JPH0323278A - Whisker reinforced ceramic sintered body and production thereof - Google Patents
Whisker reinforced ceramic sintered body and production thereofInfo
- Publication number
- JPH0323278A JPH0323278A JP1158614A JP15861489A JPH0323278A JP H0323278 A JPH0323278 A JP H0323278A JP 1158614 A JP1158614 A JP 1158614A JP 15861489 A JP15861489 A JP 15861489A JP H0323278 A JPH0323278 A JP H0323278A
- Authority
- JP
- Japan
- Prior art keywords
- whiskers
- sintered body
- ceramic
- whisker
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011226 reinforced ceramic Substances 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- 239000000919 ceramic Substances 0.000 claims abstract description 42
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000011159 matrix material Substances 0.000 claims abstract description 31
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 239000002184 metal Substances 0.000 claims abstract description 12
- 150000001247 metal acetylides Chemical class 0.000 claims abstract description 9
- 150000002739 metals Chemical class 0.000 claims abstract description 7
- 230000000737 periodic effect Effects 0.000 claims abstract description 7
- 229910052580 B4C Inorganic materials 0.000 claims abstract description 6
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 4
- 238000000034 method Methods 0.000 claims description 57
- 239000000843 powder Substances 0.000 claims description 49
- 238000006243 chemical reaction Methods 0.000 claims description 43
- 239000011812 mixed powder Substances 0.000 claims description 30
- 238000010438 heat treatment Methods 0.000 claims description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 14
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical class [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 5
- 229910052755 nonmetal Inorganic materials 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 4
- 229910052810 boron oxide Inorganic materials 0.000 claims description 3
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 229910010271 silicon carbide Inorganic materials 0.000 abstract description 7
- 229910052593 corundum Inorganic materials 0.000 abstract 3
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 3
- 229910003465 moissanite Inorganic materials 0.000 abstract 1
- 238000005245 sintering Methods 0.000 description 51
- 239000000463 material Substances 0.000 description 32
- 239000002360 explosive Substances 0.000 description 21
- 238000005520 cutting process Methods 0.000 description 16
- 239000002245 particle Substances 0.000 description 16
- 238000012545 processing Methods 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 13
- 230000006835 compression Effects 0.000 description 13
- 238000007906 compression Methods 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 229910010293 ceramic material Inorganic materials 0.000 description 12
- 239000002002 slurry Substances 0.000 description 11
- 238000000280 densification Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000000470 constituent Substances 0.000 description 6
- 229910003460 diamond Inorganic materials 0.000 description 6
- 239000010432 diamond Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000000465 moulding Methods 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 229910052575 non-oxide ceramic Inorganic materials 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 238000005728 strengthening Methods 0.000 description 5
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 5
- -1 and carbide Chemical compound 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000007791 liquid phase Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000011225 non-oxide ceramic Substances 0.000 description 4
- 229910052574 oxide ceramic Inorganic materials 0.000 description 4
- 239000011224 oxide ceramic Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000005474 detonation Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 229910003468 tantalcarbide Inorganic materials 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 150000002843 nonmetals Chemical class 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 239000002023 wood Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 238000007545 Vickers hardness test Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000005267 amalgamation Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- VDZMENNHPJNJPP-UHFFFAOYSA-N boranylidyneniobium Chemical compound [Nb]#B VDZMENNHPJNJPP-UHFFFAOYSA-N 0.000 description 1
- XTDAIYZKROTZLD-UHFFFAOYSA-N boranylidynetantalum Chemical compound [Ta]#B XTDAIYZKROTZLD-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 229910000484 niobium oxide Inorganic materials 0.000 description 1
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、セラ主ツタウィスカーにより分散強化した高
密度、高強度rzウィスカー強化焼結体に関するもので
あり、詳しくは、切削[具材料や耐摩耗工具材料をはじ
めとする構造用セラミック材料として好通r4高密度、
高強度でかつ、高靭性を有するウィスカー強化セラミッ
ク焼結体及びその製造方法に間するものである.
[従来の技術]
近年、セラミック材料は、その優れた耐熱性、耐摩耗性
、化学的安定性によって新しい構造用材料として期待さ
れている.
その中でも特に、ガスタービンや自動車エンジン部材な
どの高温構造用材料としての応用は注目を集め、その分
野での研究開発は活発である.
しかし、現状では、それらの目的にセラミック材料を広
く応用して行くに際し、大きtJ 3つの解決すべき問
題が残されている.その1つは、対象とする材料の焼結
が極めて難しいことであり、これは、対象材料の高温下
での優れたmti的性質を反映したものである.
もう1つは焼結した材料の加工が難しいことにある.
この難加工性も対象とする材料のもつ高い強度と硬度を
反映したものであり、材料の性質とは切り越して扱い得
ない問題である,そしてもう1つの問題は、これもセラ
ミック材料の本来の性賀によるものであるが、脆く、突
発的破壊を起こしやすく、材料としての信頼性が低いこ
とにある.
高温構造用を目指した材料の粉末の持つ難焼結性を克服
するための研究は以前より活発になされており、主に、
IliX料粉末中に焼結を助ける役割を持つ焼結助剤と
呼ばれる第2相を添加する方注が採られてきた.
しかし、それら焼結助剤は、焼結中には微量の液相を生
成し、焼結を助けるが、焼結体の高温強度を劣化させる
という問題があり、好ましくない.
現在、出発原料粉末の改良や新しい焼結方1去の探索が
続けられてレ)る.
次に、セラミック材料の持っ雌加工性は、εの潰れたf
lA械的性買に由来するものである.
セラミック材料は一般に脆い反面、高強度であり、硬度
も高いものが多く、難加工材が多い。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a high-density, high-strength RZ whisker-reinforced sintered body dispersion-strengthened by ceramic-based ivy whiskers. R4 high density is popular as a structural ceramic material including wear-resistant tool materials.
The present invention relates to a whisker-reinforced ceramic sintered body having high strength and toughness, and a method for manufacturing the same. [Prior Art] In recent years, ceramic materials are expected to be used as new structural materials due to their excellent heat resistance, wear resistance, and chemical stability. Among these, applications as materials for high-temperature structures such as gas turbines and automobile engine components are attracting particular attention, and research and development in this field is active. However, at present, three major problems remain to be solved when ceramic materials are widely applied for these purposes. One of them is that the target material is extremely difficult to sinter, which reflects the excellent mti properties of the target material at high temperatures. Another reason is that processing sintered materials is difficult. This difficulty in processing also reflects the high strength and hardness of the target material, and is an issue that cannot be dealt with beyond the properties of the material. This is due to its properties, but it is brittle, prone to sudden failure, and has low reliability as a material. Research has been actively conducted to overcome the difficulty of sintering of material powders intended for high-temperature structures.
A method has been adopted in which a second phase called a sintering aid, which has the role of assisting sintering, is added to the IliX material powder. However, these sintering aids produce a small amount of liquid phase during sintering, which helps sintering, but has the problem of degrading the high temperature strength of the sintered body, which is not preferable. Currently, improvements to the starting material powder and the search for new sintering methods are continuing. Next, the machinability of the ceramic material is determined by the collapsed f of ε.
It originates from mechanical sex buying. Although ceramic materials are generally brittle, they have high strength and hardness, and are often difficult to process.
最近、高純度、高硬度のダイヤモンド焼結体も開発され
、これを用いた切削加工も試みられているが、切削性能
や加工コストの面でまだ満足する結果は得られていない
.
現在、主に、高価なダイヤモンド砥石により加工されて
おり、高い加工コストの一因となっている.
前述のように、高温構造用材料を対象としたセラミック
粉末は一般&:H焼結性であり、助剤を用いた場合でも
加圧しながら焼結する方法が採られている.
この方法は、平板や円柱状の単純形状の素材の焼結には
適するが、?l雑形状のものの焼結には通さない.
このためこの方法で製造した素材から実際の部材を成形
するには加工の取り代が多くなり能率が悪いばかりでな
く、加エコストが異常に高くなってしまう.
従って、製品コストの中で大きな割合を占めている加エ
コストを低減するためには、できるだけ最終部品形状に
近い焼結体の製造技術の開発が強く望まれている.
セラミック材料の持つ脆さは、それを構成する原子の化
学結合様式に関係した本質的なものである.この脆さを
改良するための多くの試みがなされ、いくつかの成果が
上がっている.
しかし、材料に要虞される特性は刻々と厳しくなってお
り、それに対応していくには新しい材料設計と開発は不
可欠である.
セラミック材料強化の1つの方法は,!!I性変形能を
もつ金属戒分との複合化であり、他は、破壊のエネルギ
ーを増加させたり、分敗させたりするような第2のセラ
ミック相を混合しで用いる分敗強化方法である.前者の
金属成分との複合化法では、確かに材料の脆さは改良さ
れる.
しかし、金属は高温での強度低下が大きく、この方法に
よる材料は高温構造用材料としては利用できない.
こ看1に対してセラミックーセラ奥ツタの複合では、そ
のような劣化の心配はなく、高温構造用林料の製造には
好ましい方法である、その中でも特に、セラミック材料
に高強度、高弾性のセラ主ツクウイスカーを分散させる
ウィスカー強化方法は複合化の効果がきわめてB署であ
り、セラミックの靭性向上方,去の1つとして大いにr
主目されている.例えば、米国特許第4,543.34
5号明細書にはj2ルEナ@粉末中に炭化硅素(以下S
iC ) ウィスカーを分散させたアルミナ焼結体及
びその製造方法が記載されている.この特許には、アル
ミナ中に20体積%SiCウィスカーを分敗させること
により、破壊靭性値(It l c)が4.6 〜9.
0MPaJmに増加し、顕著な靭性向上の効果があった
ことが述べられている.
この方法では、微粒アルミナ粉末レニSiCウィスカー
を均一I.:混合し、その成形体を28〜7014Pa
の圧力で加圧しながら1600〜1950℃で加熱する
ホッ}・ブレス3去により焼結する方法が採られている
.
アルミナの他、3^1x(h−25IO2やMgO −
^1211,をマトリックス材料として用いたウイスカ
一強化焼結体もある.
アルミナをはじめとするこれらの1ト
ノックス4Afi.材料は非酸化物系セラミック材I1
e比べ焼結の容易な材料であり、ホ・7F・ブ1ノス法
によりウイスカーとの反応の心配のlい温度で緻密に焼
結できるという利点がある.
し・か1・、その反面1 000℃以上の温度では、曲
げ強さやクリープ特性が低下してくるという問題がある
.
ウィスカー強化セラミック焼結体に期待される1つのm
要tt特性は,1000℃以上の高温でも強度の低下
が少なく、機械的及び熱的衝撃に酎λ1る高温特性であ
り、マトリックス材14をはじめヒしてその焼結方法を
^゛めた改良が強く望まれている.
上記のようなウィスカー強化セラミック材料は、そのプ
ロセス上、粉宋焼結怯を用いて製造される.
この方法においては、収縮を考+! L,た均焼結及び
焼結体の加エコストの低減の面から焼結前の戒形fネの
密度はできるだ(→高いことが好ましい.
し2かし、ウィスカーを混合し,たセラミック粉末の成
形では、分敗しCいる高強度、高弾性のウィスカーがセ
ラミック粉末粒子の充填を阻害するため、通常の金型威
形法では、その成形体密度を高くできないという問題が
ある.
また、この現象は、焼結における加熱段園でも同梯であ
り、マトリックスであるセラミック粉末の収縮を阻害し
、緻密化を難しくしている.
従って、この種の材料粉末の、圧力を用いない焼結は極
めて難しいのが現、状であり、緻密化した高強度の材料
を得るには高温高圧を用いたホットプレス法が不可欠で
あった.セラミック粉末の緻密化に高い圧力を用いるこ
とは効果的であるが、高温でのポットプレス型の強度ε
の関係もあり数十MPaが限度である.
このため、焼結温度を高くする方法が考え.られるが、
この温度についても、この場合次の2つの制約がついて
くる.
1つは、分散強化の効果を発揮させるためには、ウィス
カーと71・リックスであるセラミックとの化学反応が
生じない程度に低い温度であることであり、もう1つは
、マトリックスの粒子が著しい粒成長を起こさない程度
の温度であることである.
これらの温度条件を満たしながら、緻密化を達威できる
温度範囲は一般のセラミック材料では、かなり狭< l
るという問題がある.また、このため、最適条件で特性
の一定した焼結体を得ることが龍しいという品質管理上
の欠点もあった.
また、前述のように従来の製造方法では、その緻密化を
促進するためCは、数十MPaの圧力が不可欠であり、
このためにはホットブレスT去を用いなければならなか
った.この方法では、単純形状のものは、比較的容易に
製造できるが、例えばタービンブl,・一トやボルト・
ナットのようなa雑形状のものをそれらの形状に近い形
で直接焼結することは橿めて難しかった.
そのような複雑形状の部品をつくるには、ベレフト状や
円柱状の焼結体を、主にダイヤモンド砥石を用いた研削
加工により時間をかけて加工する以外に方法がrzかっ
た.[発明が解決しようとする課題]
従来の技術で述べたものにあっては、下記のような問題
点を有していた.
加工コストが製品コストの50%貝上−を占めることも
あり、ウィスカー強化セラミック材料の一層のコスト高
を招き、この種の優れた材料のより広い用途拡大を妨げ
ているという問題があった.
この発明は、以上のような事情に鑑みなされたものであ
り、ウィスカー強化セラミック材料のもつ優れた特性を
保持しつつ、前述のような従来の製造方法のもつ欠点を
改良し、切削工具をはじめとする各種構造材料として好
通な高密度,高強度でかつ、高い靭性をもつウィスカー
強化セラミック焼結体の製造方法を攪供することを目的
としている.
〔a題を解決するための手段〕
上記目的を連成するために、本発明のものは下記のよう
になるものである.
前述のように従来の酸化物セラミックのみをマトリック
スとして用いたウイスカー強化セラミック焼結体はI0
00℃以上の高温下で機械的性質の低下が大きいという
問題があった.
発明者は、そのような問題を解決することを目的として
、酸化物系セラミックより高温特性の優れた非酸化物系
セラミックをマトリックスとして含むウイスカー強化セ
ラミック焼結体の開発を進めてきた.
この研究過程で炭化物やほう化物と言った非酸化物系セ
ラミック粉末の焼結助剤なしでの焼結は、数十MPaの
ホットプレス法や数GPaの高圧の発生できる超高圧焼
結法を用いても極めて難しく、これにウイスカーが分散
されると、その焼結は一層難しくなることが分かった.
発明者は、マトリックスを構成する非酸化物セラミック
及び酸化物セラミックをそれらの化合物粉末から直接焼
結するのでなく、発熱性の化学反応を利用して、それら
の化合物を合成し、同時に焼結することにより、簡単な
装置と手段により緻密なウィスカー含有酸化物、非酸化
物セラミック焼結体の得られることを見い出した.
また、ここで発熱反応の化学反応として、金属アルミニ
ウムの関与する反応を選ぶことにより、混合粉末の成形
は極めて容易となり、高密度に成形しても割れ等の欠陥
の発生も少ないことが分かった.
これら2つの主な知見に基づき、高温特性の優れたウィ
スカー強化セラミック焼結体の開発とその簡便な製造方
法の開発を目指して鋭意研究を簾ねてきた.
その結果、まず、発熱性の化学反応によりマトリックス
を構成するための原料である酸化物粉末、アルミニウム
粉末及び非金属粉末を均一に混合し5更に、この混合し
た粉末にセラミックウィスカーを混合、攪拌により均一
に分敗させて、混合粉末を調整し、次にこの混合粉末を
衝撃圧縮することにより、切削加工可能な強度をもつ、
泪対密度90%以上の成形体を得た後、この成形体を焼
結収縮を考慮して、必要な素材形状に切削加工し、この
加工した素材、つまり、高密度成形体を常圧下焼結ある
いは、必要に応じ熱間静水圧焼M tAにより焼結する
ことにより、最終形状に極めて近い高密度で優れた高温
特性をもつウィスカー強化セラミック焼結体の得られる
ことを見い出し、この発明をなすに至った,すなわち、
この発明はセラミックウイスカーを10〜50体積%含
有するウイスカー強化セラミック焼結体を製造する方法
において、セラミックウイスカーに周期律表4a,55
a,6a族金属の酸化物及び酸化ほう素の酸化物群の中
の少なくとも1種及び炭素、ほう素、炭化縫う稟の非金
属群の中の少なくとも1種及びアルミニウムを均一に混
合し、この混合粉末を戒形型に充填し、該混合粉末を衝
撃圧縮することにより、相対密度90%以上(空!4率
10%以下)の粉末戊形体とした後、該粉末成形体の一
部または全体を加熱することにより、該酸化物群の中の
少11 <とも1種及び非金属群の中の少なくとも1種
及びアルミニウムの間の発熱反応を着火、進行させなが
ら該粉末威形体を焼結させることを特徴とするセラミッ
クウィスカーを10〜50体積%含有し、残りマトリッ
クスが周期律表4a,5a、6a族金属の炭化物、ほう
化物、炭はう化物及び炭化ほう素の少なくともI fi
とアルミナよりなることを特徴とするウィスカー強化セ
ラミック焼結体を提供するものである.
ある種のセラミック、特に高融傑セラ
ミックの合戊では、その構或元素からの化合物生成熱は
、Kg当り、10’ジュールfJ)のオーダーにも達す
る.
この大きな生成熱が原料粉末中に次々と伝播することに
より次々と反応を励起、開始し、反応は持続する.
例えば、炭化チタン(Tic) とアルミナの混合セ
ラミックを合成する場合、酸化チタン(TIOz).ア
ルミニウム、炭素の各粉末を均一に混合、戊形1・、そ
の一端よりタングステン等の加熱ワイヤーを用いて着火
、反応を開始させると、この反応は成形体全体に及び外
部からの加熱なしに、TICとアルミナの混合物が合成
できる.
また、場合によっては、この合成と同時に焼結も起こる
.
このようなセラミック合成方法は、合戒用の特殊な炉を
必要とせず、経済的である.この反応は、その反応の性
質から自己発熱反応または、自己燃焼反応と呼ばれてお
り、ここでは以下前者の呼び方を採用する.自己発熱反
応で合成できる高融点セラ
ミックの例として、多くのものが知られているが、この
発明では、特に,易戊形性及び易焼結性の読点から周期
律表4g,5g,6a族金属の酸化物及び酸化ほう素の
中の少なくとも1種及び炭素、ほう素、炭化ほう素の中
の少なくともt種及びアルミニウムの間で起こる自己発
熱反応が通する.
このような例として次のような原.I1系成分とその反
応をあげることができる.
(1) 3TiO, + 4^1 + 3C →3T
iC+ 2AI,0,(2)3CrJs + 8^1
+ 4G −” 2(:r3[:2+ 3^120,
(3)MoO3+ 2^1+8−4MoB+^1,0,
(4)3TaO,+ 4^1 + BaC = 2Ta
B. + TaC +2^l20,
自己発熱反応に伴う夙による温度上昇は、生成熱の全て
が生成物の温度上昇に使われると仮定して計算できる.
例えば、上の例(1)の場合の生成熱は約3.5 X
ho5a,+/′Kgであり、計算上3250℃程度ま
で反応系の塩度は上がることが分かる.この場合、この
温度は、生戒物であるTiCや^工20,の融点以上で
あり、このことは反応中、液相が出現することを示して
おり、この液相出現が木来fi焼結性であるこの種のセ
ラミックの焼結を助ける!要な役割を果たしている.
また、この自己発熱反応の反応速度は、着火するときの
試料温度によるが、数C重/S〜数10cm/sに達す
る相当に速度の速い反応である.
lI従来のウィスカー含有セラミック焼結体の製造方法
においては、マトリックスの焼結の而からは、その部分
で液相が生成される程度の高温焼結が望ましいが、そこ
でのウイスカーとマトリックス材の反応が起き、得られ
る焼結体の機械的な性買が劣化するという問題があった
.
この発明においては、従来試みられた温度以上に高い温
度が発生した中での焼結となるが、ここでの反応速度が
速いためその高温持H.,y時間は極めて短く、劣化を
招くようなウィスカーとマトリックス材との化学反応は
無視できる程度に押さえることができる.方、反応の進
行している部分で生成した液相は固相焼結の場合に比べ
分散されたウィスカーを均一に包囲し、結果的に焼結体
中においてウィスカーを機械的により強固に保持するこ
とができるような組織を生成するrt要な役割を果たす
ものである.
この発明では、ウィスカー強化セラミック焼結体のマト
リックスを周期律表45a,55a,6a族金属の炭化
物、ほう化物、炭ほう化物及び炭化ほう素の少なくとも
1種とアルミナより構成することを特徴とするが、これ
により、マトリックス材の耐熱性を一層向上させること
ができる.
例えばアルミナの融点は、2050℃であるが、Tic
.TaCの融点は各々3250℃、3800℃であり、
高温下の強度の低下も少ない.
また、この発明の方法で得られる焼結体の71−リック
スにおいては、アルミナ中C高密度に反応生戊物である
炭化物やほう化物が分敗した組織とな1ており、それら
の炭化物、ほう化物は、アルミナより高硬度で弾姓率も
高く、分散強化粒Tとして作用することができる.
ほう化物、炭はう化物がアルミナとともにマトリックス
を構成することによる上記のようなi1熱性の向上や分
敗強化効果は1000℃以下の場合だけで1 <、それ
以上の高温でも1I゛効であり、高温強度の向上と高温
下でのケリーブ特性の改善に顕著に寄与し・ている.金
型を用いた通常の粉末成形方法の場合、セラミックウィ
スカーを均一に混合、分散させたセラミック粉末は、前
述のような理由によりそのセラミック単体粉末の場合に
比べてかなり高密度化が難しい.
20体積%SiCウィスカーを含むようなセ’j ’4
+/ク粉末を2ton/cm’程度で金型成形した場
1〕の到達できる成形体密度は高々真密度の55%(4
5%気孔)程度で少る.
従って、この場合、l!I密な焼結体を得るには、焼結
中に少11 <とも残り45%の緻密化が必要である.
しかし、実際には、前述のように、この焼結中の緻密化
も分散しているセラミックウィスカーにより阻害される
ため、セラくツク粉末単体の場合より高い温度の下で加
圧しながらゆっくり緻密化する方法が採られる.しかし
、通常の数十MPaの圧力下では、充分な緻密化が起き
ずこの場合も焼結を助ける助剤を僅か添加する方法が用
いられている.ここでの焼結助剤も得られた焼結体の高
温強度を低下させる原因となり好ましくない.加工上の
問題点も含めて以上のような難点を解決する1つの方法
は、緻密化を進めるために数GPaという高い圧力の利
用できる静的及び動的超高圧焼結技術を用いる方法であ
り、もう1つは、同じく、それらの超高圧技術を用いて
まず高密度な成形体を作成し、その成形体を加圧なしで
焼結する方法である.前者のあ法の中、静的超高圧技術
を用いる方法は、必要とする装置が大規模で高価な上、
運転操作が難しいという欠点がある.一方、動的方法は
粉末の緻密化と焼結には有効であるが、得られた焼結体
に大小の割れが入るという問題があり実用的ではない.
さらに、これら2つの方法に共通している点は、緻茫化
は容易であるが、?3l雑形状の焼結体の製造が極めて
難しい,
このため、最終部品とする上での加工量が多くなり、結
果的にはコストが高くなる.これに対して、後者の方法
は、本焼結する前に、出発原料を切削加工できる程度の
強度をもつ高密度の戒形体とし、そこで必要形状に加工
後、本焼結するため、最i1部品に仕上げる際の加工量
を最小限に留めることができる.
この後者の方法においても静的高圧技術を用いることが
できるが、この方法には前述のような問題点があり実用
的ではない.
この発明は、動的超高圧力つまり街撃圧縮によりウィス
カー含有のセラ主ツク粉末をまず、高密度に成形し、そ
の戒形体を切削加工して本焼結し、安価な、高密度、高
強度で高い靭性なもつウィスカー強化セラミック焼結体
を得ようとするものである.
爆薬の爆発や高速で飛1l1する物体の衝突に伴い瞬間
的に発生するffilE圧力を利用して、緻密な成形体
をつくることができる.
この方法により通常の金型成形t去ではm密化困MなS
ICや51山のような高強度セラミック粉末も比較的容
易に緻密化できる.漬軍圧縮の特徴の1つは、10−6
秒という短い時間に数GPa〜数+GPaという高い圧
力を発生できる点にあり、これにより高強度なセラミッ
クの粉末も瞬時に相対茫度90%以上まで緻密化が可能
となる.
特に、この発明においては、その出発混合粉末C必ず金
属アルミニウムを用いることにより、一層粉末の緻密化
が容易であり、低い圧力レベルで高い成形体密度に達す
ることができ、得られる成形体の残留歪や割れの発生を
押さえることができ極めて有利である.[作用]
効果と共に説明する.
[発明の実施例]
以下この発明の1実施例を図面を用いて説明する.
衝撃圧縮により高密度な成形体を得る方法には爆薬を使
う方法と高圧ガス等によって発射した高速飛翔体を衝突
させる方法がある.これらのいずれの方法を利用した場
合でも、試料をバラバラに飛敗させることなく1つの塊
として回収することが重要である.幸いこの試料回収技
術は進歩してきている.第1図の1はこの発明方法に利
用できる平面街箪圧縮装置であり、下方部分2と上方部
分3とから構成されている.
2Aはウィスカーを含有する混合粉末4を充填する試料
室2Bをもつ試料容器である.その外側に衝撃処理後の
試料容器2Aの回収を容易にするための鉄製モーメンタ
ム・トラップ2Cを配置し、さらに、その下に同しく鉄
製のモーメンタム・トラップ2Dを設置する.
なお、試料容器2Aは、底板2AIと底板2AIに上方
から着脱自在に嵌合する断面下向きコの字状のii2A
2から構成ざれている.
モーメンタム・トラップ2Cは主に試料容器の側面方向
、また、モーメンタム・トラップ2Dは試料容器下方向
の各々の運動量を吸収し、結果的に衝撃処理後の試料の
回収を容易にするためのものである.
マトリックス構成用出発原料粉末にウィスカーをその損
傷をできるだけ少なくして均一に混合するのは容易では
ないが、$P戒分をまず別々に湿式ボールミルや攪拌機
Cより泥しよう状態とした後配合し、再度ボールミルや
攪拌機により混合する方法により、ウィスカーの破損を
少なくして、比較的均一に混合できる.
セラミックウィスカーのマトリックス中での分散状態は
、得られた焼結体の特性を大きく左右するものであり重
要である.
この混合粉末の試料容器2Aへの充填は、できるだけ高
密度に充填することが望ましく、相対密度40%以上が
好ましい.
また、試料容器2Aの材貿は、対象材料の戊形に必要な
衝撃処理条件により、広範囲の材料を選択できるが、コ
ストの面からは鉄、銅、真ちゅうやステンレスが適当で
ある.第1図の上方部分3は、この装置の爛薬構戊部分
であるが、円錐状の爆薬レンズ3Aは雷管3Bによりそ
の頂点で点火され、爆薬レンズ3Aでの燃焼は平面的に
下方に伝播されるようになっている.
さらに、その平面的燃焼がその下の燭薬3Cに伝播され
、爆薬(平面燃焼を起こし下へ伝播し、この燃焼で発生
した爆轟街軍圧力により下の金属板である飛翔板3Dが
高速に加速され、下の試料容器2Aに衝突する.この衝
突により試料容器に平面衝撃波が発生し、これがさらに
混合粉末4に伝播され、混合粉末は衝撃圧縮され、形威
される.
衝撃波の通過により混合粉末の部分で発生する圧力、温
度は、主に使用爆薬量と混合粉末の充填率で制御するこ
とができ、また、持続時間は第1図のような飛翔板を用
いた場合、その厚みにより変えることができるが、3■
の鉄板を2k一八程度で試料容器に衝突させた場合の圧
力持続時間は約 1.5X 10−’秒であり、極めて
短い.
また、第1図のような方法では試料部分に1500℃ま
での温度と同時に50GPaまでの圧力を比較的容易に
発生できる。Recently, high-purity, high-hardness diamond sintered bodies have been developed, and cutting processes using them have been attempted, but satisfactory results have not yet been obtained in terms of cutting performance and processing costs. Currently, it is mainly processed using expensive diamond grinding wheels, which contributes to high processing costs. As mentioned above, ceramic powders intended for high-temperature structural materials have general &:H sinterability, and even when using additives, sintering under pressure is used. This method is suitable for sintering materials with simple shapes such as flat plates and cylinders, but is it? lDo not pass through sintering of irregularly shaped items. For this reason, when molding actual parts from materials manufactured using this method, the machining allowance is large, which not only causes inefficiency, but also causes abnormally high processing costs. Therefore, in order to reduce the processing cost, which accounts for a large proportion of the product cost, there is a strong desire to develop a technology for manufacturing sintered bodies as close to the final part shape as possible. The brittleness of ceramic materials is essentially related to the chemical bonding of the atoms that make up the material. Many attempts have been made to improve this weakness, and some results have been achieved. However, the properties required of materials are becoming stricter by the minute, and new material design and development are essential to meet these requirements. One way to strengthen ceramic materials is! ! One method is to combine it with a metal material that has I-type deformability, and the other is a fracture strengthening method that uses a mixture of a second ceramic phase that increases the fracture energy or causes fracture. .. The former method of compounding with metal components certainly improves the brittleness of the material. However, the strength of metals decreases significantly at high temperatures, so materials produced using this method cannot be used as materials for high-temperature structures. On the other hand, with Ceramic Ceramic Oku Tsuta composite, there is no worry of such deterioration, and it is a preferable method for manufacturing forest materials for high-temperature structures. The whisker-strengthening method of dispersing ceramic-based whiskers has a very good compounding effect, and is highly regarded as one of the ways to improve the toughness of ceramics.
It is the main focus. For example, U.S. Patent No. 4,543.34
Specification No. 5 states that silicon carbide (hereinafter S) is contained in the powder.
iC) An alumina sintered body in which whiskers are dispersed and a method for producing the same are described. In this patent, fracture toughness values (It l c) of 4.6 to 9.0 are obtained by partitioning 20 volume % SiC whiskers into alumina.
0 MPaJm, and it is stated that there was a remarkable effect of improving toughness. In this method, fine-grained alumina powder Reni-SiC whiskers are uniformly I.D. : Mix and press the molded product at 28 to 7014 Pa
A method of sintering by heating at 1,600 to 1,950°C while pressurizing is used. In addition to alumina, 3^1x (h-25IO2 and MgO -
There is also a whisker-reinforced sintered body using ^1211 as the matrix material. These 1tonox 4Afi. including alumina. Material is non-oxide ceramic material I1
It is an easier material to sinter than E, and has the advantage of being able to be sintered densely using the Ho-7F-Buinos method at a temperature where there is no fear of reaction with whiskers. However, on the other hand, there is a problem in that bending strength and creep properties decrease at temperatures above 1000°C. One m expected for whisker-reinforced ceramic sintered bodies
The essential tt characteristics are high-temperature characteristics that show little decrease in strength even at high temperatures of 1000°C or higher and are resistant to mechanical and thermal shocks. is strongly desired. The above-mentioned whisker-reinforced ceramic materials are manufactured using powder-song sintering process. In this method, consider shrinkage! From the viewpoint of homogeneous sintering and reduction of the processing cost of the sintered body, the density of the pre-sintered ceramic material before sintering is preferably high. When compacting powder, there is a problem in that the density of the compact cannot be increased using the normal mold shaping method because the high-strength, high-elasticity whiskers that break down impede the filling of ceramic powder particles. This phenomenon is the same in the heating stage during sintering, which inhibits the shrinkage of the matrix ceramic powder and makes densification difficult. At present, it is extremely difficult to densify ceramic powder, and a hot press method using high temperature and pressure is essential to obtain a densified, high-strength material.Using high pressure to densify ceramic powder is effective. However, the strength of the pot press mold at high temperature ε
Due to this, the limit is several tens of MPa. Therefore, a method of increasing the sintering temperature was considered. However,
In this case, the following two constraints also apply to this temperature. One is that in order to exhibit the effect of dispersion strengthening, the temperature must be low enough to prevent a chemical reaction between the whiskers and the ceramic, which is the 71 lix, and the other is that the matrix particles must be The temperature must be at a level that does not cause grain growth. The temperature range in which densification can be achieved while satisfying these temperature conditions is quite narrow for general ceramic materials.
There is a problem that Additionally, there was a drawback in terms of quality control, as it was difficult to obtain a sintered body with consistent properties under optimal conditions. In addition, as mentioned above, in the conventional manufacturing method, pressure of several tens of MPa is essential for C to promote its densification.
For this I had to use hot breath T-extraction. With this method, products with simple shapes can be manufactured relatively easily, but for example, turbine bolts, bolts, etc.
It was extremely difficult to directly sinter objects with irregular shapes such as nuts into a shape close to that shape. In order to make parts with such complex shapes, there was no other way than to process the vertical or cylindrical sintered bodies by time-consuming grinding, mainly using a diamond grindstone. [Problems to be solved by the invention] The conventional techniques described above had the following problems. Processing costs can account for up to 50% of the product cost, leading to further increases in the cost of whisker-reinforced ceramic materials and hindering the wider use of this type of superior material. This invention was made in view of the above circumstances, and aims to improve the drawbacks of the conventional manufacturing method described above while maintaining the excellent properties of whisker-reinforced ceramic materials, and to improve the quality of cutting tools and other products. The purpose of this study is to provide a method for manufacturing whisker-reinforced ceramic sintered bodies that have high density, high strength, and high toughness and are suitable for various structural materials. [Means for Solving Problem A] In order to combine the above objects, the present invention is as follows. As mentioned above, the whisker-reinforced ceramic sintered body using only the conventional oxide ceramic as a matrix has an I0
There was a problem in that the mechanical properties deteriorated significantly at high temperatures of 00°C or higher. In order to solve such problems, the inventors have been developing whisker-reinforced ceramic sintered bodies containing non-oxide ceramics as a matrix, which have better high-temperature properties than oxide ceramics. In the course of this research, the sintering of non-oxide ceramic powders such as carbides and borides without sintering aids was achieved using a hot press method at tens of MPa or an ultra-high pressure sintering method capable of generating high pressures of several GPa. It was found that sintering becomes even more difficult when whiskers are dispersed in this material. Rather than directly sintering the non-oxide ceramic and oxide ceramic that make up the matrix from their compound powders, the inventor uses an exothermic chemical reaction to synthesize and simultaneously sinter the compounds. As a result, we have discovered that dense whisker-containing oxide and non-oxide ceramic sintered bodies can be obtained using simple equipment and methods. In addition, by choosing a reaction involving metal aluminum as the exothermic chemical reaction, it was found that the mixed powder could be formed extremely easily, and defects such as cracks were less likely to occur even when compacted at high density. .. Based on these two main findings, we have conducted intensive research with the aim of developing a whisker-reinforced ceramic sintered body with excellent high-temperature properties and a simple manufacturing method. As a result, first, oxide powder, aluminum powder, and non-metal powder, which are the raw materials for forming the matrix, are mixed uniformly through an exothermic chemical reaction. By uniformly splitting the mixed powder, adjusting the mixed powder, and then impact-compressing this mixed powder, it has a strength that can be cut.
After obtaining a molded body with a density of 90% or more, this molded body is cut into the required material shape taking into account sintering shrinkage, and this processed material, that is, a high-density molded body, is sintered under normal pressure. The inventors have discovered that a whisker-reinforced ceramic sintered body having a high density that closely approximates the final shape and excellent high-temperature properties can be obtained by sintering or, if necessary, by hot isostatic pressing MtA. It came to pass, that is,
This invention provides a method for producing a whisker-reinforced ceramic sintered body containing 10 to 50% by volume of ceramic whiskers, in which ceramic whiskers are added to ceramic whiskers 4a and 55 of the periodic table.
At least one of the oxides of Group A, 6A metals and the oxides of boron oxide, at least one of the nonmetals of carbon, boron, and carbide, and aluminum are uniformly mixed; After filling the mixed powder into a mold and impact-compressing the mixed powder to form a powder mold with a relative density of 90% or more (empty ratio of 10% or less), a part of the powder mold or By heating the whole, the powder body is sintered while igniting and advancing an exothermic reaction between at least one of the oxides, at least one of the nonmetals, and aluminum. The remaining matrix contains at least I fi of carbides, borides, carbides and boron carbides of metals of groups 4a, 5a and 6a of the periodic table.
The present invention provides a whisker-reinforced ceramic sintered body characterized by being made of alumina and alumina. In the amalgamation of certain ceramics, especially high-melting ceramics, the heat of formation of the compound from its constituent elements can be on the order of 10' Joule fJ/kg. This large heat of formation propagates through the raw material powder one after another, exciting and starting reactions one after another, and the reactions continue. For example, when synthesizing a mixed ceramic of titanium carbide (Tic) and alumina, titanium oxide (TIOz). Aluminum and carbon powders are uniformly mixed, and a heating wire such as tungsten is used to ignite and start the reaction from one end of the molded body.This reaction spreads throughout the molded body without external heating. A mixture of TIC and alumina can be synthesized. In some cases, sintering also occurs at the same time as this synthesis. This ceramic synthesis method does not require a special furnace for gathering purposes and is economical. This reaction is called a self-heating reaction or a self-combustion reaction due to its nature, and the former term will be used hereinafter. There are many known examples of high-melting point ceramics that can be synthesized by self-heating reactions, but in this invention, we specifically selected ceramics from groups 4g, 5g, and 6a of the periodic table from the viewpoint of easy deformability and easy sintering. A self-heating reaction takes place between at least one of metal oxides and boron oxide, at least one of carbon, boron, boron carbide, and aluminum. An example of this is the following source. I1 system components and their reactions can be listed. (1) 3TiO, + 4^1 + 3C → 3T
iC+ 2AI, 0, (2) 3CrJs + 8^1
+ 4G −” 2(:r3[:2+ 3^120,
(3) MoO3+ 2^1+8-4MoB+^1,0,
(4) 3TaO, + 4^1 + BaC = 2Ta
B. + TaC +2^l20, The temperature increase due to the self-heating reaction can be calculated by assuming that all of the heat of formation is used to raise the temperature of the product. For example, in the case of example (1) above, the heat of formation is approximately 3.5
ho5a, +/'Kg, and it can be seen that the salinity of the reaction system increases up to about 3250°C. In this case, this temperature is higher than the melting point of TiC, which is a raw material, and this indicates that a liquid phase appears during the reaction. Helps sintering this kind of ceramic which is sinterable! It plays an important role. Furthermore, the reaction rate of this self-heating reaction depends on the sample temperature at the time of ignition, but it is a fairly fast reaction reaching several centimeters per second to several tens of centimeters per second. In the conventional manufacturing method of whisker-containing ceramic sintered bodies, it is desirable to sinter the matrix at a high enough temperature to generate a liquid phase in that part, but the reaction between the whiskers and the matrix material at that point is desirable. This caused the problem that the mechanical properties of the resulting sintered body deteriorated. In this invention, sintering is carried out at a temperature higher than that which has been attempted in the past, but because the reaction rate here is fast, the high-temperature retention is difficult. , y time is extremely short, and the chemical reaction between the whisker and matrix material that would cause deterioration can be suppressed to a negligible level. On the other hand, the liquid phase generated in the area where the reaction is progressing surrounds the dispersed whiskers more uniformly than in the case of solid phase sintering, and as a result, the whiskers are mechanically held more firmly in the sintered body. It plays an essential role in creating a tissue that is capable of The present invention is characterized in that the matrix of the whisker-reinforced ceramic sintered body is composed of at least one of carbides, borides, carborides, and boron carbides of metals in groups 45a, 55a, and 6a of the periodic table, and alumina. However, this makes it possible to further improve the heat resistance of the matrix material. For example, the melting point of alumina is 2050°C, but Tic
.. The melting points of TaC are 3250°C and 3800°C, respectively.
There is also little decrease in strength at high temperatures. In addition, in the sintered body 71-Rix obtained by the method of the present invention, a structure is formed in which carbides and borides, which are reaction products, are separated into a high density of C in alumina, and these carbides, Borides have higher hardness and elastic modulus than alumina, and can act as dispersion-strengthening grains T. The above-mentioned I1 thermal properties improvement and decomposition strengthening effect due to the borides and carbides constituting the matrix together with alumina are effective only at temperatures below 1000°C, and even at higher temperatures. , which significantly contributes to the improvement of high-temperature strength and the improvement of kelev properties at high temperatures. In the case of normal powder compaction methods using molds, it is much more difficult to make ceramic powder with uniformly mixed and dispersed ceramic whiskers more dense than that of single ceramic powder for the reasons mentioned above. Se'j '4 containing 20 volume% SiC whiskers
When the powder is molded with a mold at about 2 ton/cm', the density of the compact that can be reached is at most 55% (4
5% pores). Therefore, in this case, l! In order to obtain a dense sintered body, it is necessary to densify the remaining 45% during sintering. However, in reality, as mentioned above, this densification during sintering is also inhibited by the dispersed ceramic whiskers, so densification is performed slowly under pressure at a higher temperature than in the case of ceramic powder alone. A method is adopted to do so. However, under normal pressures of several tens of MPa, sufficient densification does not occur, and in this case, a method of adding a small amount of auxiliary agent to aid sintering is also used. The sintering aid used here is also undesirable because it causes a decrease in the high temperature strength of the obtained sintered body. One way to solve the above-mentioned difficulties, including processing problems, is to use static and dynamic ultra-high pressure sintering technology that can utilize high pressures of several GPa to promote densification. The other method is to first create a high-density molded body using those same ultra-high pressure techniques, and then sinter the molded body without applying pressure. Among the former methods, the method using static ultra-high pressure technology requires large-scale and expensive equipment, and
The drawback is that it is difficult to operate. On the other hand, although the dynamic method is effective for densification and sintering of powder, it is not practical due to the problem of small and large cracks in the resulting sintered body.
Furthermore, what these two methods have in common is that they are easy to refine, but... 3LIt is extremely difficult to manufacture sintered bodies with irregular shapes, which increases the amount of processing required to make the final part, resulting in higher costs. On the other hand, in the latter method, the starting material is made into a high-density shaped body with enough strength to be cut before main sintering, and after being processed into the required shape, main sintering is carried out. The amount of processing when finishing parts can be kept to a minimum. Static high-pressure technology can also be used in this latter method, but this method has the aforementioned problems and is not practical. This invention first molds whisker-containing ceramic-based powder to a high density using dynamic ultra-high pressure, that is, street compression, and then cuts and sinters the shaped body to produce an inexpensive, high-density, high-density powder. The aim is to obtain a whisker-reinforced ceramic sintered body with high strength and toughness. Dense compacts can be made by using the ffilE pressure that is instantaneously generated due to the explosion of explosives or the collision of objects flying at high speed. With this method, it is difficult to achieve a density of M by ordinary mold molding.
High-strength ceramic powders such as IC and 51 mountains can be densified relatively easily. One of the characteristics of Zukegun compression is 10-6
It is capable of generating high pressures of several GPa to several + GPa in a short time of seconds, and this makes it possible to instantaneously densify high-strength ceramic powder to a relative density of over 90%. In particular, in this invention, by always using metal aluminum as the starting mixed powder C, it is easier to densify the powder, reach a high compact density at a low pressure level, and the resulting compact has no residue. This is extremely advantageous as it can suppress the occurrence of distortion and cracks. [Effect] Explain along with the effects. [Embodiment of the Invention] An embodiment of the invention will be described below with reference to the drawings. There are two ways to obtain a high-density compact by impact compression: using explosives and colliding high-speed projectiles fired with high-pressure gas. Regardless of which of these methods is used, it is important to collect the sample as a single lump without breaking it into pieces. Fortunately, this sample collection technology is progressing. Reference numeral 1 in FIG. 1 is a planar compressor that can be used in the method of this invention, and is composed of a lower part 2 and an upper part 3. 2A is a sample container having a sample chamber 2B filled with mixed powder 4 containing whiskers. An iron momentum trap 2C is placed outside of the sample container 2A to facilitate collection of the sample container 2A after impact treatment, and an iron momentum trap 2D is placed below it. The sample container 2A has a downward U-shaped cross section ii2A that is removably fitted into the bottom plate 2AI from above.
It consists of 2. The momentum trap 2C mainly absorbs the momentum in the side direction of the sample container, and the momentum trap 2D mainly absorbs the momentum in the downward direction of the sample container, and as a result, it facilitates the collection of the sample after impact treatment. be. Although it is not easy to homogeneously mix whiskers into the starting material powder for matrix composition with as little damage as possible, the $P precipitates are first made into a slurry state using a wet ball mill or stirrer C, and then blended. By mixing again using a ball mill or a stirrer, it is possible to reduce whisker breakage and achieve relatively uniform mixing. The state of dispersion of ceramic whiskers in the matrix is important because it greatly influences the properties of the obtained sintered body. It is desirable to fill the mixed powder into the sample container 2A as densely as possible, preferably at a relative density of 40% or more. In addition, a wide range of materials can be selected for the sample container 2A depending on the impact treatment conditions required to shape the target material, but iron, copper, brass, and stainless steel are suitable from a cost standpoint. The upper part 3 in Fig. 1 is the exploding part of this device, and the conical explosive lens 3A is ignited at its apex by the detonator 3B, and the combustion in the explosive lens 3A propagates downward in a plane. It is now possible to do so. Furthermore, the planar combustion is propagated to the candlestick 3C below, causing the explosive (planar combustion) and propagating downward. This collision generates a plane shock wave in the sample container, which is further propagated to the mixed powder 4, and the mixed powder is impact compressed and shaped. Due to the passage of the shock wave The pressure and temperature generated in the mixed powder area can be controlled mainly by the amount of explosive used and the filling rate of the mixed powder, and the duration can be controlled by the thickness of the flying plate shown in Figure 1. It can be changed by 3■
When an iron plate of about 2k18 collides with a sample container, the pressure duration is about 1.5 x 10-' seconds, which is extremely short. Further, in the method shown in FIG. 1, it is possible to relatively easily generate a temperature of up to 1500° C. and a pressure of up to 50 GPa at the same time in the sample portion.
″iS2図はこの発明の方法に利用できる円筒街箪圧縮
装置5の1実施例を示す縦断面図である.
6は爛薬容器であり、外円筒6Aとこの外円筒の上下に
配置された上方板6Bと下方板6Cとから構成されてい
る.
7は爆薬容゛器6と同軸的にその中心に位置した円筒状
試料容器であり、その上下には上下のプラグ7A,7B
が設けられている.4は円筒状試料容器7の内に充填さ
れた混合粉末である.
この図では円筒状試料容器7に接して煽薬3Cが配置さ
れ雷管3Bで爆薬3Cが起爆される状態を示している.
その場轟波が下方向へ伝播し、それに伴う爆轟衝撃波に
より、まず、その内側の円筒状試料容器7が軸方向へ衝
撃圧縮され、次にその内側の混合粉末4が同様にして衝
撃圧縮される.
混合粉末4の部分に発生する圧力は使用する爆薬の種類
と量により調節できる.
ここで、円筒状試料容器7及び爆薬容器6の外円筒6A
の材質としては、金属、紙、木、プラスチックを利用で
きる.また、円筒状試料容器7の上方に位置する円錐状
のプラグ7Aは金属や木で作ることができ、この部分は
、雷管3Bで起爆され、爆薬3Cの中を球面状に広がる
爆轟波が円筒状試料容器7に達する前に、この球面状に
広がる燭轟波を平面状の爆轟波に整える役目をするもの
であり、均一に試料を衝撃圧縮するためには欠かせない
ものである.
この発明の方法ではウィスカー含有の成形体の一部また
は、全体を加熱し、発熱反応を着火、開始させることに
より真密度に近い焼結体を得ようとしているが、この目
的のため、及び成形体の切削加工のためには、反応着火
前の成形体の相対密度は90%以上必要である.
マトリックス構成用の出発原料中の金属アルミニウムの
割合にもよるが、相対密度90%未満の成形体では、焼
結による充分な緻密化が起きず、目的とする焼結体が得
られない.また、このような焼結体の強度は充分高くな
く切削加工は難しい.
セラミックウィスカーを10〜50体積%含有する混合
粉末を相対密度90%以−Eまでiai化させるのに必
要rj衝撃圧力は用いるウィスカーのf!類と量の他、
アルミニウムの量により決定されるものであり、各材料
の紐合せ毎にその最適条件を決定する必要がある.
衝撃圧縮により得られた高密度成形体の焼結は、その成
形体の一部または全体を常圧下で加熱し、発熱反応を着
火、開始することにより、達せられるが、より望ましく
は、ガス圧を用いた静水加圧下での反応着火による焼結
である,
この発明の方法に用いる発熱反応は、全て体積の減少す
る方向の反応であり、また、液相の生戒があるため、そ
の固化収縮もあり、常圧焼結で追随できない収縮が起き
るような場合じは特に有益である.
衝撃圧力の程度が適当な範囲にある場合、相対密度が9
0%以上で割れのない均一な成形体を得ることができる
.
しかし、処理圧力が、各材料の組合せで決まる限界の圧
力を越えると粉末粒子間の焼き付き、つまり焼結による
粒間結合が生じ、その結果、回収される戊形体中に大小
の割れが発生し、好ましくない.
この発明の方法に用いる衝箪圧力の範囲は、衝撃処理中
に焼結が生じないか、生じても粒の成長が生じない程度
の中Illな圧力程度に限定されるものである.
一方、圧力が低すぎると混合粉末は相対密度90%以上
までM1密化できず、前述のように、得られる成形体の
強度も低くなり、切削加工できないばかりでなく、本焼
結によっても緻密化が進行せず、結果的に高強度で高い
靭性をもつウィスカー強化セラミック焼結体を得ること
ができない.
以下実施例によりこの発明をさらに詳しく説明する.
(実施例1)
Inμ重以下の酸化チタン粉末及び平均粒径10μ朧の
アルミニウム粉末及び 産μ一以下のカーボンブラック
粉末を各々そル比で3:43となるように調合し、水を
加えてポールミル混合することによりマトリックス構戊
用原料の泥しようを作った.
次に、このマトリックス構成用原料に対して体積比で2
.1となるように平均ウイスカー径 1μ一、平均長さ
30μ一の炭化硅素ウィスカ−(以下SiCウイスカー
)を秤量し、これも同じく水を加えて攪拌、分敗させ、
泥しよう状態とした後、これを上記マトリックス4ll
成用原料の泥しように加え、さらに、1時間ボールミル
混合した.
このボールミル混合した粉末を乾燥後、600℃で真空
脱ガス如埋し、この実施例の混合粉末を得た.
この混合粉末をil図に示した平面衝撃圧縮装置を用い
て′a箪処理した.
ここでは混合粉末を第1図の試料N2Bに相対密度約6
0%となるように充填した,試料室2Bの材料として鉄
を用い、その試料室2Bの大きさは径25■―、高さl
ammであった.爆薬3Cとして爆速7.2k日/Sジ
ュボン社製のデータシ一トを使用し飛m仮として厚さ3
.2量冒の鉄板を使用した.
ここでは第1表に示した飛ylI板速度0.2〜2.0
km/sでの成形、焼結試験を実施した.衝撃処理後、
試料容器・を回収し、試料外側の鉄部分を切削により取
り除き、試料を取り出した後、その上下面を研磨紙で軽
く研磨した後、外観を観察した.
次に、それらの回収成形体につき、水を用いたアルキメ
デス法によりかさ密度を測定し、成形体の相対密度を算
出した.
各成形体の切削加工試験はバイトとしてダイヤモンド焼
結体を用い、周速約35@/sinで加工し、そのとき
の割れ発生やチッピング発生具合から切削加工の可、不
可を判定した.i オ、飛ynFi速度2.0km八で
得たtt.I1は、X線回折の結果、この時点ですでに
発熱反応がH程度進行し、半焼結の状態となっており、
多くの層状割れを起こしていた.このため切削加工も不
可能であった.
次に、各成形体を平板状のジルコニア焼結体の上にfi
き、その一端を着火治具(タングステン線)に通電する
ことにより加熱、着火し、反応を開始させた.反応は3
0〜40秒で終了し、冷却後焼結体の相対密度を測定し
、さらに、その一端をダイヤモンド回転砥石で、研磨仕
上げした後、鏡面仕上げし、ビッカース圧痕法により、
荷重20kgを用いて破壊靭性値(以下Kic値)を測
定した.次に、同様にその鏡面仕上げした試料を用いて
、真空下1200℃の高温下で、荷重100gを用いて
ビッカース微小硬さを測定した.各飛翔板速度の試料に
ついて得られた結果を第1表にまとめて示した.
飛m板速度0.2ka/sでは、回収焼結体の外観は割
れの発生もなく良好であったが、成形体密度は低く、切
削できる強度まで達していrJかった.
この成形体では、タングステン線による加熱で反応は着
火開始できたが、得られた焼結体の相対密度は89%と
低かった.
飛1!1板速度0.5〜1.5km/sの範囲で得られ
た成形体は第1表に示したように外観上の割れ等の欠陥
もなく、また、成形体相対密度は90%以上に達してお
り、切削加工も可能であった.
これらの試料の焼結体は相対密度97%以上に達し、K
ic値も約sMpaJ■であり、充分高い靭性をもつも
のであることが分かった.また、これらの焼結体の12
00℃での高4硬度は、1540〜1820kg/■1
であった.また、発熱反応終了後得た焼結体のウィスカ
ー以外の構成相は、X線回折の結果、主にアルミナと炭
化チタン(Tic)であった.比較のため 1μ曽以下
のアルミナ40体積%及び同じく 1μ馨以下の炭化チ
タン(TiC)40体積%及び本実施例に使用したもの
と同様のSiCウィスカー20体積%を混合して得た粉
末を3011Pa、1900℃で1時間保持して焼結し
て得た試料について上記と同様の評価を行tJつた.
その結果、焼結体相対密度は92%、Kic値は4.一
P a J @であり、1200℃での高温硬さは12
10一kg/am2であり、いずれもこの発明方法によ
る焼結体の値よりも劣るものであった.
第1表
(37I02+ 3G+ 4^1)+lO体積奪S
ICウィスカー* O
△
×
欠け、割れなし
外周部の小さい欠け
割れや気孔発生
(実施例2)
平均粒径10μ園の酸化タンタル粉末及び325メッシ
ュ以下の粒径の炭化ほう素粉末及び平均粒径lOμ1以
下のアルミニウム粉末を各々モル比で3:I:4とtj
るように調合し、実施例1と同様の方法によりマトリッ
クス構威用原料の泥しようを得た.
次に、このマトリックス構成用原料に対して、体積比で
4・1となるようにセラミックウィスカー成分を秤量し
た.
ここでは、ウィスカー成分として平均ウィスカー径0,
5μ−5アスベクト比200窒化uiウィスカ−50体
積%と平均ウィスカー径 3(rva,平均ウィスカー
長さ40μ麿のアルミナウィスカ−50体積%よりなる
混合ウィ又カーを用いた.
このウィスカー成分も実施例1と同様の方法により泥し
よう状態とした後、これを上記マトリックス橋戒用原料
の泥しように加え、さらに1時間ボールミル混合した後
、乾燥、真空脱ガスlA埋し、この実施例の混合粉末を
得た。Figure 2 is a vertical cross-sectional view showing one embodiment of a cylindrical compaction device 5 that can be used in the method of the present invention. 6 is an expulsion container, which has an outer cylinder 6A and an outer cylinder arranged above and below the outer cylinder. It is composed of an upper plate 6B and a lower plate 6C. 7 is a cylindrical sample container coaxially located at the center of the explosive container 6, and upper and lower plugs 7A, 7B are placed above and below it.
is provided. 4 is a mixed powder filled in a cylindrical sample container 7. This figure shows a state in which the explosive 3C is placed in contact with the cylindrical sample container 7 and the explosive 3C is detonated by the detonator 3B.
The in-situ roar wave propagates downward, and the accompanying detonation shock wave first shock-compresses the cylindrical sample container 7 inside the sample container 7 in the axial direction, and then the mixed powder 4 inside the container 7 is impact-compressed in the same way. It will be done. The pressure generated in the mixed powder 4 part can be adjusted by the type and amount of explosive used. Here, the outer cylinder 6A of the cylindrical sample container 7 and the explosive container 6
Materials that can be used include metal, paper, wood, and plastic. Further, the conical plug 7A located above the cylindrical sample container 7 can be made of metal or wood, and this part is detonated by the detonator 3B and causes a detonation wave that spreads in a spherical shape inside the explosive 3C. It plays the role of shaping this spherical spreading candle wave into a flat detonation wave before reaching the cylindrical sample container 7, and is essential for uniform impact compression of the sample. .. The method of this invention aims to obtain a sintered body close to true density by heating a part or the whole of the whisker-containing molded body to ignite and start an exothermic reaction. For body cutting, the relative density of the compact before reaction ignition must be 90% or more. Although it depends on the proportion of metallic aluminum in the starting material for forming the matrix, a molded body with a relative density of less than 90% will not be sufficiently densified by sintering, and the desired sintered body will not be obtained. Furthermore, the strength of such sintered bodies is not high enough and cutting is difficult. The rj impact pressure required to convert a mixed powder containing 10 to 50% by volume of ceramic whiskers to a relative density of 90% or more -E is the f of the whiskers used. In addition to type and quantity,
It is determined by the amount of aluminum, and it is necessary to determine the optimal conditions for each combination of materials. Sintering of the high-density compact obtained by impact compression can be achieved by heating part or all of the compact under normal pressure to ignite and start an exothermic reaction, but more preferably under gas pressure. The exothermic reactions used in the method of this invention, which is sintering by reaction ignition under hydrostatic pressure using This is particularly useful in cases where shrinkage occurs and cannot be followed by pressureless sintering. When the degree of impact pressure is in a suitable range, the relative density is 9
A uniform molded product without cracks can be obtained at 0% or more. However, if the processing pressure exceeds the limit pressure determined by the combination of materials, seizure between powder particles, or intergranular bonding due to sintering, will occur, and as a result, large and small cracks will occur in the recovered rod. , undesirable. The range of impact pressure used in the method of the present invention is limited to a moderate pressure at which sintering does not occur during the impact treatment, or even if sintering does not occur, grain growth does not occur. On the other hand, if the pressure is too low, the mixed powder will not be able to become M1 dense to a relative density of 90% or more, and as mentioned above, the strength of the obtained compact will be low, and not only will it not be possible to cut it, but it will also become dense even after main sintering. As a result, a whisker-reinforced ceramic sintered body with high strength and toughness cannot be obtained. This invention will be explained in more detail with reference to Examples below. (Example 1) Titanium oxide powder with an average particle size of less than 1 μm, aluminum powder with an average particle size of 10 μm, and carbon black powder with an average particle size of less than 1 μm were mixed in a ratio of 3:43, and water was added. A slurry material for the matrix structure was made by mixing in a pole mill. Next, a volume ratio of 2
.. Silicon carbide whiskers (hereinafter referred to as SiC whiskers) with an average whisker diameter of 1 μm and an average length of 30 μm were weighed so that the whisker size was 1 μm, and water was also added thereto, stirred, and separated.
After making it into a muddy state, apply it to the above matrix 4ll.
The mixture was added to the raw material slurry and mixed in a ball mill for 1 hour. After drying this ball mill mixed powder, it was vacuum degassed and buried at 600°C to obtain the mixed powder of this example. This mixed powder was processed using a flat impact compression device as shown in the figure. Here, the mixed powder is added to sample N2B in Figure 1 with a relative density of approximately 6.
Iron is used as the material for the sample chamber 2B, which is filled to a concentration of 0%.
It was amm. Explosive speed 7.2 k days/S Joubon's data sheet was used as explosive 3C, and the thickness was 3.
.. A 2-weight iron plate was used. Here, the flying board speed shown in Table 1 is 0.2 to 2.0.
Molding and sintering tests were conducted at km/s. After impact treatment,
The sample container was collected, the iron part on the outside of the sample was removed by cutting, the sample was taken out, and the top and bottom surfaces were lightly polished with abrasive paper, and the appearance was observed. Next, the bulk densities of the recovered compacts were measured using the Archimedes method using water, and the relative density of the compacts was calculated. A cutting test was conducted on each molded body using a diamond sintered body as a cutting tool at a circumferential speed of approximately 35@/sin, and it was determined whether cutting was possible or not based on the degree of cracking and chipping. i Oh, tt. obtained at a flying speed of 2.0 km. As a result of X-ray diffraction, I1 has already undergone an exothermic reaction of about H at this point and is in a semi-sintered state.
Many laminar cracks had occurred. For this reason, cutting was also impossible. Next, each molded body was placed on a flat zirconia sintered body.
One end of the wire was heated and ignited by energizing an ignition jig (tungsten wire) to start the reaction. The reaction is 3
After 0 to 40 seconds, the relative density of the sintered body was measured after cooling, and one end of the sintered body was polished with a diamond rotary grindstone, mirror-finished, and then processed using the Vickers indentation method.
Fracture toughness values (hereinafter referred to as Kic values) were measured using a load of 20 kg. Next, using the same mirror-finished sample, the Vickers microhardness was measured under vacuum at a high temperature of 1200° C. using a load of 100 g. Table 1 summarizes the results obtained for the samples at each flying plate speed. At a flying plate speed of 0.2 ka/s, the appearance of the recovered sintered body was good with no cracks, but the density of the compact was low and the strength was not high enough to allow cutting. In this compact, the reaction could be initiated by heating with a tungsten wire, but the relative density of the obtained sintered compact was as low as 89%. As shown in Table 1, the compacts obtained at a plate speed of 0.5 to 1.5 km/s had no defects such as cracks in appearance, and the relative density of the compacts was 90%. % or more, and cutting processing was also possible. The sintered bodies of these samples reached a relative density of 97% or more, and K
The ic value was also approximately sMpaJ■, indicating that it had sufficiently high toughness. In addition, 12 of these sintered bodies
High 4 hardness at 00℃ is 1540~1820kg/■1
Met. Further, as a result of X-ray diffraction, the constituent phases other than whiskers in the sintered body obtained after the exothermic reaction were mainly alumina and titanium carbide (Tic). For comparison, a powder obtained by mixing 40% by volume of alumina of 1μ or less, 40% by volume of titanium carbide (TiC) of 1μ or less, and 20% by volume of SiC whiskers similar to those used in this example was prepared at 3011Pa. The same evaluation as above was carried out on a sample obtained by holding and sintering at 1900°C for 1 hour. As a result, the relative density of the sintered body was 92%, and the Kic value was 4. 1P a J @, and the high temperature hardness at 1200℃ is 12
101 kg/am2, both of which were inferior to the values of the sintered body produced by the method of this invention. Table 1 (37I02+ 3G+ 4^1) + lO volume deprivation S
IC whisker * O △ × No chipping or cracking Small chipping or pores on the outer periphery (Example 2) Tantalum oxide powder with an average particle size of 10μ or less, boron carbide powder with a particle size of 325 mesh or less, and an average particle size of 1Oμ1 The following aluminum powders were used in a molar ratio of 3:I:4 and tj
The slurry used as a raw material for matrix composition was obtained in the same manner as in Example 1. Next, the ceramic whisker component was weighed to give a volume ratio of 4.1 to the raw material for forming the matrix. Here, the average whisker diameter is 0,
A mixed whisker consisting of 50% by volume of 5μ-5 aspect ratio 200 nitrided ui whiskers and 50% by volume of alumina whiskers with an average whisker diameter of 3 (rva) and an average whisker length of 40μ was used. This whisker component was also used in Examples. After making it into a slurry state by the same method as in 1, it was added to the slurry of the raw material for matrix bridge precepts, mixed in a ball mill for another 1 hour, dried, vacuum degassed, buried in lA, and the mixed powder of this example was obtained. I got it.
この混@粉末を実施例1ε同様の装置と方法により飛y
n板速度0.2〜2.4ks/sで成形試験を行rlい
、焼結試験を実施した。This mixed @powder was blown using the same equipment and method as Example 1ε.
A molding test was conducted at a plate speed of 0.2 to 2.4 ks/s, and a sintering test was conducted.
各条件で得られた結果を第2表に示す.街!!処理後、
実施例1と同様の方法により試料を回収し、評価した.
飛翔板速度の低い 0.2ka+/sで得た成形体は相
対密度も90%に達していず、切削加工は不可能であっ
た.
方、飛m板速度2.4kIl/sで得た試料は多数の層
状割れを発生しており、X線回折分析の結果、衝撃処理
の段階ですでに反応が3/4程度進み焼結が起きたこと
が分かった.飛m板速度06〜1.8km/sで得た試
料は、いずれも相対密度90%以上まで緻密化されてお
り、切削加工できる強度をもつものであった.
これらの成形体を常圧下でI 000℃に約1時間加熱
し、発熱反応を着火、開始させ、焼結体を得た.得らオ
〕た焼結体のウィスカ成分以外の構成相はX線回折の結
果、アルミナ、炭化タンタル(Ta(:) ,ほう化タ
ンタル[TaB,)であり、いずれも96%以上まで!
l!密化し、Xic{aも7.8 〜8.9MPaJs
に達した.また、1 200℃での高温微小硬さは、…
0〜1720kg/m■2であり、高い硬度を保持して
いた。Table 2 shows the results obtained under each condition. City! ! After treatment,
Samples were collected and evaluated in the same manner as in Example 1. The molded product obtained at a low flying plate speed of 0.2 ka+/s had a relative density of less than 90%, and cutting was impossible. On the other hand, the sample obtained at a plate speed of 2.4 kIl/s had many lamellar cracks, and X-ray diffraction analysis revealed that the reaction had already progressed to about 3/4 of the time during the impact treatment and sintering had occurred. I found out what happened. The samples obtained at flying plate speeds of 06 to 1.8 km/s were all densified to a relative density of 90% or more, and had the strength to be cut. These compacts were heated to I 000° C. for about 1 hour under normal pressure to ignite and start an exothermic reaction, and a sintered compact was obtained. As a result of X-ray diffraction, the constituent phases other than the whisker component of the obtained sintered body were alumina, tantalum carbide (Ta(:)), and tantalum boride [TaB,), all of which were over 96%!
l! density and Xic{a is also 7.8 ~ 8.9 MPaJs
reached. In addition, the high temperature microhardness at 1200℃ is...
The hardness was 0 to 1720 kg/m2, and high hardness was maintained.
第2表
(3Ta02+ B,C + 4All+
(10体積XSI384ウィスカ+ lO体積1アルミ
ナウィスカー)
外周部の小さい欠け
割れや気孔発生
(実施例3)
平均粒径20μ■の酸化ニオブ粉末及び平均粒径15μ
麿の酸化モリブデン粉末及び平均粒径 1μ鰻以下の)
′ルミニウム粉末ルび粒経1μ酪以下のカーボンブラッ
ク及び同じく粒径 lμ一以下のほう素粉末を各々モル
比で3+1+6+3:Iになるように調合し、天8ai
例1と同様の方法によりマ]・リンクス構成用原料の泥
しようを得た.
次(、このマトリックス構成用原料に対して体積比で1
1とセるようにウィスカー径3μ謡、アスベクト比2
0のアルミナウィスカーを秤量した.
このアルミナウィスカーを実施例1ど同様の方法により
泥しよう状態とした後、これをマトリックス構成用原料
の泥し上う『加え、さらに、ボールミル混合した後、乾
燥、真空脱ガスし、この実施例の混合粉末を得た.この
混合粉末を実施例1と同様に第l図の平面衝撃圧縮装置
を用い、同様の方法で、飛翔板速度0.1〜1 .8k
■/Sの範囲で成形試験を行ない、次に焼結試験を実施
した.
衝撃処理稜の試料は実施例1と同様の方法により評価し
た.
各条件で得た結果を第3表に示す.
飛翔板速度0.1km/sで得た試料は、割れの発生も
なく良好なものであったが、緻密化が不充分で切削加工
できる強度をもたな
かった.
一方、飛m板速度1.8km/sで得た成形体には多数
の割れが発生しており、その破面の観察からすでに発熱
反応が生じ、焼結が起きたことが分かった.
飛m@速度0.4〜I.Okm/sで得た戒形体は各々
95%、97%の相対密度に達しており、良好な成形体
であった.これらの成形体につき、実施例1と同様の方
法で発熱反応を着火、開始させ、焼結体を得た.
得られた焼結体のウィスヵー以外の構成相は炭化ニオブ
、ほう化二オブとアルミナであった.また、相対密度は
いずれも98%に達し、Kic{!は各々7.2MPa
J m , 6.8MPaJmであった,1200℃で
の微小硬さは各々l4δ[lkg/am2、1420k
g/中一であった.第 3
(3Nb02+ Mo03+ 6Al
tアルミナウィスカー)
表
+ 3C+ 81 + (50体積
* O
△
欠け、割れなし
外周部の小さい欠け
割れや気孔発生
(実施例4)
粒径2Gμ口以下の酸化ジルコニウム粉末及び粒径10
μ園以下のアルミニウム粉末及び平均粒径5μ一の炭化
ほう素粉末を各々モル比で3・4・1となるように調合
し、実]fMIと同様の方法Cよりマトリックス構成用
原料のイ尼しようを得た.
次に、このマトリックス構成用原料に対して体積比で8
.1となるように平均ウィスカ−410.5μ−、平均
ウィスカー長さ30μ■の窒化硅素ウィスカーを秤量し
、実施例1と同様にして泥しよう状態とした後、これを
上記マトリックス1a成用原料の泥しように加え、ボー
ルミル混合した後、乾燥、真空脱ガス処理し、この実施
例の混合粉末を得た.
この混合粉末を第2図に示した円筒衝撃圧縮装置を用い
て衝撃処理した.ここでは円筒状試料容器7として、内
径20ms、外径25−嘗の真ちゅう製バイブを用い、
試料部分の長さは、100■Dとした.また、OI薬と
してアンホ爆薬を使用し、その厚みを 5〜75mmと
して成形試験を実施した.
衝撃処理後、試料を回収し、外観観察後、その軸方向の
中央部分より厚さ5I1−の円板状試料を切り出し、密
度を測定した.
また、切削加工試験は、実施例lと同じくダイヤモンド
工具を用いて成形体の一端を切削してみて、加工の可、
不可を判断した.この結果は、第4表に示すようであり
、爆薬厚み5■では、まだ緻密化が充分ではなく、強度
も低いものであった.
一方、爆薬厚み75mmでは、試料に割れが発生してお
り、相対密度は89%と低いものであった.爆薬厚み1
0〜75imで得た戊形体の相対密度は90%に達し、
切削加工は可能であった.
これらの成形体について、円板状に切り出した試料をI
MPaのアルゴンガス中1000℃に1時間加熱し、反
応を着火、開始させ、焼結体を得た.
得られた焼結体のウィスカー以外の構成相は、X線回折
の結果、炭化ジルコニウム、ほう化ジルコニウム及びア
ルミナよりなっており、焼結体相対密度はほぼ100%
に達していた.また、Kic値は 7.8 〜8.6M
PaJ@であり、1200℃での高温硬さも1580〜
1660と高い値を示した.
第4表
f3ZrO,+ 4AI + B.C)+
(10体積tshNaウ[カー)× 割れや気孔発生
[発明の効果]
以上のようにこの発明の方法によれば、衝撃圧總により
、セラミックウィスヵーを10〜50体積%含有するウ
ィスヵー強化セラミック焼結体の出発原料粉末を相対密
度90%以上まで比較的容易C緻密化でき、切削加工可
能な程度の強さをもつ戊形体を得ることができる.
この発明の方法においては、ウィスカーを除く残りのマ
トリックス構戊用の原料粉末は自己発熱反応を起こし得
る粉末よりなり、上記街*lA理で得られた高密度戒形
体の焼結には、特殊な高温炉等必要なく、その一端での
着火により、マトリックスが高温強度の優れた炭化物、
ほう化物及びアルミナよりflる高温強度の改善された
ウィスカー強化セラミック焼結体を得ることができる.
また、この発明によるウィスカー強化セラミック焼結体
の製造方法では、高密度成形体の焼結工程での収縮が極
めて少ないため、焼結後の加工コストを大幅に削減でき
るものであり、その工業的意義は大きい.Table 2 (3Ta02+ B, C + 4All+
(10 volumes of XSI384 whiskers + 10 volume of alumina whiskers) Small cracks and pores on the outer periphery (Example 3) Niobium oxide powder with an average particle size of 20 μ■ and an average particle size of 15 μ
Molybdenum oxide powder and average particle size of 1μ or less)
' Carbon black with a particle size of 1 μm or less and boron powder with a grain size of 1 μm or less were mixed in a molar ratio of 3 + 1 + 6 + 3: I, and
In the same manner as in Example 1, slurry as a raw material for constructing Malinks was obtained. Next (, 1 volume ratio for this matrix constituent raw material
1, whisker diameter 3μ, aspect ratio 2
0 alumina whiskers were weighed. This alumina whisker was made into a slurry state by the same method as in Example 1, and then added to the slurry of the raw material for forming the matrix, mixed in a ball mill, dried, and vacuum degassed. A mixed powder was obtained. This mixed powder was prepared in the same manner as in Example 1 using the planar impact compression apparatus shown in FIG. 1 at a flying plate speed of 0.1 to 1. 8k
■A molding test was conducted in the range of /S, and then a sintering test was conducted. The impact-treated ridge sample was evaluated in the same manner as in Example 1. Table 3 shows the results obtained under each condition. The sample obtained at a flying plate speed of 0.1 km/s was in good condition with no cracks, but was insufficiently densified and did not have the strength to be cut. On the other hand, many cracks occurred in the compact obtained at a flying speed of 1.8 km/s, and observation of the fracture surface revealed that an exothermic reaction had already occurred and sintering had occurred. Flying m@speed 0.4~I. The molded bodies obtained at Okm/s reached relative densities of 95% and 97%, respectively, and were good molded bodies. With respect to these compacts, an exothermic reaction was ignited and started in the same manner as in Example 1, and sintered compacts were obtained. The constituent phases of the obtained sintered body other than whiskers were niobium carbide, niobium boride, and alumina. In addition, the relative density reached 98% in both cases, and Kic{! are 7.2 MPa each
J m , 6.8 MPaJm, and the microhardness at 1200°C were l4δ[lkg/am2, 1420k, respectively.
g/1st in junior high school. No. 3 (3Nb02+ Mo03+ 6Al t alumina whiskers) Table + 3C+ 81 + (50 volume * O △ No chipping or cracking Small chipping or pores on the outer periphery (Example 4) Zirconium oxide powder and grains with a particle size of 2 Gμ or less Diameter 10
Aluminum powder with a particle diameter of less than 5 μm and boron carbide powder with an average particle size of 5 μm were mixed in a molar ratio of 3, 4, and 1, respectively. I got it. Next, a volume ratio of 8
.. 1, silicon nitride whiskers with an average whisker of 410.5μ and an average whisker length of 30μ were weighed, made into a slurry state in the same manner as in Example 1, and then mixed with the raw material for forming matrix 1a. The mixture was added to slurry, mixed in a ball mill, dried, and vacuum degassed to obtain the mixed powder of this example. This mixed powder was subjected to impact treatment using the cylindrical impact compression device shown in Figure 2. Here, a brass vibrator with an inner diameter of 20 ms and an outer diameter of 25 mm is used as the cylindrical sample container 7.
The length of the sample part was 100 D. In addition, a molding test was conducted using ampho explosive as the OI agent and with a thickness of 5 to 75 mm. After the impact treatment, the sample was collected, and after observing its appearance, a disk-shaped sample with a thickness of 5I1- was cut out from its axial center and its density was measured. In addition, in the cutting test, one end of the molded body was cut using a diamond tool as in Example 1, and the machinability was determined by cutting.
It was decided that it was not possible. The results are shown in Table 4, and at the explosive thickness of 5 cm, the densification was not sufficient and the strength was low. On the other hand, when the explosive thickness was 75 mm, cracks occurred in the sample and the relative density was as low as 89%. Explosive thickness 1
The relative density of the rods obtained from 0 to 75 im reached 90%;
Cutting was possible. A disk-shaped sample of these molded bodies was
It was heated to 1000°C for 1 hour in argon gas at MPa to ignite and start the reaction, and a sintered body was obtained. As a result of X-ray diffraction, the constituent phases of the obtained sintered body other than whiskers were found to be composed of zirconium carbide, zirconium boride, and alumina, and the relative density of the sintered body was approximately 100%.
It had reached . Also, the Kic value is 7.8 ~ 8.6M
PaJ@, and the high temperature hardness at 1200℃ is 1580 ~
It showed a high value of 1660. Table 4 f3ZrO, + 4AI + B. C)+
(10 volume tshNa u [car) × Cracks and pores generated [Effects of the invention] As described above, according to the method of the present invention, whisker-reinforced ceramic containing 10 to 50 volume % of ceramic whiskers can be formed by impact pressure. The starting raw material powder for the sintered body can be relatively easily densified to a relative density of 90% or more, and a rod-shaped body strong enough to be cut can be obtained. In the method of this invention, the remaining raw material powder for the matrix structure excluding the whiskers is a powder capable of causing a self-heating reaction, and a special There is no need for a high-temperature furnace, and by ignition at one end, the matrix becomes a carbide with excellent high-temperature strength.
A whisker-reinforced ceramic sintered body with improved high-temperature strength than borides and alumina can be obtained. In addition, in the method for manufacturing whisker-reinforced ceramic sintered bodies according to the present invention, shrinkage of the high-density compacts during the sintering process is extremely small, so processing costs after sintering can be significantly reduced, and the industrial It is of great significance.
第1図はこの発明のウィスカー強化セラミック焼結体の
製造方法に通用できる
平面衝撃圧縮装置の実施例を示す縦断
面図、
第2図はこの発明のウィスカー強化セラミック焼結体の
製造方法に適用できる
円筒街車圧縮装置の実施例を示す縦断
面図ある.
平面′a馨圧縮装置、
下方部分、
試料容器、
試料室、
モーメンタム・トラップ、
モーメンタム・トラップ、
上方部分、
.爆薬レンズ、
.if管、
.爆薬、
.飛m板、
.混合粉末、
円筒ifi![圧縮装置、
1 .
2 .
2A.
2B.
2 C
2 D
3 .
3A.
3 B
3C.
3D.
4 .
5
6 .
6A.
6 8
6C.
7 .
7 A
7B
.爆薬容器、
外円筒、
上方板5
下方板、
円筒状試料容器、
プラグ
プラグ.
第
2
図Fig. 1 is a longitudinal cross-sectional view showing an embodiment of a planar impact compression device that can be used in the method for producing a whisker-reinforced ceramic sintered body of the present invention, and Fig. 2 is a longitudinal cross-sectional view showing an embodiment of a planar impact compression device that can be used in the method for producing a whisker-reinforced ceramic sintered body according to the present invention. This is a vertical cross-sectional view showing an example of a cylindrical street car compression device. Plane 'a' compression device, lower part, sample container, sample chamber, momentum trap, momentum trap, upper part, . Explosive lens. if tube, . Explosives, . Flying board, . Mixed powder, cylinder ifi! [Compression device, 1. 2. 2A. 2B. 2 C 2 D 3 . 3A. 3 B 3C. 3D. 4. 5 6. 6A. 6 8 6C. 7. 7 A 7B. Explosive container, outer cylinder, upper plate 5 lower plate, cylindrical sample container, plug plug. Figure 2
Claims (4)
残りのマトリックスが周期律表 4a,5a,6a族金属の炭化物、ほう化物及び炭化ほ
う素の少なくとも1種と酸化アルミニウム(以下アルミ
ナと呼ぶ)よりなることを特徴とするウィスカー強化セ
ラミック焼結体。1. Contains 10-50% by volume of ceramic whiskers,
A whisker-reinforced ceramic sintered body characterized in that the remaining matrix is comprised of at least one of carbides, borides, and boron carbide of metals from groups 4a, 5a, and 6a of the periodic table, and aluminum oxide (hereinafter referred to as alumina).
化硅素ウィスカー、窒化硅素ウイスカーの少なくとも1
種よりなる請求項1記載のウィスカー強化セラミック焼
結体。2. The ceramic whiskers include at least one of alumina whiskers, silicon carbide whiskers, and silicon nitride whiskers.
The whisker-reinforced ceramic sintered body of claim 1 comprising seeds.
ウィスカー強化セラミック焼結体を製造する方法におい
て、セラミックウィスカーに周期律表4a,5a,6a
族金属の酸化物及び酸化ほう素の酸化物群の中の少なく
とも1種及び炭素、ほう素、炭化ほう素の非金属群の中
の少なくとも1種及びアルミニウムを均一に混合し、こ
の混合粉末を成形型に充填し、該混合粉末を衝撃圧縮す
ることによ り、相対密度90%以上(空隙率10%以 下)の粉末成形体とした後、該粉末成形体の一部または
全体を加熱することにより、該酸化物一群の中の少なく
とも1種及び非金属群の中の少なくとも1種及びアルミ
ニウムの間の発熱反応を着火、進行させながら該粉末成
形体を焼結させることを特徴とするウィスカー強化セラ
ミック焼結体の製造方法。3. In a method for manufacturing a whisker-reinforced ceramic sintered body containing 10 to 50% by volume of ceramic whiskers, the ceramic whiskers include elements 4a, 5a, and 6a of the periodic table.
At least one member of the oxide group of group metals and boron oxide, at least one member of the non-metal group of carbon, boron, and boron carbide, and aluminum are uniformly mixed, and this mixed powder is By filling a mold and impact-compressing the mixed powder to form a powder compact with a relative density of 90% or more (porosity of 10% or less), by heating a part or the whole of the powder compact. , a whisker-reinforced ceramic characterized in that the powder compact is sintered while an exothermic reaction between at least one member of the oxide group, at least one member of the non-metal group, and aluminum is ignited and progresses. A method for producing a sintered body.
化硅素ウィスカー、窒化硅素ウィスカーの少なくとも1
種よりなる請求項3記載のウィスカー強化セラミック焼
結体の製造方法。4. The ceramic whiskers include at least one of alumina whiskers, silicon carbide whiskers, and silicon nitride whiskers.
The method for producing a whisker-reinforced ceramic sintered body according to claim 3, wherein the whisker-reinforced ceramic sintered body comprises seeds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1158614A JPH0323278A (en) | 1989-06-20 | 1989-06-20 | Whisker reinforced ceramic sintered body and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1158614A JPH0323278A (en) | 1989-06-20 | 1989-06-20 | Whisker reinforced ceramic sintered body and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0323278A true JPH0323278A (en) | 1991-01-31 |
Family
ID=15675560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1158614A Pending JPH0323278A (en) | 1989-06-20 | 1989-06-20 | Whisker reinforced ceramic sintered body and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0323278A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6252183A (en) * | 1985-06-21 | 1987-03-06 | ニユ− メキシコ テツク リサ−チ フアンデ−シヨン | Manufacture and equipment for powder formed body |
JPS6428283A (en) * | 1987-03-16 | 1989-01-30 | Hitachi Ltd | Sintered composite ceramic material and production thereof |
JPH01308881A (en) * | 1988-06-06 | 1989-12-13 | Nippon Tungsten Co Ltd | Whisker-reinforced ceramic material |
-
1989
- 1989-06-20 JP JP1158614A patent/JPH0323278A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6252183A (en) * | 1985-06-21 | 1987-03-06 | ニユ− メキシコ テツク リサ−チ フアンデ−シヨン | Manufacture and equipment for powder formed body |
JPS6428283A (en) * | 1987-03-16 | 1989-01-30 | Hitachi Ltd | Sintered composite ceramic material and production thereof |
JPH01308881A (en) * | 1988-06-06 | 1989-12-13 | Nippon Tungsten Co Ltd | Whisker-reinforced ceramic material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4695321A (en) | Dynamic compaction of composite materials containing diamond | |
JP2671945B2 (en) | Superplastic silicon carbide sintered body and method for producing the same | |
LaSalvia et al. | Effect of Mo on microstructure and mechanical properties of TiC—Ni-based cermets produced by combustion synthesis—impact forging technique | |
JP2015510546A (en) | Near net cutting tool insert | |
KR19990063938A (en) | One-Stage Synthesis and Densification of Ceramic-Ceramic and Ceramic-Metal Composites | |
RU2744543C1 (en) | Method for producing ceramic composite material based on silicon carbide, reinforced with silicon carbide fibers | |
US5139720A (en) | Method of producing sintered ceramic material | |
RU2707216C1 (en) | METHOD OF PRODUCING COMPOSITE MATERIAL BASED ON Al2O3 -TiCN | |
AU2006281014A1 (en) | Resistant ceramic material and method for making same | |
JP4809096B2 (en) | TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof | |
JPH02252660A (en) | Calcined compact of hardly calcinable powder, its abrasive grain and grindstone and production thereof | |
WO2021133226A1 (en) | Method for fabrication of ultra-high-temperature ceramic material based on hafnium carbide and carbonitride | |
JPH0323278A (en) | Whisker reinforced ceramic sintered body and production thereof | |
US20050133963A1 (en) | Silicon carbide whisker-reinforced ceramics with low rate of grain size increase upon densification | |
RU2414991C1 (en) | Method of producing ceramic articles with nanostructure | |
JPH03137061A (en) | Production of high strength ceramic combined sintered compact | |
JPH0312370A (en) | Production of whisker-reinforced ceramic sintered compact | |
JP2004169064A (en) | Copper-tungsten alloy, and method of producing the same | |
JP3255750B2 (en) | Method for producing diamond-like sintered body | |
JPH03137062A (en) | Production of ceramic combined sintered compact | |
JPS6344929A (en) | Preparation of high density ceramic powder molded body by impact compression | |
JPH03137060A (en) | Production of high strength ceramic sintered compact | |
JP7116234B1 (en) | Manufacturing method of composite ceramics | |
JPH055150A (en) | Boron carbide-reactive metal cermet | |
KR920006806B1 (en) | Preparation method of calcined body made by al2o3-ticx |