JPS6184605A - Polarizing element - Google Patents

Polarizing element

Info

Publication number
JPS6184605A
JPS6184605A JP20666584A JP20666584A JPS6184605A JP S6184605 A JPS6184605 A JP S6184605A JP 20666584 A JP20666584 A JP 20666584A JP 20666584 A JP20666584 A JP 20666584A JP S6184605 A JPS6184605 A JP S6184605A
Authority
JP
Japan
Prior art keywords
single crystal
light
layer
polarizing element
thin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20666584A
Other languages
Japanese (ja)
Inventor
Hideaki Ema
江間 英昭
Masato Harigai
真人 針谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP20666584A priority Critical patent/JPS6184605A/en
Publication of JPS6184605A publication Critical patent/JPS6184605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the mechanical strength to a polarizing element and to permit the increase in the size thereof by grasping a thin layer consisting of a single crystal of any among KNO3, LiIO3 or alpha-HIO3 by light transmittable optical members consisting of optical glass, quartz, various transparent resins, etc. CONSTITUTION:The thin layer 10 consisting of the single crystal of KNO3 is grasped by a pair of the light transmittable optical members 12, 14 of a rectangular prism type. The layer 10 is cut out of the single crystal in such a manner that incident light is made incident from the b-axis direction to maximize the difference of the main refractive index to be determined by the optical elastic axis of the single crystal. The light oscillating in certain direction among the incident rays is totally reflected on the surface of the layer 10 by selecting adequately the refractive indices of the members 12, 14 and the light oscillating in the direction orthogonal therewith transmits the layer 10 while refracting in said layer. Since the single crystal to be used can be artificially manufactured, the increase in the size of the polarizing element is easily made possible, by which the cost is reduced and the ease of handling is improved.

Description

【発明の詳細な説明】 (技術分野) この発明は、偏光素子、詳しくは偏光プリズムとして用
いられる偏光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a polarizing element, and more particularly to a polarizing element used as a polarizing prism.

(従来技術) 偏光プリズムは、DAD (テジタル・オーディオ・デ
ィスク)等の光ピツクアップや、各種の偏光利用測定装
置に利用されている。
(Prior Art) Polarizing prisms are used in optical pickups such as DADs (digital audio discs) and various measuring devices that utilize polarized light.

従来、偏光プリズムとして用いられる偏光素子としては
、方解石の薄板を用いるもの(応用物理匪(15)55
(1966) )や、マイカの薄板を、用いるもの(H
andbook of optics 、 Mcgra
w−Hill )が知られているが、方解石を用いる場
合、天然産の方解石が用いられるため、コストが高くつ
き、また素子の大型化が困難である。一方、マイカを用
いる場合はり解性が強く、もろいため、取扱い性が悪く
使用上問題がある。
Conventionally, as a polarizing element used as a polarizing prism, one using a thin plate of calcite (Applied Physics 匪(15) 55
(1966) ) and one using mica thin plate (H
andbook of optics, McGra
w-Hill) is known, but when calcite is used, since naturally produced calcite is used, the cost is high and it is difficult to increase the size of the device. On the other hand, when mica is used, it has strong disintegration properties and is brittle, resulting in poor handling and problems in use.

(目  的) 本発明は、上記の事情に鑑みてなされたものであって、
コストが低く、かつ大型化も容易であり。
(Purpose) The present invention was made in view of the above circumstances, and
The cost is low and it is easy to increase the size.

しかも方解石な用いる場合と同等の消光特性を有する、
新規な偏光素子の提供を目的とする。
Moreover, it has the same extinction properties as when calcite is used.
The purpose is to provide a new polarizing element.

(構 成) 以下、本発明を説明する。(composition) The present invention will be explained below.

本発明の偏光素子は、単結晶の薄層な、透光性光学部材
で挾持した構成となっている。単結晶の材料としては、
KNO3、KnコAsQ、LiIO3,α−HIO3の
いずれかが用いられる。
The polarizing element of the present invention has a structure in which it is sandwiched between thin, single-crystal, light-transmitting optical members. As a single crystal material,
Either KNO3, KnCoAsQ, LiIO3, or α-HIO3 is used.

これらKNO3、KH4As04 、 Li IO3、
α−HIO3の単結晶は、これを人工的に容易につくる
ことができる。従って、素子の大型化本容易であるし、
コストも低くてすむ。また、これら物質による単結晶の
薄層は、透光性光学部材で挾持されるので、この透光性
光学部材によって、十分に強い機械強度を素子に与える
ことができる。
These KNO3, KH4As04, LiIO3,
A single crystal of α-HIO3 can be easily produced artificially. Therefore, it is easy to increase the size of the device,
The cost is also low. Further, since the single crystal thin layer made of these substances is sandwiched between light-transmitting optical members, the light-transmitting optical members can provide the element with sufficiently strong mechanical strength.

透光性光学部材の材料としては、光学ガラス。The material for the translucent optical member is optical glass.

石英、各種透明樹脂等をあげることができる。Examples include quartz and various transparent resins.

以下、具体的な実施例に即して説明する。Hereinafter, description will be given based on specific examples.

第1図に示す実施例において、符号10は、KNO3の
単結晶の薄層、符号12.14は、透光性光学部材を示
す。
In the embodiment shown in FIG. 1, reference numeral 10 indicates a thin layer of single crystal KNO3, and reference numeral 12.14 indicates a light-transmitting optical member.

この偏光素子の側面形状は、第1図に示すように、長方
形々状であって、薄層10は、一対の、直角プリズム型
の透光性光学部材12.14で挾持されている。
As shown in FIG. 1, the side surface of this polarizing element is rectangular, and the thin layer 10 is held between a pair of right-angle prism-shaped translucent optical members 12 and 14.

KNOsの単結晶の薄層10は、第1図の偏光素子に光
が左方から図の如く入射するとき、薄層10への入射光
が、単結晶の光学弾性軸によシ決定される主屈折率の差
を最大にするb軸方向から入射するように、単結晶から
切り出されている。
When light enters the polarizing element of FIG. 1 from the left as shown in the figure, the thin layer 10 of a single crystal of KNOs is determined by the optical elastic axis of the single crystal. The single crystal is cut out so that the light enters from the b-axis direction, which maximizes the difference in principal refractive index.

このよう処すると、透光性光学部材12.14の屈折率
を適当に選択することによシ、入射光線のうちのある方
向に振動する光は、薄層10の表面で全反射され、上記
方向と直交する方向に振動する光は薄層10中を屈折し
つつ透過していく状態を実現できる。
In this case, by appropriately selecting the refractive index of the translucent optical member 12, 14, the incident light rays vibrating in a certain direction are totally reflected on the surface of the thin layer 10, and the above-mentioned It is possible to realize a state in which light vibrating in a direction perpendicular to this direction is transmitted through the thin layer 10 while being refracted.

KNO3の単結晶の屈折率は、γが1.5064 、α
が1、3346であるので、透光性光学部材12.14
の材料として、屈折率1.92の光学ガラスを選ぶと。
The refractive index of a single crystal of KNO3 is γ is 1.5064, α
is 1,3346, so the translucent optical member 12.14
If we choose optical glass with a refractive index of 1.92 as the material.

薄層10への入射角θlが、44°よシ大きく、51.
5゜よシも小さい範囲にあるとき、入射光を、偏光方向
に応じて透過光を全反射に分離することができる。
The angle of incidence θl on the thin layer 10 is greater than 44°, and 51.
When the angle is as small as 5°, the incident light can be separated into transmitted light and total internal reflection depending on the polarization direction.

以下、この実施例に関する、具体的な実験例を説明する
A specific experimental example regarding this example will be described below.

(実験例 1) ビーカー中に、450ccの水をいれて50℃に温度保
持し、正確に秤量したKNO3を300y−スターラー
で溶解させた。その後、この溶解液を、42±0.2℃
に温度調整されたウォーターバス中に24時間放置した
。この結果、ビーカー中に、過飽和状態となったKNO
3が析出したので、ビーカー中の上澄を他のビーカーに
うつし、上記析出したKNO3の微結晶のうち、透明で
、“す“の入っていないものを選んで、これを種結晶と
して上記上澄液中に入れ、上記能のビーカーを、40℃
に温度調整したウォーターバス中に放置し、単結晶とし
て結晶成長させた。このとき、蒸発速度を、1日あたb
 1.4 ccに調整し、30日間の結晶育成にょシ、
25關X231111X20mmの単結晶をうろことが
できた。
(Experimental Example 1) 450 cc of water was placed in a beaker, the temperature was maintained at 50°C, and accurately weighed KNO3 was dissolved using a 300-y stirrer. Thereafter, this solution was heated at 42±0.2°C.
The sample was left in a water bath whose temperature was adjusted to 24 hours. As a result, supersaturated KNO was added to the beaker.
3 has been precipitated, the supernatant in the beaker is transferred to another beaker, and from among the precipitated KNO3 microcrystals, one that is transparent and does not contain a "s" is selected, and this is used as a seed crystal to transfer the supernatant to the above-mentioned beaker. Place a beaker of the above capacity in the clear liquid and heat at 40°C.
It was left in a water bath whose temperature was adjusted to allow crystal growth as a single crystal. At this time, the evaporation rate is set to b per day.
Adjust to 1.4 cc and grow crystals for 30 days.
I was able to explore a single crystal measuring 25mm x 231111mm x 20mm.

このようにして得られた単結晶から、厚み1m+a。The single crystal thus obtained has a thickness of 1 m+a.

2龍、3mmの単結晶薄層を切り出し、第1図に示すタ
イプの偏光素子を3種説明した。すなわち、薄層10の
厚みが1 mmのものと、2朋のものと、3m厘のもの
である。なお、透光性光学部材12.14は屈折率1.
92の光学ガラスで作成した。
Two types of polarizing elements of the type shown in FIG. 1 were explained by cutting out a 3 mm single crystal thin layer. That is, the thickness of the thin layer 10 is 1 mm, 2 mm, and 3 mm. Note that the translucent optical members 12 and 14 have a refractive index of 1.
It was made of 92 optical glass.

第1因の角θlは47°、θ2は69°、θ3=47°
、θ4は430である。
The angle θl of the first factor is 47°, θ2 is 69°, θ3=47°
, θ4 is 430.

これら3種の偏光素子の特性として消光比を調結果を第
1表に示す。  □ 第   1   表 (実験例 2) 実験例1における蒸発速度を、Q、7cc/1日にして
、70日間の結晶育生を行ない、24 mm x 24
mmX 21朋の単結晶を得、これから厚さ1m1m、
2Tnm。
Table 1 shows the results of determining the extinction ratio as a characteristic of these three types of polarizing elements. □ Table 1 (Experimental Example 2) The evaporation rate in Experimental Example 1 was set to Q, 7 cc/day, and crystal growth was performed for 70 days to form a 24 mm x 24
A single crystal of mm x 21 mm was obtained, and from this, the thickness was 1 m and 1 m.
2 Tnm.

3朋の薄層を切出して、実験1と同様の3種の偏光素子
を作成し、消光比と結晶状態とをしらべた。
Three types of polarizing elements similar to those in Experiment 1 were prepared by cutting out three thin layers, and their extinction ratios and crystal states were examined.

結果を第2表に示す。The results are shown in Table 2.

第   2   表 実験1の場合に比し、各偏光素子とも消光比が1段と向
上している。
Compared to the case of Experiment 1 in Table 2, the extinction ratio of each polarizing element is improved by one step.

第2図に示す実施例において、符号16は、KH2As
h、の単結晶の薄層を示して匹る。符号18゜20は透
光性光学部材を示す。この実施例忙おいても、偏光素子
の側面形状は長方形々状であって、透光性光学部材18
.20は直角プリズム形状を有する。
In the embodiment shown in FIG. 2, reference numeral 16 represents KH2As
h, showing a thin layer of single crystal. Reference numeral 18°20 indicates a translucent optical member. Even in this embodiment, the side shape of the polarizing element is rectangular, and the translucent optical member 18
.. 20 has a rectangular prism shape.

薄層16は、入射光の入射角θ5に対して、主屈折率間
の差が最大となるように切出されている。
The thin layer 16 is cut out so that the difference between the principal refractive indexes is maximized with respect to the incident angle θ5 of the incident light.

)G(2As04の単結晶は、常光Oに対する屈折率は
1.57、異常光eに対する屈折率が1.47であるか
ら、透光性光学部材18.20の屈折率を1.92とす
ると、入射角θrが50.9°ないし54.90の範囲
にある入射光を、全反射と透過とによシ、分離すること
ができる。
)G(2As04 single crystal has a refractive index of 1.57 for ordinary light O and a refractive index of 1.47 for extraordinary light e, so if the refractive index of the transparent optical member 18.20 is 1.92 , incident light having an incident angle θr in the range of 50.9° to 54.90° can be separated into total reflection and transmission.

以下、この実施例に対する具体的な実験例を説明する。A specific experimental example for this example will be described below.

(実験例 3) ビーカー中に水2250ccをとシ、 50℃の温度に
保持したのち、正確に秤量し九KH2ASO4を100
0 ?溶解させ、この溶解液を、42±0.2℃に温度
祠祭したウォータバス中に24時間放置して、過飽和状
態のKH2ASO4を析出させた。ついでビーカー中の
上澄液を他のビーカーにうつし、析出した微結晶のうち
の1す“のはいらない透明なものを種結晶として上記他
のビーカー中にいれ、蒸発速度を1日あたシ1.2cc
に制御して40℃のウォーターバス中にて200日間結
晶育成を行ない、4Q 11+1 X 4Q uX20
111冨の単結晶を得た。
(Experiment Example 3) Pour 2250 cc of water into a beaker, maintain the temperature at 50°C, and then accurately weigh it to make 100 ml of 9KH2ASO4.
0? The dissolved solution was left in a water bath kept at a temperature of 42±0.2° C. for 24 hours to precipitate supersaturated KH2ASO4. Next, the supernatant liquid in the beaker was transferred to another beaker, and one of the precipitated microcrystals, which was unnecessary and transparent, was placed in the other beaker as a seed crystal, and the evaporation rate was set at a constant rate per day. 1.2cc
Crystal growth was performed for 200 days in a water bath at 40°C under the control of 4Q 11+1 x 4Q uX20.
A single crystal with a thickness of 111 was obtained.

この単結晶から、厚さl11m、 2mm、 3iit
の3株の薄層を切り出し、それぞれを用いて第2図のタ
イプの偏光素子3種を作成した。透光性光学部材18.
20は屈折率1.92の光学ガラスで作成した。
From this single crystal, thickness 11m, 2mm, 3iit
Three types of polarizing elements of the type shown in Fig. 2 were created by cutting out thin layers of three types. Translucent optical member 18.
No. 20 was made of optical glass with a refractive index of 1.92.

第2図における角θ5は51°、θ6は71.9’、θ
7は51°、θ8は39°、θ9は23.5°である。
The angle θ5 in Figure 2 is 51°, θ6 is 71.9', θ
7 is 51°, θ8 is 39°, and θ9 is 23.5°.

なお、各薄層は、その厚み方向が結晶のC軸と直交して
いる。
Note that the thickness direction of each thin layer is perpendicular to the C axis of the crystal.

各偏光素子につき、実験例1と同様、消光比と単結晶状
態とを調べた。結果を第3表に示す。
As in Experimental Example 1, the extinction ratio and single crystal state of each polarizing element were investigated. The results are shown in Table 3.

第   3   表 (実験例 4) 実験例3において、結晶育成の除の蒸発速度を1日あだ
、90.8ccに制御し、320日の結晶育成によシ、
381III11×33IIIII×16m1の単結晶
を得た。実験例3と同様の実験に対する結果を第4表に
示す。
Table 3 (Experimental Example 4) In Experimental Example 3, the evaporation rate excluding crystal growth was controlled to 90.8 cc per day, and after 320 days of crystal growth,
A single crystal of 381III11×33III×16 ml was obtained. Results for experiments similar to Experimental Example 3 are shown in Table 4.

第   4   表 実験例3の個々の偏光素子に比して、実験例4の各偏光
素子とも一段と消光比が向上している。
Table 4 Compared to the individual polarizing elements of Experimental Example 3, each polarizing element of Experimental Example 4 has a much improved extinction ratio.

第3図に示す実施例において、符号22は、α−Hl0
.の単結晶の薄層、符号24.26は透光性光学部材を
示す。
In the embodiment shown in FIG. 3, the reference numeral 22 represents α-Hl0
.. The single crystal thin layer 24.26 indicates a translucent optical member.

α−HIO3の単結晶は斜方晶であって、2軸性結晶で
ある。薄層22は、入射角01Gで入射する光に対し、
主屈折率の差が最大となるように切出されている。
The single crystal of α-HIO3 is an orthorhombic and biaxial crystal. For light incident at an incident angle of 01G, the thin layer 22
It is cut out so that the difference in principal refractive index is maximized.

α−HIO3は、αが1.9508、γが1.8123
 O屈折率を有し、屈折率1.92の光学ガラスにょる
透光性光学部材24.26と組合せるときは、入射光の
入射角θ1oが70.460以上であれば、偏光方向に
応じて、入射光を透過光と全反射光とに分離することが
できる。
α-HIO3 has α of 1.9508 and γ of 1.8123
When combined with a translucent optical member 24.26 made of optical glass having a refractive index of O and a refractive index of 1.92, if the incident angle θ1o of the incident light is 70.460 or more, Thus, the incident light can be separated into transmitted light and total reflected light.

以下、この実施例に対する具体的な実験例を記する。A specific experimental example for this example will be described below.

(実験例 5) ビーカー中に水200ccをとり、これを40℃に保持
した状態で、秤量した580Fのα−Hl0aを溶解さ
せ、得られる溶解液を35±0.2℃に温度調整さ− 
れだウォーターバス中に24時間放置し、過飽和状態の
α−HIO3を析出させた。ビーカー中の上澄液を別の
ビーカーにうつし、析出した微結晶のうちの1す“のは
いっていないものを、種結晶として、上記側のビーカー
にいれ、蒸発速度を1日あたり5ccに制御しつつ、3
5℃のウォーターバス中にて12日間結晶育生を行い、
41 mix 53 mix 20 mrsの単結晶を
得た。
(Experimental Example 5) Take 200 cc of water in a beaker, and while keeping it at 40°C, dissolve a weighed amount of α-Hl0a at 580F, and adjust the temperature of the resulting solution to 35 ± 0.2°C.
The mixture was left in a water bath for 24 hours to precipitate supersaturated α-HIO3. Pour the supernatant liquid in the beaker into another beaker, and put one of the precipitated microcrystals that are not in it into the beaker on the above side as a seed crystal, and control the evaporation rate to 5 cc per day. While doing so, 3
Crystal growth was performed for 12 days in a water bath at 5°C.
A single crystal of 41 mix 53 mix 20 mrs was obtained.

コノ単結晶から、厚み1mg+、  2+im、  3
龍の3種の薄層を、厚み方向が、結晶のy軸に一致する
ように切り出し、第3図のタイプの偏光素子を3種、上
記薄層ごとに作製した。透光性光学部材24.26は屈
折率1.92の光学ガラスで作製した。第3図における
角010は73°、θ11は70.5°、θ12は73
°、θ131θ14は73°、θ15は107°である
。また、π:BC: DB=44 : 93 : 12
.5である。
From Kono single crystal, thickness 1mg+, 2+im, 3
Three types of thin layers of Dragon were cut out so that the thickness direction coincided with the y-axis of the crystal, and three types of polarizing elements of the type shown in FIG. 3 were fabricated for each of the thin layers. The translucent optical members 24 and 26 were made of optical glass with a refractive index of 1.92. The angle 010 in Fig. 3 is 73°, θ11 is 70.5°, and θ12 is 73°.
°, θ131θ14 is 73°, and θ15 is 107°. Also, π:BC:DB=44:93:12
.. It is 5.

3種の偏光素子の個々につき、消光比と単結晶状態を調
べた。結果を第5表に示す。
The extinction ratio and single crystal state of each of the three types of polarizing elements were investigated. The results are shown in Table 5.

第    5   表 (実験例 6) 実験例5において、結晶育生の際の蒸発速度を1日あた
り2ccに制御し、20日間結晶育成して、3g mr
x×47 mmx 20朋の単結晶を得た。実験例5と
同様の実験を行った結果を第6表に示す。
Table 5 (Experimental Example 6) In Experimental Example 5, the evaporation rate during crystal growth was controlled to 2 cc per day, the crystal was grown for 20 days, and 3 g mr.
A single crystal of x x 47 mm x 20 mm was obtained. Table 6 shows the results of an experiment similar to Experimental Example 5.

第   6   表 実験例5に比して、消光比が一段とよくなっている。Table 6 Compared to Experimental Example 5, the extinction ratio is much better.

第4図に示す実施例において、符号28は、LiIO3
の単結晶の薄層、符号30.32は透光性光学部材をそ
れぞれ示している。
In the embodiment shown in FIG. 4, the reference numeral 28 represents LiIO3
The single-crystal thin layers 30 and 32 indicate translucent optical members, respectively.

単結晶の薄層28は入射角θ16に応じて、主屈折率の
差が最大となるように切り出されている。
The single crystal thin layer 28 is cut out so that the difference in principal refractive index is maximized according to the incident angle θ16.

Li IO3の結晶は六方晶であり結晶軸のC軸を光学
軸とする1軸性の結晶である。常光線Oについては1.
881、異常光線eについては1.736の屈折率を有
する。従って、屈折率1.92の光学ガラスによる透光
性光学部材30.32と組合せるときは、入射角θ16
が64.52°ないし78.00°の間にあれば、入射
光を偏光方向に応じて、全反射光と透過光に分離するこ
とができる。
The crystal of Li IO3 is a hexagonal crystal, and is a uniaxial crystal whose optical axis is the C axis of the crystal axis. Regarding ordinary ray O, 1.
881, and has a refractive index of 1.736 for the extraordinary ray e. Therefore, when combined with the translucent optical member 30.32 made of optical glass with a refractive index of 1.92, the incident angle θ16
is between 64.52° and 78.00°, the incident light can be separated into totally reflected light and transmitted light depending on the polarization direction.

以下、この実施例に対する具体的な実験例を示す。A specific experimental example for this example will be shown below.

(実験例 7) ビーカーに水200ccをとシ、これを40°Cに保持
し、秤量された3501のLiIO3を溶解させ、この
溶解液を35℃±0.2℃の温度に調整されたウォータ
ーバス中に24時間放置し、過飽和状態のLiIO3を
析出させた。
(Experiment Example 7) Pour 200cc of water into a beaker, maintain it at 40°C, dissolve 3501 LiIO3 weighed out, and pour this solution into water adjusted to a temperature of 35°C ± 0.2°C. It was left in a bath for 24 hours to precipitate supersaturated LiIO3.

ついで、ビーカー中の上澄液を別のビーカーへうつし、
析出した微結晶のうち、透明でゝゝす“の入っていない
ものを選んで種結晶として上記側のビ−カー中にいれ、
35℃のウォーターバス中で、蒸発速度を1日あたシ5
ccに制御して、15日間結晶育生し、30市X35j
騙×20朋の単結晶を得た。
Next, transfer the supernatant liquid in the beaker to another beaker,
Among the precipitated microcrystals, choose one that is transparent and does not contain "I" and put it in the beaker on the above side as a seed crystal.
In a water bath at 35°C, the evaporation rate was increased by 5 times per day.
Controlled to cc, crystal growth for 15 days, 30 cities x 35j
Obtained a single crystal of deception x20.

得られた単結晶につき、偏光顕微鏡で光学軸と、光学的
弾性軸を決定し、厚み1龍、2鼎、3龍の3種の薄層を
切り出した。これら薄層は、°厚み方向が、結晶のb軸
と一致するように切り出しを行った。このときa軸は結
晶板面にあり、C軸は厚み面に直交するようにした。
The optical axis and optical elastic axis of the obtained single crystal were determined using a polarizing microscope, and three types of thin layers with thicknesses of 1, 2, and 3 were cut out. These thin layers were cut out so that the thickness direction coincided with the b-axis of the crystal. At this time, the a-axis was placed on the crystal plate plane, and the c-axis was made perpendicular to the thickness plane.

これら3種の薄層のそれぞれを用いて、第4図に示すタ
イプの偏光素子を3a作製した。透光性光学部材30.
32は、屈折率1.92の光学ガラスで作製した。第4
図における、角θ16は67°、θ墓7H70,2o、
f) ls Id 670、θ19 + θ2G rθ
21 ハロ70.θ2□は113°、θ幻は67°であ
る。また、AoBo: Bo C。
Using each of these three types of thin layers, a polarizing element 3a of the type shown in FIG. 4 was produced. Translucent optical member 30.
No. 32 was made of optical glass with a refractive index of 1.92. Fourth
In the figure, the angle θ16 is 67°, θ grave 7H70, 2o,
f) ls Id 670, θ19 + θ2G rθ
21 halo 70. θ2□ is 113° and θphantom is 67°. Also, AoBo: Bo C.

: A、 Bo=36 : 90 : 7,5である。: A, Bo=36:90:7,5.

例によって各偏光素子につき、消光比と単結晶状態とを
調べた。結果を第7表に示す。
As usual, the extinction ratio and single crystal state of each polarizing element were investigated. The results are shown in Table 7.

第    7   表 (実験例 8) 実験例7における結晶育生の察の蒸発速度を1日あたシ
2αに制御して、26日間結晶育生を行ない、27 m
ra X 30 mtx X 13 tj鳳の単結晶を
得た。実験例7と同様の実験を行った。その結果を第8
表に示す。
Table 7 (Experimental Example 8) The evaporation rate for crystal growth in Experimental Example 7 was controlled to 2α per day, and crystal growth was carried out for 26 days.
A single crystal of ra x 30 mtx x 13 tj tj was obtained. An experiment similar to Experimental Example 7 was conducted. The results are shown in the 8th section.
Shown in the table.

第   8   表 実験例7における、各偏光素子に比して、いずれの偏光
素子も消光比が良くなっている。
All of the polarizing elements have better extinction ratios than the polarizing elements in Experimental Example 7 in Table 8.

なお、上記4種の実施例のいずれも、単結晶の薄層と透
光性光学部材との間に空気層が存在しないように、張合
せ面の表面研摩の精′度を十分に高くした。
In addition, in all of the above four examples, the surface polishing accuracy of the bonded surfaces was sufficiently high so that no air layer existed between the thin single crystal layer and the translucent optical member. .

上の説明では、第1図から第4図まで4種の実施例につ
いて説明したが、第5図に示すように単結晶の薄層34
を、平行平面板形状の透光性光学部材36.38で挾持
した形態の偏光素子を構成することもできる。また、上
記説明であきらかなように、本発明の偏光素子の特性は
、単結晶の均質性に依存し、均質性が高いほど、特性も
よい。従って、結晶育生のさいの蒸発速度の制御によシ
、均質性のよい単結晶を作製することによシ、天然方解
石を用いる偏光素子と同等の特性の素子を実現できる。
In the above description, four types of embodiments have been described from FIG. 1 to FIG. 4, but as shown in FIG.
It is also possible to construct a polarizing element in which the light-transmitting optical members 36 and 38 are sandwiched between parallel plane plate-shaped light-transmitting optical members 36 and 38. Further, as is clear from the above description, the characteristics of the polarizing element of the present invention depend on the homogeneity of the single crystal, and the higher the homogeneity, the better the characteristics. Therefore, by controlling the evaporation rate during crystal growth and producing a single crystal with good homogeneity, it is possible to realize an element with characteristics equivalent to a polarizing element using natural calcite.

(効 果) 以上、本発明によれば、新規な偏光素子を提供すること
ができる。
(Effects) As described above, according to the present invention, a novel polarizing element can be provided.

この発明の偏光素子は、用いられる単結晶を人工的に作
製できるので、偏光素子の大聖化が容易・に可能であり
、かつコストも低くてすむ。
Since the single crystal used in the polarizing element of the present invention can be artificially produced, the polarizing element can be easily made into a sacred material, and the cost can be reduced.

また、単結晶の薄層は透光性光学部材によシ挾持されて
いるので、十分な機械強度を素子に付与でき、取扱い性
もよい。
Furthermore, since the single crystal thin layer is held between light-transmitting optical members, sufficient mechanical strength can be imparted to the element, and the element is easy to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施例を説明するだめの図、第2
図は、本発明の他の実施例を説明するだめの図、第3図
は、本発明のさらに他の実施例を説明するだめの図、第
4図は、本発明のさらに他の実施例を説明するための図
、第5図は、本発明のさらに他の実施例を説明するだめ
の図である。 10 ・KNO3の単結晶の薄層、16−・−KH2A
s04の単結晶の薄層、22・・・α−HIO3の単結
晶の薄層、28・・・LiIO3の単結晶の薄層、12
. 14. 18゜20、24.26.30. 32・
・・透光性光学部材。 /已 l 図 が /も2 ■ Zρ 手続補正書 昭和59年12月 4 日 −事件の表示 昭和59年特許願第206665号 2発明の名称 偏光素子 3 補正をする者 事件との関係 特許出願人 名    称 (+374)株式会社リコー4  代 
  理   人 住 所 東京都世田谷区経堂4丁目5番4号明細書の「
発明の詳細な説明」の欄および図面6 補正の内容
FIG. 1 is a diagram for explaining one embodiment of the present invention, and FIG.
The figures are diagrams for explaining other embodiments of the invention, FIG. 3 is a diagram for explaining still another embodiment of the invention, and FIG. 4 is a diagram for explaining still another embodiment of the invention. FIG. 5 is a diagram for explaining still another embodiment of the present invention. 10 ・KNO3 single crystal thin layer, 16-・-KH2A
s04 single crystal thin layer, 22... α-HIO3 single crystal thin layer, 28... LiIO3 single crystal thin layer, 12
.. 14. 18°20, 24.26.30. 32・
...Translucent optical member. /徲l Diagram /Mo2 ■ Zρ Procedural Amendment December 4, 1980 - Case Indication 1982 Patent Application No. 206665 2 Name of Invention Polarizing Element 3 Person making the amendment Relationship to the case Name of patent applicant Name (+374) 4th generation Ricoh Co., Ltd.
Address: 4-5-4 Kyodo, Setagaya-ku, Tokyo "
"Detailed Description of the Invention" column and Drawing 6 Contents of amendment

Claims (1)

【特許請求の範囲】[Claims] KNO_3、KH_2AsO_4、LiIO_3、α−
HIO_3のいずれかの単結晶の薄層を、透光性光学部
材で挾持してなる偏光素子。
KNO_3, KH_2AsO_4, LiIO_3, α-
A polarizing element made by sandwiching a thin layer of any single crystal of HIO_3 between transparent optical members.
JP20666584A 1984-10-02 1984-10-02 Polarizing element Pending JPS6184605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20666584A JPS6184605A (en) 1984-10-02 1984-10-02 Polarizing element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20666584A JPS6184605A (en) 1984-10-02 1984-10-02 Polarizing element

Publications (1)

Publication Number Publication Date
JPS6184605A true JPS6184605A (en) 1986-04-30

Family

ID=16527103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20666584A Pending JPS6184605A (en) 1984-10-02 1984-10-02 Polarizing element

Country Status (1)

Country Link
JP (1) JPS6184605A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208901A (en) * 1990-11-30 1992-07-30 Shimadzu Corp Polarizing prism
US9025027B2 (en) 2010-09-16 2015-05-05 Ricoh Company, Ltd. Object identification device, moving object controlling apparatus having object identification device, information presenting apparatus having object identification device, and spectroscopic image capturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04208901A (en) * 1990-11-30 1992-07-30 Shimadzu Corp Polarizing prism
US9025027B2 (en) 2010-09-16 2015-05-05 Ricoh Company, Ltd. Object identification device, moving object controlling apparatus having object identification device, information presenting apparatus having object identification device, and spectroscopic image capturing apparatus

Similar Documents

Publication Publication Date Title
Venturini et al. Elasto‐Optic Properties of Bi12GeO20, Bi12SiO20, and Sr x Ba1− x Nb2O6
US3998524A (en) Birefringent polarization prism with a large angular aperture
JPS60256121A (en) Liquid crystal cell
JP3719374B2 (en) Manufacturing method of polarizing element
CN110618476A (en) Application of tin boron oxygen chlorine birefringent crystal
US10487419B2 (en) Preparation method and application of sodium barium fluoroborate birefringent crystal
US3914018A (en) Yttrium orthovanadate optical polarizer
JPS6184605A (en) Polarizing element
CN108761624A (en) The wedge-shaped polarization splitting prism of big incidence field angle and ultrahigh extinction ratio
JPS61264301A (en) Turning gear for plane of polarization of linearly polarizedlight and manufacture thereof
JP2786078B2 (en) Faraday rotator and optical isolator
JPH01265206A (en) Polarizing element
JPH0375705A (en) Polarizer
Shiraishi et al. Fabrication of spatial walk-off polarizing films by oblique deposition
JPH09178940A (en) Polarizing element
JPS5828716A (en) Optical isolator
CN113981540B (en) Rubidium chloride selenium oxygen hydrogen double refraction crystal and preparation method and application thereof
JP2927274B2 (en) Elliptical polarizing plate and liquid crystal display using the same
CN115287758B (en) Sodium rubidium carbon nitrogen oxygen bromine hexahydrate birefringent optical crystal, and preparation method and application thereof
JPS5865415A (en) Magnetooptic element
JPH0466481B2 (en)
JPS5850512A (en) Optical isolator
EP0363914A2 (en) Optical device with optical polarizer/analyzer formed of yttrium vanadate
JPH0466482B2 (en)
Lee et al. Elastic properties of Na+ β ″-alumina measured by brillouin spectroscopy