JPH0323293A - Gas phase growth device - Google Patents

Gas phase growth device

Info

Publication number
JPH0323293A
JPH0323293A JP15615189A JP15615189A JPH0323293A JP H0323293 A JPH0323293 A JP H0323293A JP 15615189 A JP15615189 A JP 15615189A JP 15615189 A JP15615189 A JP 15615189A JP H0323293 A JPH0323293 A JP H0323293A
Authority
JP
Japan
Prior art keywords
gas
raw material
phase growth
flow rate
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15615189A
Other languages
Japanese (ja)
Inventor
Atsushi Fukushima
淳 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP15615189A priority Critical patent/JPH0323293A/en
Publication of JPH0323293A publication Critical patent/JPH0323293A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To grow the crystal having good graded layers in the gas phase growth device in which a semiconductor crystal is epitaxially grown by branching an outlet piping of organic metal raw material gas into >=2 pipings. CONSTITUTION:Carrier gas 4 is controlled to an optional flow rate by mass controllers 1, 2, 3, and organic metal raw materials 6, 7, 8, such as TMI, TMA and TEG, are introduced through inlets 9. The raw mateiral gas 15 conveyed by carrier gas 4 is branched into two directions at a branching points 11 through outlets 10. Needle valves 12 are provided in each branch piping to control the flow rate. The raw mateiral gas 15 passing through the needle valve 12 is introduced on the base plate 16 held on a base plate holder 17 to carry out epitaxial growth.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、有機金属<Metal  Organic)
気相成長c以下MOVPEと略す)装置に間し、特に得
られる結晶の組成を制御性良く変化させることが可能な
気相成長装置に関するものである. (従来の技術) 近年、MOVPEでの光、電子デバイスの結晶成長が盛
んになっている.更に、超格子tr9造はその量子効果
を利用したデバイスに期待されており、その結晶性、制
御性を上げることが成長の一課題となっている.特に結
晶性、制御性はその装置に依存するところが多く、装置
及び成長方法等において最適化を図ることが重要となる
. 第5図は、例えば特願昭63−147245号に開示さ
れている従来のMOVPEによる気相成長装置の概略で
ある.第5図において、キャリアガス4はD/A出力5
によって制御されたマスフローコントローラー1.2.
3によって任意の流量に制御され、有機原料6,7.8
の入口9から導入される。キャリアガス4によって輸送
された原料ガス15は、出口10を通り反応管14に導
入される.また、V族ガス18も反応管14に導入され
る.反応管14に導入された原料ガス15、V族ガス1
8は、基板(試料)ホルダー17上の基板l6に到達し
、エピタキシャル戒長が行なわれる. このようなMOVPE成長において、良好なグレーデッ
ド構造を有するエピタキシャル膜を得る場合、原料ガス
の導入をリニアに変化させることが必要である.ここで
は特に、MOVPEによるIn (0.5)AI (X
)Ga (0.5−X)Asからなるグレーデッド楕遣
(X=0〜0.5)を有する成長例を上げる.特に、I
nP基板では上記条件を満たすことによってほぼ完全格
子整合が可能である. 戊長は、高周波加熱により基板温度を650℃に設定し
、キャリアガスに希釈された第1の原料ガス(TMI)
と第1のV族ガス(PHs)を反応管に導入し、InP
基板上に第1の半導体層(InP)をエピタキシャル成
長する.任意の層厚を成長後第1の原料ガス(TMI)
、V族ガス(PHs)の導入をやめる.次に、第1の原
料ガス(TM I ) +第2の原料ガス(TMA)、
第3の原料ガス(TEG)  第2のV族ガス(ASH
))の導入を行なう.第1の原料ガス(TMI)は、任
意の一定流量を保つ.第2の原料ガス(TMA)は、流
量“0”から任意の流量まで変化させる(AI組成をO
から0、5).対して、第3の原料ガス(TEG)は、
任意の流量から“O″まで減少させる(Ga組成を0.
5から0).第2及び第3の原料ガスの変化時間はそれ
ぞれ一致させる.この行程を1サイクル終了することに
より、In (0.5)AI  (X)Ga(0、5−
X)Asのグレーデッド4′pl造をエピタキシャル成
長することができる. (発明が解決しようとする課題) 上述した現有の気相成長装置に関して、グレーデッド構
造In(0.5)AI(  X  )  G  a(0
.5−X)As層のオージェ電子分光(AES)の深さ
方向プロファイルを第6図に示す,AIとGaは、流量
変化にともない対照的な挙動を示しているが、流量を“
0”にした(界面ではIn (0.5)Ga (0.5
)AsとIn(0.5)AI (0.5)Asの層が存
在するはずである)にも関わらす組戒は四元層が存在す
ることを示しており、本来の設定どおりのグレーデッド
In (0.5>AI (X)Ga (0.5−X)A
s層(×組成はOから0.5)ができていない.この過
程では、マスフローコントローラーで流量を“0”にす
るということは有機原料内にキャリアガスが流れない時
間がある.更に、極少流量のキャリアガスでは、原料ガ
スを設定畝に制御することは困難である.つまり、有機
原科中でパブリングが設定流量に追従しない.こうした
問題は、デバイスを作る上で設計通り作ることができな
いばかりか、デバイス本来の性能を引き出すことが難し
い. 本発明の目的は、上記の課題を克服し、グレーデッド構
造を有する成長において、制御性を良く、良好なグレー
デッド層を有する結晶の成長可能な気相成長装置を提供
することを目的とする.(課題を解決するための手段) 本発明の気相成長装置は、有機金属原料中にキャリアガ
スを導入し、原料ガスとして反応室内に導入し、半導体
結晶をエピタキシャル成長する気相成長装置において、
前記原料ガスの出口配管が二つ以上に分岐され、その内
の少なくとも一つが前記反応室に接続されている. (作用〉 本発明においては、原料ガスの出口配管を二つ以上に分
岐し実効的な流量を増加し、ニードルバルブによって反
応室に導入される原料ガスの流量を制御し、また二つ以
上の出口配管を異なった内径にすることにより反応系に
導入する原料ガスの微少流量制御を容易にしエピタキシ
ャル成長を行なっている.その結果、制御性良く良好な
グレーデッド梢遣を有する結晶を得ることが可能となる
.(実施例) 次に本発明の実施例について図面を参照しながら説明す
る. 第1図は、本発明の第lの実施例による気相成長装置に
おいて、MOVPEの装置の概略を示す図である. 第1図において、キャリアガス4はD/A出力5によっ
て制御されたマスフローコントロー−7 −1.2.3
によって任意の流量に制御され、有機原H6.7.8の
入口9から導入される.キャリアガス4によって輸送さ
れた原料ガス15は、出口IOを通り分岐点11によっ
て二方向に分岐される.分岐した各々の配管には二一ド
ルバルブl2がそれぞれ設置してあり、流量を調節でき
る.ニ一ドルバルブ12を経た原料ガス15は、基板ポ
ルダー17上の基板16に到達し、エピタキシャル成長
が行なわれる. 尚、ニードルバルブ12より下流側は減圧で、上流測は
常圧となっており、反応管14の中では、原料ガス15
の滞留を極力抑制している.また、もう一方のラインは
それぞれVENTライン13につながって外部で処理さ
れる. 成長は、高周波加熟により基板温度を650℃に設定し
、キャリアガスに希釈された第1の原料ガス(TMI)
と第1の■族ガス(PH3>を反応管に導入し、InP
基板上に第1の半導体層(InP:1μm)をエピタキ
シャル成長する.InP層を成長後第1の原料ガス(T
MI)、V族ガス(PH1)の導入をやめる.次に第1
の原料ガス(TM I ) 、第2の原科ガス(TEG
)、第3の原料ガス(TMA) 、第2の■族ガス(A
sH3)の導入を行ない、In(0.51AI (X)
Ga (0.5−X)Asグレーデッド層(1000人
周期)をエピタキシャル成長ずる.第1の原料ガス(T
M I )は、任意の一定流量を保つ.第2の原料ガス
(TEG)は、流量“0”から任意の流量までコンピュ
ータ制御したD/A出力をマスフローコントローラーに
入力することによって自動的にリニアに変化させる.逆
に、第3の原料ガス(TMA)は、任意の流量から“0
”まで自動的に減少させる(上述と同じ動作).第2及
び第3の原料ガスの変化時間はそれぞれ一致させる。こ
のグレーデッド層の行程をここでは5サイクル行なった
. グレーデッド層成長後、すべてのガスの導入を一旦止め
、第1の原料ガス(TM I ) 、第1の■族ガス(
PHx)を導入し、InP層(lμm)を成長させた.
二一ドルバルブによってVENTライン測と反応室に行
く本流曲は流量が異なり、本流側は微少流量での制御を
行ない、実効的に微少流量の制御ができた.この結果、
InP基板上にrnP1(1μm)  グレーデッドI
n(0.5)At (X)Ga (0.5−X)As層
(In (0.5)AI  (0.5)AsからIn(
0.5)Ga (0.5)Asへのグレーデッド梢遣:
1000人周期X5)、InP層(lμm)の!IA造
のエピタキシャル成長を行なうことができた. このようにすることにより、グレーデッド構造の層では
、各々の層で良好なグレーデッド層を制御性良く作製で
き、In (0.5)’AI (0.5)AsからI 
n (0.5)Ga (0.5)AsへのIn  (0
.  5)AI  (X)Ga  (0.  5−X)
Asグレーデッド横遣を有する結晶を得ることができた
. 更に、第2図に本発明による第2の実施例による気相威
長装置の概略を示す. 基本的には、上述した第1の実施例と同じでJ’)る.
第2の実施例では、有機原料6,7.8からの出口配管
10の分岐点11からVENTラインと本流ラインの配
管の内径が異なっている.このようにすることにより、
二一ドルバルブによる員少流量制御をさらに容易にし、
良好なグレーデッド構造を有する結晶を得ることができ
る.第3図には、本発明による第1の実施例によって得
られたグレーデッドIn (0.5)AI (X)Ga
 (0.5−X)As層の深さ方向のAESプロファイ
ルを示す. 得られた結晶構造は、inP基板上に厚さ1μmのIn
Pバッファ層、In (0.5)AI(X)Ga (0
.5−X)Asからなるグレーデッド層(10elO人
が5周期)、InPキエップ層(1μm)である.従来
の気相成長装置による実施例に比べ(第6図)、本実施
例によって得られたグレーテッド構造はAI及びGaか
より“O”に近い組成の層を形成しており、グレーデッ
ド層の結晶性が格段に改善されていることがわかる.こ
れは、前記(課題を解決するための手段)の欄で述べた
ように、グレーデッド層の成長において、VENTライ
ン開と本流ライン側に分岐し、微少流量の原料ガスが本
流測に導入され、有機原料のパブリングを追従すること
を可能に(7たことによるものである. また、第4図に本発明による第2の実施例によって得ら
れたグレーデッド楕造を有するIn(05)At (X
)Ga (0.5−X)As結晶のAESを示す.本実
施例では、上述の結果を更に上回る良好なグレーデッド
層を形成していることが!I認された.これは、グレー
デッド層の成長においてVENTライン側と本流ライン
側に分岐し、微少流量の原料ガスが本流側に導入され、
さらに微少mlkを二一ドルバルブの使用と出口配管の
内径を変えることによって容易に制御することを可能に
したことによるものである. (発明の効果) 以上説明したように本発明による気相成長装置によれば
、良好なグレーデッド層を制御性良く任意の範囲で自由
に形成でき、結晶性の良いエビタ吉シャル結晶を提供す
ることが可能となる.
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to metal organic
This invention relates to a vapor phase growth (hereinafter abbreviated as MOVPE) apparatus, and in particular to a vapor phase growth apparatus that can change the composition of the resulting crystal with good controllability. (Prior Art) In recent years, crystal growth of optical and electronic devices using MOVPE has become popular. Furthermore, superlattice tr9 structures are expected to be used in devices that utilize their quantum effects, and improving their crystallinity and controllability is one of the challenges for growth. In particular, crystallinity and controllability often depend on the equipment used, so it is important to optimize the equipment and growth method. FIG. 5 schematically shows a conventional MOVPE vapor phase growth apparatus disclosed in, for example, Japanese Patent Application No. 147245/1982. In FIG. 5, carrier gas 4 is D/A output 5
Mass flow controller controlled by 1.2.
3, organic raw material 6,7.8
is introduced from the entrance 9 of the The raw material gas 15 transported by the carrier gas 4 is introduced into the reaction tube 14 through the outlet 10. Further, a group V gas 18 is also introduced into the reaction tube 14. Raw material gas 15 and V group gas 1 introduced into reaction tube 14
8 reaches the substrate l6 on the substrate (sample) holder 17, and epitaxial growth is performed. In such MOVPE growth, in order to obtain an epitaxial film having a good graded structure, it is necessary to linearly change the introduction of source gas. In (0.5)AI (X
) Ga (0.5-X) As is an example of growth with graded ellipse (X = 0 to 0.5). In particular, I
Almost perfect lattice matching is possible with nP substrates by satisfying the above conditions. Bocho set the substrate temperature to 650°C by high-frequency heating, and heated the first raw material gas (TMI) diluted with carrier gas.
and a first group V gas (PHs) are introduced into the reaction tube, and InP
A first semiconductor layer (InP) is epitaxially grown on the substrate. After growing an arbitrary layer thickness, first source gas (TMI)
, stop introducing group V gases (PHs). Next, the first source gas (TM I ) + second source gas (TMA),
Third raw material gas (TEG) Second group V gas (ASH
)) will be introduced. The first raw material gas (TMI) is maintained at an arbitrary constant flow rate. The second raw material gas (TMA) is varied from a flow rate of “0” to an arbitrary flow rate (the AI composition is changed to O
From 0, 5). On the other hand, the third source gas (TEG) is
Decrease the flow rate from an arbitrary value to "O" (Ga composition is reduced to 0.
5 to 0). The change times of the second and third raw material gases are made to be the same. By completing one cycle of this process, In (0.5)AI (X)Ga(0,5-
X) A graded 4'pl structure of As can be grown epitaxially. (Problems to be Solved by the Invention) Regarding the existing vapor phase growth apparatus described above, the graded structure In(0.5)AI(X)Ga(0
.. Figure 6 shows the Auger electron spectroscopy (AES) depth profile of the 5-X) As layer.Al and Ga exhibit contrasting behavior as the flow rate changes, but when the flow rate is
0” (In(0.5)Ga(0.5) at the interface
) As and In (0.5) AI (There should be a layer of 0.5 As), the group precept shows that a quaternary layer exists, and the gray is as originally set. Dead In (0.5>AI (X)Ga (0.5-X)A
The s-layer (× composition is 0.5 from O) is not formed. In this process, setting the flow rate to "0" with the mass flow controller means that there is a time when the carrier gas does not flow into the organic material. Furthermore, it is difficult to control the raw material gas to the set ridge using a carrier gas with an extremely small flow rate. In other words, pubbling does not follow the set flow rate in the organic family. These problems not only prevent devices from being manufactured as designed, but also make it difficult to bring out the device's original performance. An object of the present invention is to overcome the above-mentioned problems and provide a vapor phase growth apparatus capable of growing crystals with good controllability and a good graded layer in growth having a graded structure. .. (Means for Solving the Problems) The vapor phase growth apparatus of the present invention is a vapor phase growth apparatus in which a carrier gas is introduced into an organic metal raw material and introduced into a reaction chamber as a raw material gas to epitaxially grow a semiconductor crystal.
The outlet piping for the raw material gas is branched into two or more branches, at least one of which is connected to the reaction chamber. (Function) In the present invention, the outlet piping of the raw material gas is branched into two or more to increase the effective flow rate, the flow rate of the raw material gas introduced into the reaction chamber is controlled by a needle valve, and the outlet piping of the raw material gas is divided into two or more. By setting the outlet piping to different inner diameters, we can easily control the minute flow rate of the raw material gas introduced into the reaction system and perform epitaxial growth.As a result, it is possible to obtain crystals with good graded topography with good controllability. (Embodiment) Next, an embodiment of the present invention will be described with reference to the drawings. Fig. 1 shows an outline of a MOVPE apparatus in a vapor phase growth apparatus according to a first embodiment of the present invention. In FIG. 1, the carrier gas 4 is controlled by a mass flow controller 7-1.2.3 controlled by a D/A output 5.
The organic source H6.7.8 is introduced from the inlet 9 of the organic source H6.7.8. The raw material gas 15 transported by the carrier gas 4 passes through the outlet IO and is branched into two directions at a branch point 11. Each branched pipe is equipped with a 21-dollar valve l2 to adjust the flow rate. The raw material gas 15 passing through the needle valve 12 reaches the substrate 16 on the substrate polder 17, where epitaxial growth is performed. Note that the downstream side of the needle valve 12 is under reduced pressure and the upstream side is at normal pressure, and in the reaction tube 14, the raw material gas 15
Retention is suppressed as much as possible. The other lines are each connected to the VENT line 13 and processed externally. For growth, the substrate temperature is set at 650°C by high-frequency ripening, and the first raw material gas (TMI) diluted with carrier gas is used.
and the first group III gas (PH3) are introduced into the reaction tube, and InP
A first semiconductor layer (InP: 1 μm) is epitaxially grown on the substrate. After growing the InP layer, the first source gas (T
MI), stop introducing group V gas (PH1). Next, the first
raw material gas (TMI), second raw material gas (TEG
), third raw material gas (TMA), second group ■ gas (A
sH3) was introduced, and In(0.51AI (X)
A Ga(0.5-X)As graded layer (1000 cycles) was grown epitaxially. First source gas (T
M I ) maintains an arbitrary constant flow rate. The second raw material gas (TEG) is automatically and linearly changed from a flow rate of "0" to an arbitrary flow rate by inputting a computer-controlled D/A output to a mass flow controller. On the contrary, the third raw material gas (TMA) is changed from an arbitrary flow rate to "0"
” (same operation as above). The change times of the second and third raw material gases are made to match each other. This graded layer process was performed for 5 cycles here. After growing the graded layer, The introduction of all gases is temporarily stopped, and the first raw material gas (TM I ), the first group II gas (
PHx) was introduced, and an InP layer (lμm) was grown.
The VENT line measurement and the main stream going to the reaction chamber have different flow rates using a twenty-one dollar valve, and the main stream side is controlled at a minute flow rate, making it possible to effectively control the minute flow rate. As a result,
rnP1 (1μm) graded I on InP substrate
n(0.5)At(X)Ga(0.5-X)As layer(In(0.5)AI(0.5)As to In(
Graded tree transfer to 0.5) Ga (0.5) As:
1000 person cycle x 5), InP layer (lμm)! We were able to perform epitaxial growth of the IA structure. By doing this, it is possible to fabricate a good graded layer in each layer with good controllability in the graded structure layer, and it is possible to produce a good graded layer in each layer with good controllability.
n (0.5)Ga (0.5)As to In (0
.. 5) AI (X)Ga (0.5-X)
We were able to obtain a crystal with an As graded lateral structure. Furthermore, FIG. 2 schematically shows a vapor phase lengthening apparatus according to a second embodiment of the present invention. Basically, it is the same as the first embodiment described above.
In the second embodiment, the inner diameters of the VENT line and the main line from the branch point 11 of the outlet pipe 10 from the organic raw materials 6, 7.8 are different. By doing this,
The 21-dollar valve makes it easier to control small flow rates,
Crystals with good graded structure can be obtained. FIG. 3 shows the graded In(0.5)AI(X)Ga obtained by the first example according to the present invention.
(0.5-X) Shows the AES profile in the depth direction of the As layer. The obtained crystal structure consists of an InP substrate with a thickness of 1 μm.
P buffer layer, In(0.5)AI(X)Ga(0
.. 5-X) A graded layer made of As (5 cycles of 10elO) and an InP Kiep layer (1 μm). Compared to the example using a conventional vapor phase growth apparatus (Fig. 6), the graded structure obtained by this example forms a layer with a composition closer to "O" than AI and Ga, and the graded layer It can be seen that the crystallinity of is significantly improved. As mentioned in the above section (Means for solving the problem), during the growth of the graded layer, the VENT line is opened and the main line is branched, and a minute flow rate of source gas is introduced into the main line. , it is possible to follow the pubbling of the organic raw material (7). In addition, FIG. 4 shows an In(05)At (X
) Shows AES of Ga (0.5-X)As crystal. In this example, a graded layer was formed that was even better than the above results! I was approved. In the growth of the graded layer, the line branches into the VENT line side and the main line side, and a minute flow rate of raw material gas is introduced into the main line side.
Furthermore, it is possible to easily control minute mlk by using a 21 dollar valve and changing the inner diameter of the outlet piping. (Effects of the Invention) As explained above, according to the vapor phase growth apparatus according to the present invention, a good graded layer can be freely formed in any desired range with good controllability, and an Evitakishall crystal with good crystallinity can be provided. This makes it possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による第1の実施例の気相成長装置の概
略図、第2図は本発明による第2の実施例の気相戚長装
置の概略図、第3図は本発明による第1の実施例によっ
て得られた結晶の深さ方向のAESプロファイル図、第
4図は本発明による第2の実施例によって得られた結晶
の深さ方向のAESプロファイル図、第5図は従来の気
相成長装置の概略図、第6図は従来例によって得られた
結晶の深さ方向AESプロファイル図である.1.2.
3・・・マスフローコントローラー4・・・キャリアガ
ス、5・・・D/A出力、6・・・有機原料■、7・・
・有機原料■、8・・・有機原料■、9・・・入口、1
0・・・出口、1l・・・分岐点、12・・・二一ドル
バルブ、13・・・V E N Tライン、14・・・
反応管、15・・・原科ガス、16・・・試料、17・
・・試料ホルダ18・・・■族ガス,
FIG. 1 is a schematic diagram of a vapor phase growth apparatus according to a first embodiment of the present invention, FIG. 2 is a schematic diagram of a vapor phase growth apparatus according to a second embodiment of the present invention, and FIG. 3 is a schematic diagram of a vapor phase growth apparatus according to a second embodiment of the present invention. FIG. 4 is an AES profile diagram in the depth direction of the crystal obtained by the first embodiment, FIG. 4 is an AES profile diagram in the depth direction of the crystal obtained by the second embodiment of the present invention, and FIG. 5 is the conventional AES profile diagram 6 is a schematic diagram of a vapor phase growth apparatus, and FIG. 6 is an AES profile diagram in the depth direction of a crystal obtained by a conventional example. 1.2.
3... Mass flow controller 4... Carrier gas, 5... D/A output, 6... Organic raw material ■, 7...
・Organic raw material ■, 8... Organic raw material ■, 9... Inlet, 1
0... Outlet, 1l... Branch point, 12... Twenty one dollar valve, 13... V E N T line, 14...
Reaction tube, 15... Original gas, 16... Sample, 17.
...Sample holder 18...Group gas,

Claims (3)

【特許請求の範囲】[Claims] (1)有機金属原料中にキャリアガスを導入し、原料ガ
スとして反応室内に導入し、半導体結晶をエピタキシャ
ル成長する気相成長装置において、前記原料ガスの出口
配管が二つ以上に分岐され、その内の少なくとも一つが
前記反応室に接続されていることを特徴とする気相成長
装置。
(1) In a vapor phase growth apparatus in which a carrier gas is introduced into an organic metal raw material and introduced into a reaction chamber as a raw material gas to epitaxially grow a semiconductor crystal, the outlet piping for the raw material gas is branched into two or more, and one of the A vapor phase growth apparatus characterized in that at least one of the above is connected to the reaction chamber.
(2)前記出口配管の出口流量をニードルバルブによっ
て調節可能なことを特徴とする請求項1記載の気相成長
装置。
(2) The vapor phase growth apparatus according to claim 1, wherein the outlet flow rate of the outlet pipe can be adjusted by a needle valve.
(3)前記二つ以上分岐された出口配管の内径が異なる
ことを特徴とする請求項1または2記載の気相成長装置
(3) The vapor phase growth apparatus according to claim 1 or 2, wherein the two or more branched outlet pipes have different inner diameters.
JP15615189A 1989-06-19 1989-06-19 Gas phase growth device Pending JPH0323293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15615189A JPH0323293A (en) 1989-06-19 1989-06-19 Gas phase growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15615189A JPH0323293A (en) 1989-06-19 1989-06-19 Gas phase growth device

Publications (1)

Publication Number Publication Date
JPH0323293A true JPH0323293A (en) 1991-01-31

Family

ID=15621460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15615189A Pending JPH0323293A (en) 1989-06-19 1989-06-19 Gas phase growth device

Country Status (1)

Country Link
JP (1) JPH0323293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431734A (en) * 1994-04-28 1995-07-11 International Business Machines Corporation Aluminum oxide low pressure chemical vapor deposition (LPCVD) system-fourier transform infrared (FTIR) source chemical control

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431734A (en) * 1994-04-28 1995-07-11 International Business Machines Corporation Aluminum oxide low pressure chemical vapor deposition (LPCVD) system-fourier transform infrared (FTIR) source chemical control
US5665608A (en) * 1994-04-28 1997-09-09 International Business Machines Corporation Method of aluminum oxide low pressure chemical vapor deposition (LPCVD) system-fourier transform infrared (FTIR) source chemical control

Similar Documents

Publication Publication Date Title
JPH0429313A (en) Device for producing semiconductor crystal
CN113502460B (en) Preparation method of semiconductor structure and semiconductor growth equipment
JPH0323293A (en) Gas phase growth device
CN109423695A (en) Doped source supply line and chemical gas-phase deposition system
JPH01130519A (en) Mocvd crystal growing apparatus
JPH02180796A (en) Production of silicon carbide single crystal
JPS6016898A (en) Gaseous-phase growth device
CN101475150B (en) Apparatus for improving HVPE transmission airflow homogeneity
JP4089816B2 (en) Semiconductor epitaxial wafer manufacturing apparatus and dopant gas diluting apparatus
JPS59229816A (en) Vapor growth apparatus for compound semiconductor
JPS63248118A (en) Vapor phase crystal growth equipment
JPH04324623A (en) Device and method for vapor phase growth
JPH0316993A (en) Vapor-phase epitaxial growth of compound semiconductor
JPH02205316A (en) Epitaxial vapor phase growth device
JPH04187594A (en) Device of vapor-phase epitaxial growth
JPH10242062A (en) Method of growing semiconductor thin film
JPS60182722A (en) Decompression cvd device
JPS5826656B2 (en) 3-5 Epitaxy method
JPS61102729A (en) Vapor-phase epitaxial growth device
JP3252644B2 (en) Vapor phase growth method and apparatus
JPS61174624A (en) Semiconductor growing apparatus
JPS62182195A (en) Method for growing iii-v compound semiconductor
JPH0594949A (en) Semiconductor vapor growth device
JPH0817158B2 (en) Semiconductor manufacturing equipment by vapor phase growth
JPH0665209B2 (en) Semiconductor manufacturing equipment by vapor phase growth