
JP2341086A 1990-11-30 1990-11-30 Polarizing prism Expired - Fee Related JP2541014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2341086A JP2541014B2 (en) 1990-11-30 1990-11-30 Polarizing prism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2341086A JP2541014B2 (en) 1990-11-30 1990-11-30 Polarizing prism

Publications (2)

Publication Number Publication Date
JPH04208901A JPH04208901A (en) 1992-07-30
JP2541014B2 true JP2541014B2 (en) 1996-10-09

Family

ID=18343124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2341086A Expired - Fee Related JP2541014B2 (en) 1990-11-30 1990-11-30 Polarizing prism

Country Status (1)

Country Link
JP (1) JP2541014B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766869B2 (en) * 2004-11-25 2011-09-07 株式会社光学技研 Grand-Thomson prism type polarizer
JP4789541B2 (en) * 2005-08-09 2011-10-12 株式会社光学技研 Polarization separation element
CN114137647A (en) * 2020-09-04 2022-03-04 山东大学 Based on LiNa5Mo9O30Crystal broadband and high-damage-resistance polarizing prism and application thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184605A (en) * 1984-10-02 1986-04-30 Ricoh Co Ltd Polarizing element
JPS628103A (en) * 1985-07-05 1987-01-16 Ricoh Co Ltd Polarizing element

Also Published As

Publication number Publication date
JPH04208901A (en) 1992-07-30

Similar Documents

Publication Publication Date Title
JPH03132603A (en) Polarizer
JPH02239219A (en) Lighting system for liquid crystal display system
US4392722A (en) Prism polarizer
JPH0954283A (en) Polarization independent type optical isolator device
EP0474237B1 (en) Prism optical device and polarizer using it
US6271968B1 (en) Cut-off filters
US5739951A (en) Polarization independent optical device
JPH0990279A (en) Polarization independent type optical isolator and optical circulator
JP2541014B2 (en) Polarizing prism
CA2059553A1 (en) Birefringent polarizing device
JP2790669B2 (en) Polarizer
US6246518B1 (en) Reflection type optical isolator
US6351296B1 (en) Liquid crystal beam polarizer and method for manufacturing thereof
JPH10239520A (en) Polarized beam splitter
JP2582914B2 (en) Polarizing prism
JPH04267203A (en) Polarization converting element
JPH0827410B2 (en) Polarizing prism
US6549686B2 (en) Reflective optical circulator
US5864428A (en) Polarizing device
JPH0391715A (en) Optical isolator
JP2775103B2 (en) Polarizing prism
JP6694008B2 (en) Total reflection type polarizer
JPS59228610A (en) Polarizing prism
RU2445654C2 (en) Polarising prism
RU2164704C2 (en) Linear polarizer built around nematic liquid crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees