JPH0466482B2 - - Google Patents
Info
- Publication number
- JPH0466482B2 JPH0466482B2 JP1006422A JP642289A JPH0466482B2 JP H0466482 B2 JPH0466482 B2 JP H0466482B2 JP 1006422 A JP1006422 A JP 1006422A JP 642289 A JP642289 A JP 642289A JP H0466482 B2 JPH0466482 B2 JP H0466482B2
- Authority
- JP
- Japan
- Prior art keywords
- pvdf
- optical
- film
- solid solution
- pmma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000003287 optical effect Effects 0.000 claims description 39
- 239000002033 PVDF binder Substances 0.000 claims description 26
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 26
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 18
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 18
- 239000006104 solid solution Substances 0.000 claims description 13
- 229920003023 plastic Polymers 0.000 claims description 10
- 239000004033 plastic Substances 0.000 claims description 10
- 239000007850 fluorescent dye Substances 0.000 claims description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 15
- 238000002834 transmittance Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 239000013078 crystal Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 210000002858 crystal cell Anatomy 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 238000005253 cladding Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 235000019796 monopotassium phosphate Nutrition 0.000 description 2
- 239000013308 plastic optical fiber Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Description
【発明の詳細な説明】
〔概要〕
プラスチツク光学位相フイルム、特に白黒表示
液晶デイスプレイの光学補償フイルムに適する素
子に関し、
光学異方性を有する高分子材料によつて、諸問
題を解消できる光学位相素子を実現することを目
的とし、
ポリ弗化ビニリデン(以下「PVDF」と呼ぶ)
が30〜85重量%含有されるPVDFとポリメチルメ
タクリレート(以下「PMMA」と呼ぶ)の固溶
体からなり、該固溶体中の極性基が一定方向に配
向するよう、一軸方向に延伸して形成されるフイ
ルム状体であつて、レタデーシヨンRが550〜
650nmの範囲にある構成とする。[Detailed Description of the Invention] [Summary] An optical phase element that can solve various problems with a polymer material having optical anisotropy regarding a plastic optical phase film, particularly an element suitable for an optical compensation film for a black-and-white liquid crystal display. Polyvinylidene fluoride (hereinafter referred to as "PVDF")
It consists of a solid solution of PVDF and polymethyl methacrylate (hereinafter referred to as "PMMA") containing 30 to 85% by weight, and is formed by stretching in a uniaxial direction so that the polar groups in the solid solution are oriented in a certain direction. It is a film-like material with a retardation R of 550~
The configuration should be in the 650nm range.
レーザを光源とする光通信の発展とともに、こ
れに使用される光スイツチ、光変調器など各種の
光制御素子も改良が進んでいる。また光制御素子
は、光通信に限らず、液晶表示素子やプラズマデ
イスプレイなどの表示機器にも広く使用されてい
る。本発明は、光制御素子のうちプラスチツク光
学位相フイルム、特に白黒表示液晶デイスプレイ
の光学補償フイルムに適する素子に関する。
Along with the development of optical communications using lasers as light sources, various optical control elements such as optical switches and optical modulators used in these communications have also been improved. Furthermore, light control elements are widely used not only in optical communications but also in display devices such as liquid crystal display elements and plasma displays. The present invention relates to a light control element suitable for a plastic optical phase film, particularly an optical compensation film for a monochrome liquid crystal display.
位相板のような光学素子は、表示機器において
も広く用いられている。
Optical elements such as phase plates are also widely used in display devices.
例えば、単純マトリツクス方式をとる液晶表示
装置について言えば、電気光学特性が急峻なため
STN(Super Twisted Nematic)液晶を使用し
て表示が行われているが、液晶が光学的異方性を
示すために着色して表示されることから、そのま
までは白黒表示ができないという問題がある。 For example, when it comes to liquid crystal display devices that use a simple matrix method, their electro-optical characteristics are steep.
Display is performed using STN (Super Twisted Nematic) liquid crystal, but since the liquid crystal exhibits optical anisotropy, it is colored and displayed, so there is a problem that black and white display cannot be performed as it is.
すなわち、偏光板を通すことにより円偏光を直
線偏光にして液晶セルに入射すると、液晶は光学
的異方性をもつために、光は楕円偏光となつて液
晶セルを出射するが、この際の楕円偏光の度合は
波長により異なつてくる。 In other words, when circularly polarized light is converted into linearly polarized light and incident on a liquid crystal cell by passing through a polarizing plate, the light becomes elliptically polarized light and exits the liquid crystal cell because liquid crystal has optical anisotropy. The degree of elliptically polarized light varies depending on the wavelength.
そのため、この出射光を光学位相板に入射さ
せ、先に液晶セルが入射光に対して行つたと逆の
作用をさせて直線偏光に戻し、この直線偏光を検
光子を通して出射させ、画像表示を行なうこと
で、白黒表示を得ている。 Therefore, this emitted light is made incident on an optical phase plate, which reverses the action that the liquid crystal cell did on the incident light and returns it to linearly polarized light.This linearly polarized light is then emitted through an analyzer to display an image. By doing this, a black and white display is obtained.
ここで、光学位相板は、今まで酸性二水素燐酸
カリ(KH2PO4略称KDP)やニオブ酸リチウム
(LiNbO3)のような異方性光学結晶を使用して
構成されている。 Here, the optical phase plate has been constructed using anisotropic optical crystals such as acidic potassium dihydrogen phosphate (KH 2 PO 4 abbreviated as KDP) and lithium niobate (LiNbO 3 ).
しかしながら、これらの材料について結晶成長
を行い、これに切断と研磨を行つて無機の素子を
形成するには、多大な時間と労力を要し、かなり
高価な素子となる。そのため、液晶表示の白黒表
示を実用化し普及させるには、光学位相板のコス
トダウンが必要となる。加えて、面積の大きな素
子は製造が難しいという問題がある。
However, forming inorganic elements by growing crystals of these materials, cutting and polishing them requires a great deal of time and effort, resulting in fairly expensive elements. Therefore, in order to put black and white liquid crystal display into practical use and to popularize it, it is necessary to reduce the cost of optical phase plates. In addition, there is the problem that devices with large areas are difficult to manufacture.
また、液晶セルを2層重ねて白黒表示を得るこ
れまでの白黒パネルは、重くて厚くかつ高価とな
り、しかも反射型にすると暗すぎた。 In addition, conventional black and white panels that provide black and white display by stacking two layers of liquid crystal cells are heavy, thick and expensive, and are too dark when made reflective.
このため、補償パネルを薄型、軽量化すると共
に、コストの低減を図り、かつ明るい表示を可能
とすることが要望されている。 Therefore, it is desired to make the compensation panel thinner and lighter, reduce cost, and enable brighter display.
ところで、製造が容易で安価な高分子材料に
も、光学異方性を有するものがあるため、本発明
の技術的課題は、光学異方性を有する高分子材料
によつて、前記のような諸問題を解消できる光学
位相素子を実現することにある。 By the way, some polymer materials that are easy to manufacture and are inexpensive have optical anisotropy. Therefore, the technical problem of the present invention is to solve the above-mentioned problems by using a polymer material that has optical anisotropy. The objective is to realize an optical phase element that can solve various problems.
第1図は本発明によるプラスチツク光学位相フ
イルムの基本原理を説明する図である。
FIG. 1 is a diagram illustrating the basic principle of a plastic optical phase film according to the present invention.
本発明の光学位相フイルムは、PVDFと
PMMAとの固溶体からなるが、そのうちPVDF
が30〜85重量%含有されている。 The optical phase film of the present invention is made of PVDF and
It consists of a solid solution with PMMA, of which PVDF
It contains 30 to 85% by weight.
そして、該固溶体中の極性基が一定方向に配向
するよう、一軸方向に延伸して形成される。 Then, the solid solution is formed by stretching in a uniaxial direction so that the polar groups in the solid solution are oriented in a certain direction.
また、第1図に示すように、レタデーシヨンR
が550〜650nmの範囲にあるものとする。なお本
発明において、フイルム状体とは、シート状のも
のも含むものとする。 Furthermore, as shown in Fig. 1, retardation R
shall be in the range of 550 to 650 nm. Note that in the present invention, the film-like body includes a sheet-like body.
PVDFの分子内に大きな双極子モーメントをも
つ原子団をもつており、これに電界を加えるか、
あるいは延伸することにより一方向に配向する性
質を有している。本発明は、この性質を利用する
ものである。
PVDF has an atomic group with a large dipole moment in its molecules, and when an electric field is applied to it,
Alternatively, it has the property of being oriented in one direction by stretching. The present invention takes advantage of this property.
すなわち、PVDFは、第2図に示すような構造
式となつており、C−F結合をもつため、大きな
双極子モーメントを有している。 That is, PVDF has a structural formula as shown in FIG. 2, and because it has a C-F bond, it has a large dipole moment.
ところで、PVDFにはα型結晶とβ型結晶の二
種類があり、α型は単位格子を構成する極性基の
配向方向が互い違いに逆向きとなつているため、
打ち消し合い、単位格子は極性をもつていない。 By the way, there are two types of PVDF: α-type crystals and β-type crystals. In the α-type, the polar groups that make up the unit cell are oriented in opposite directions, so
They cancel each other out, and the unit cell has no polarity.
しかし、β型は単位格子を構成する極性基の総
てが一定方向に配向しているため、高い誘電率を
もつ極性結晶を構成している。 However, in the β type, all of the polar groups constituting the unit cell are oriented in a certain direction, so it forms a polar crystal with a high dielectric constant.
そしてα型をβ型とするには、ガラス転移温度
以上の温度で高電界を加えるか、一軸または二軸
延伸すればよいことが知られている。 It is known that in order to change the α type to the β type, a high electric field may be applied at a temperature higher than the glass transition temperature, or uniaxial or biaxial stretching may be performed.
一方、光学素子としては、光透過率がすぐれて
いることが必要条件であるが、PVDFは光透過率
が約12%と極めて少なく、光学材料としては使用
することができない。 On the other hand, as an optical element, it is necessary to have excellent light transmittance, but PVDF has an extremely low light transmittance of about 12%, and cannot be used as an optical material.
本発明の発明者らは、特願昭62−255683号にお
いてプラスチツク光フアイバのクラツドまたは平
板状のライトガイドに適する材料として、PVDF
とPMMAとの固溶体を用いることを提案してい
る。 In Japanese Patent Application No. 62-255683, the inventors of the present invention have proposed PVDF as a material suitable for a plastic optical fiber cladding or a flat light guide.
It is proposed to use a solid solution of PMMA and PMMA.
すなわち、従来プラスチツク光フアイバのコア
としては耐熱性の優れたポリカーボネート(略称
PC)を、またクラツドとしてはPCよりも屈折率
の少ないPMMAが使用されているが、PCの伸度
が90%程度であるのに対し、PMMAの伸度は5
%しかなく、したがつて外部応力によつて容易に
折損してしまう。 In other words, the core of conventional plastic optical fibers is polycarbonate (abbreviated as polycarbonate), which has excellent heat resistance.
PC), and PMMA, which has a lower refractive index than PC, is used as the cladding, but the elongation of PC is about 90%, while the elongation of PMMA is 5%.
%, and therefore easily breaks due to external stress.
そこで、この問題を解決するためにPMMAに
PVDFを添加した固溶体を用いるもので、これに
より伸度の問題を解決すると共に耐熱性も向上し
ている。 Therefore, to solve this problem, PMMA
It uses a solid solution containing PVDF, which solves the elongation problem and improves heat resistance.
本発明は、逆にPVDFを主とし、これに
PMMAを添加することにより、光学的異方性を
保持しながら光透過率やコントラストなどの表示
品質を改良するものである。 The present invention, on the contrary, mainly uses PVDF, and
By adding PMMA, display quality such as light transmittance and contrast is improved while maintaining optical anisotropy.
第3図はPMMAとPVDFとの分率(重量%混
合比率)に対する光透過率を示す図である。
PVDFのみの光透過率は、先に記したように約12
%に過ぎないが、PMMAの添加量が増すに従つ
て光透過率は急激に増加し、PVDF:PMMA=
80%:20%を超すと、光透過率は50%以上とな
る。すなわち、プラスチツク光学位相板を構成す
るには、PVDFの分率がなるべく大きく、しかも
光透過率の高いことが必要であるが、そのために
はPVDFの含有量が、80〜85%以下が望ましい。 FIG. 3 is a diagram showing the light transmittance versus the fraction (weight % mixing ratio) of PMMA and PVDF.
The light transmittance of PVDF alone is about 12 as mentioned earlier.
%, but as the amount of PMMA added increases, the light transmittance increases rapidly, and PVDF:PMMA=
80%: If it exceeds 20%, the light transmittance will be 50% or more. That is, in order to construct a plastic optical phase plate, it is necessary that the PVDF fraction is as large as possible and that the light transmittance is high, and for this purpose, the PVDF content is preferably 80 to 85% or less.
第4図はPMMAとPVDFとの分率に対する熱
変形温度と伸度との関係を示している。本発明の
プラスチツク光学位相フイルムは、PVDFと
PMMAからなる固溶体中の極性基が一定方向に
配向されるように、一軸方向に延伸して形成され
るため、延伸性に富んでいることが望ましい。第
4図から明らかなように、一軸延伸または二軸延
伸法によつて光学的異方性をもつ位相板を形成す
るには、PVDFとPMMAとの固溶体からなるプ
ラスチツク光学位相フイルムにおいて、PVDFの
含有率が85%〜30%の混合物が光学位相板として
適している。PVDFの分率が70%付近が最も伸度
が良いが、伸度が良すぎてロールの痕跡が残ると
いう問題がある。 FIG. 4 shows the relationship between heat distortion temperature and elongation with respect to the fraction of PMMA and PVDF. The plastic optical phase film of the present invention is made of PVDF and
Since it is formed by stretching in a uniaxial direction so that the polar groups in the solid solution made of PMMA are oriented in a certain direction, it is desirable that the solid solution has good stretchability. As is clear from FIG. 4, in order to form a phase plate with optical anisotropy by uniaxial or biaxial stretching, it is necessary to Mixtures with a content between 85% and 30% are suitable as optical phase plates. The elongation is the best when the PVDF fraction is around 70%, but there is a problem that the elongation is too good and roll marks remain.
第3図と第4図を総合すると、光透過率と延伸
性の双方とも良い材料としては、PVDFの分率が
30〜85%程度のものが好ましい。 Combining Figures 3 and 4, it is clear that the material with good light transmittance and stretchability is the PVDF fraction.
It is preferably about 30 to 85%.
第1図は、光学位相フイルムにおけるレタデー
シヨン(複屈折率)Rとコントラストとの関係を
示す図である。この図から明らかなように、レタ
デーシヨンRが550〜650の範囲が、より鮮明なコ
ントラストが得られる。なお、
レタデーシヨンR=Δnd
の関係式で表される。ここに、Δnは固有複屈折、
dは厚さである。 FIG. 1 is a diagram showing the relationship between retardation (birefringence) R and contrast in an optical phase film. As is clear from this figure, clearer contrast can be obtained when the retardation R is in the range of 550 to 650. Note that it is expressed by the relational expression: retardation R=Δnd. Here, Δn is the intrinsic birefringence,
d is the thickness.
次に本発明によるプラスチツク光学位相フイル
ムが実際上どのように具体化されるかを実施例で
説明する。PVDF:PMMA=70%:30%の割合
の混合物をガラス製のるつぼに入れ、試料溶融時
に気泡が入るのを防ぐために、減圧装置に入れて
装置内の空気を排気した状態で、この組成比の熱
変形温度である150℃で2倍に一軸延伸し、厚さ
が150μm、レタデーシヨンの値が600nmの位相フ
イルムを得た。
Next, examples will be used to explain how the plastic optical phase film according to the present invention is actually implemented. A mixture of PVDF:PMMA = 70%:30% was placed in a glass crucible, and in order to prevent air bubbles from entering when melting the sample, the composition ratio was determined by placing it in a decompression device and exhausting the air inside the device. A phase film having a thickness of 150 μm and a retardation value of 600 nm was obtained by uniaxially stretching the film at 150° C., which is the heat deformation temperature of 150° C.
第5図は、かかる方法で作製した位相フイルム
について、位相フイルムのレタデーシヨンと液晶
のコントラスト比(ON状態(白)とOFF状態
(黒)の明るさ比)との関係を測定した結果であ
る。レタデーシヨンが550〜650nmでは、コント
ラストが良いことがわかる。なお、レタデーシヨ
ンは、フイルム厚dを一定とし、Δnを変化させ
て測定した。固有複屈折Δnは、フイルムの延伸
と関係する値である。 FIG. 5 shows the results of measuring the relationship between the retardation of the phase film and the contrast ratio of the liquid crystal (the brightness ratio between the ON state (white) and the OFF state (black)) for the phase film produced by this method. It can be seen that the contrast is good when the retardation is 550 to 650 nm. Note that the retardation was measured while keeping the film thickness d constant and varying Δn. Intrinsic birefringence Δn is a value related to film stretching.
第6図はCIE(国際照明委員会)で規定する色
度図であり、白丸はオン状態における色、黒丸は
オフ状態における色である。また各白丸、黒丸の
隣の数値は、レタデーシヨンRの値を示してお
り、第5図における各試料に対応している。この
図から明らかなように、レタデーシヨンが510と
小さい場合は、OFF状態で青みがかつた黒とな
るが、肉眼ではほとんど黒に見え、実用上差支え
なかつた。特にレタデーシヨンが550〜650の範囲
においては、白黒の状態が良好に判別できる。 Figure 6 is a chromaticity diagram defined by the CIE (Commission Internationale de Illumination), where the white circles are the colors in the on state and the black circles are the colors in the off state. Further, the numerical values next to each white circle and black circle indicate the value of retardation R, and correspond to each sample in FIG. As is clear from this figure, when the retardation is as small as 510, the black becomes bluish in the OFF state, but it looks almost black to the naked eye, so there is no problem in practical use. Particularly in the retardation range of 550 to 650, black and white conditions can be distinguished well.
また、色のコントラストをより良くするため
に、前記固溶体中に有機蛍光色素(例えば、ペリ
レン系色素など)を含有させても良い。 Further, in order to improve the color contrast, an organic fluorescent dye (for example, perylene dye) may be contained in the solid solution.
以上のように、本発明の構成によれば、ポリカ
ーボネートフイルムのような補償フイルムに比較
して高透明で、かつ複屈折分布が均一で、コント
ラストも良く、表示品質に優れた光学位相フイル
ムを、低コストで量産することが可能となる。
As described above, according to the configuration of the present invention, an optical phase film that is highly transparent, has a uniform birefringence distribution, has good contrast, and has excellent display quality compared to a compensation film such as a polycarbonate film. It becomes possible to mass produce at low cost.
特に1枚の薄いプラスチツクフイルムで構成で
きるため、薄型かつ軽量で面積の広い光学位相フ
イルムを実現でき、液晶表示装置における光学補
償フイルムとして最適である。 In particular, since it can be constructed from a single thin plastic film, it is possible to realize an optical phase film that is thin, lightweight, and has a large area, making it ideal as an optical compensation film for liquid crystal display devices.
第1図は本発明によるプラスチツク光学位相フ
イルムの基本原理を説明する図、第2図はPVDF
の構造式を示す図、第3図はPMMAとPVDFの
分率と光透過率との関係を示す図、第4図は
PMMAとPVDFの分率に対する熱変形温度と伸
度との関係を示す図、第5図は位相板の複屈折
(レタデーシヨン)と液晶パネルのコントラスト
比の関係を示す図、第6図は第5図の状態におけ
る色度図である。
Figure 1 is a diagram explaining the basic principle of the plastic optical phase film according to the present invention, and Figure 2 is a diagram explaining the basic principle of the plastic optical phase film according to the present invention.
Figure 3 shows the relationship between the fraction of PMMA and PVDF and light transmittance, Figure 4 shows the structural formula of
Figure 5 is a diagram showing the relationship between the heat distortion temperature and elongation with respect to the fraction of PMMA and PVDF. Figure 5 is a diagram showing the relationship between the birefringence (retardation) of the phase plate and the contrast ratio of the liquid crystal panel. It is a chromaticity diagram in the state shown in the figure.
Claims (1)
るポリ弗化ビニリデンとポリメチルメタクリレー
トの固溶体からなり、 該固溶体中の極性基が一定方向に配向するよ
う、一軸方向に延伸して形成されるフイルム状体
であつて、 レタデーシヨンRが550〜650nmの範囲にある
ことを特徴とするプラスチツク光学位相フイル
ム。 2 前記固溶体中に蛍光色素を含有させ、調色し
たことを特徴とする特許請求の範囲第1項記載の
プラスチツク光学位相フイルム。[Scope of Claims] 1 Consists of a solid solution of polyvinylidene fluoride and polymethyl methacrylate containing 30 to 85% by weight of polyvinylidene fluoride, uniaxially so that the polar groups in the solid solution are oriented in a certain direction. 1. A plastic optical phase film, which is a film-like body formed by stretching, and has a retardation R in the range of 550 to 650 nm. 2. The plastic optical phase film according to claim 1, characterized in that the solid solution contains a fluorescent dye to adjust the color.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1006422A JPH02186302A (en) | 1989-01-13 | 1989-01-13 | Plastic optical phase film |
CA000600146A CA1317716C (en) | 1988-06-02 | 1989-05-18 | Plastic optical phase sheet |
KR1019890007409A KR920001116B1 (en) | 1988-06-02 | 1989-05-31 | Plastic optical phase sheet and process for prepartion thereof |
DE68923739T DE68923739T2 (en) | 1988-06-02 | 1989-05-31 | Liquid crystal display device and plastic film with optical phase. |
EP89305477A EP0347063B1 (en) | 1988-06-02 | 1989-05-31 | Liquid crystal display device and plastic optical phase sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1006422A JPH02186302A (en) | 1989-01-13 | 1989-01-13 | Plastic optical phase film |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8136860A Division JP2835831B2 (en) | 1996-05-30 | 1996-05-30 | STN liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02186302A JPH02186302A (en) | 1990-07-20 |
JPH0466482B2 true JPH0466482B2 (en) | 1992-10-23 |
Family
ID=11637938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1006422A Granted JPH02186302A (en) | 1988-06-02 | 1989-01-13 | Plastic optical phase film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02186302A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5278694A (en) * | 1990-01-11 | 1994-01-11 | The Dow Chemical Company | Optically dissimilar composition for polymeric reflective bodies |
JP3394682B2 (en) * | 1996-05-09 | 2003-04-07 | 住友化学工業株式会社 | Optical anisotropic film and liquid crystal display |
KR100444413B1 (en) * | 1996-05-09 | 2005-01-17 | 스미또모 가가꾸 고교 가부시끼가이샤 | Optical anisotropic film and liquid crystal display device |
-
1989
- 1989-01-13 JP JP1006422A patent/JPH02186302A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH02186302A (en) | 1990-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5142393A (en) | Electro-optical liquid crystal device with compensator having negative optical anisotropy | |
US5249071A (en) | Liquid crystal display having positive and negative uniaxially oriented polymer films | |
JPH04138424A (en) | Liquid crystal display device | |
JP3289386B2 (en) | Color liquid crystal display | |
JPH0627433A (en) | Stn type liquid crystal display device | |
JPH0466482B2 (en) | ||
JPS5922031A (en) | Liquid crystal display device | |
JP2835831B2 (en) | STN liquid crystal display | |
JPH01154030A (en) | Electro-optical element | |
JP3143271B2 (en) | Liquid crystal display | |
KR920001116B1 (en) | Plastic optical phase sheet and process for prepartion thereof | |
JP2780188B2 (en) | Phase difference plate and liquid crystal electro-optical element using the same | |
Tanaka et al. | Application of poly (vinylidene fluoride) and poly (methyl methacrylate) blends to optical material | |
JPH0259702A (en) | Phase difference plate | |
JPH02111918A (en) | Liquid crystal electrooptic element | |
JPH0466481B2 (en) | ||
JPS6479724A (en) | Liquid crystal display element | |
JPH03139603A (en) | Optical phase difference plate | |
JPH02197816A (en) | Liquid crystal display device | |
JPH08190081A (en) | Color liquid crystal display element | |
JPS6250735A (en) | Liquid crystal display device | |
JPH11174497A (en) | Color liquid crystal display device | |
JP3188427B2 (en) | Liquid crystal device | |
JPH01147433A (en) | Liquid crystal display element | |
JPH0243515A (en) | Optical compensating liquid crystal display element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071023 Year of fee payment: 15 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081023 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081023 Year of fee payment: 16 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081023 Year of fee payment: 16 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081023 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 17 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 17 |