JPH03137060A - Production of high strength ceramic sintered compact - Google Patents

Production of high strength ceramic sintered compact

Info

Publication number
JPH03137060A
JPH03137060A JP1276486A JP27648689A JPH03137060A JP H03137060 A JPH03137060 A JP H03137060A JP 1276486 A JP1276486 A JP 1276486A JP 27648689 A JP27648689 A JP 27648689A JP H03137060 A JPH03137060 A JP H03137060A
Authority
JP
Japan
Prior art keywords
powder
sintering
sintered body
mixed powder
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1276486A
Other languages
Japanese (ja)
Inventor
Tamotsu Akashi
明石 保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Coal Mining Co Ltd
Original Assignee
Sumitomo Coal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Coal Mining Co Ltd filed Critical Sumitomo Coal Mining Co Ltd
Priority to JP1276486A priority Critical patent/JPH03137060A/en
Publication of JPH03137060A publication Critical patent/JPH03137060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a ceramic sintered compact having high density and high strength by filling a compacting die with a powder mixture of specific metal and nonmetal, exerting impact compacting, and igniting and allowing exothermic chemical reaction to proceed by means of pressurization and heating. CONSTITUTION:At least one kind among the metal group consisting of the group VIa, Va, and VIa metals of the periodic table and at least one kind among the nonmetal group consisting of carbon, boron, boron carbide, and boron nitride are mixed. Subsequently, a compacting die is filled with the resulting powder mixture, and impact compacting is exerted to form a powder green compact of >=90% relative density (<=10% porosity). Then, by heating a part or the whole of the above powder green compact while pressurizing this powder green compact at >=1MPa pressure, sintering is applied to this powder green compact while igniting and allowing exothermic chemical reaction between at least one kind among the metal group mentioned above and at least one kind among the nonmetal group mentioned above to proceeds, by which the desired sintered compact can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、高強度セラミック焼結体の製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a high-strength ceramic sintered body.

さらに詳しくは、この発明は、切削工具をはじめとして
各種の耐摩耗材料、耐熱材料として有用な高密度及び高
強度のセラミック焼結体を簡便に、かつ安価で製造する
ことの出来る高強度セラミック焼結体の製造方法に関す
るものである。
More specifically, the present invention provides a high-strength ceramic sintered body that can easily and inexpensively produce a high-density and high-strength ceramic sintered body useful as various wear-resistant and heat-resistant materials including cutting tools. The present invention relates to a method for producing a solid.

[従来の技術] 従来より、室温においても、また高温においても高強度
を有するセラミック材料として、ダイヤモンド、立方晶
窒化ほう素をはじめ周期律表4a、5a、6a族金属を
中心とした炭化物、窒化物、ほう化物や硅素の炭化物、
窒化物の他アルミナなどの酸化物が知られている。
[Prior Art] Conventionally, carbides and nitrides, including diamond, cubic boron nitride, and metals in groups 4a, 5a, and 6a of the periodic table, have been used as ceramic materials that have high strength both at room temperature and at high temperatures. materials, borides and silicon carbides,
In addition to nitrides, oxides such as alumina are known.

は構成する元素間に強い共有結合を有するため、これら
の原料粉末を加圧しないで焼結すると、圧粉体試料全体
の収縮、すなわち組織の緻密化を促進する原子の体積拡
散は容易には起こらず、粒子の表面拡散が原子の体積拡
散より優先するため、緻密な焼結体を製造することは困
難であることも知られている。
Because these powders have strong covalent bonds between their constituent elements, if these raw powders are sintered without applying pressure, the volumetric diffusion of atoms that promotes shrinkage of the entire green compact sample, that is, densification of the structure, will not easily occur. It is also known that it is difficult to produce dense sintered bodies because this does not occur and surface diffusion of particles takes precedence over volumetric diffusion of atoms.

このように、高強度セラミック材料の単味の焼結は極め
て困難であるため、通常、粉末粒子間の原子の移動を補
助する助剤的役割を果たす添加物を加え、かつ加圧しな
がら焼結する方法が採用されてきている。
In this way, it is extremely difficult to sinter high-strength ceramic materials alone, so additives that act as auxiliaries to assist the movement of atoms between powder particles are usually added and sintered under pressure. methods have been adopted.

例えば、焼結助剤を添加したTiB1やSiC粉末の焼
結においては、主に、数10MPa程度まで加圧するこ
とのできる黒鉛型を用いたホットプレスが行なわれてき
ている。
For example, in sintering TiB1 or SiC powder to which a sintering aid has been added, hot pressing has been mainly performed using a graphite mold that can pressurize up to several tens of MPa.

しかしながら、このホットプレス法は、加圧する圧力は
組織の緻密化に有効であるものの、高温下での黒鉛型の
強度によってその圧力が制約されるため、高温になると
発生可能な圧力は低下するという欠点がある。
However, although the pressure applied in this hot press method is effective for densifying the structure, the pressure that can be generated is limited by the strength of the graphite mold at high temperatures, so the pressure that can be generated decreases at high temperatures. There are drawbacks.

また、焼結温度についても、試料と黒鉛型とが反応しな
い程度に低くする必要もある。
The sintering temperature also needs to be low enough to prevent the sample from reacting with the graphite mold.

このような制約により、黒鉛型を用いたホットプレス法
においては、ガ分に強固な粒間結合を有する高密度の硬
質セラミック焼結体を製造することは困難であった。
Due to such restrictions, it has been difficult to produce a high-density hard ceramic sintered body having strong intergranular bonds in the hot press method using a graphite mold.

一方、焼結温度を下げて組織を緻密化する方法として、
焼結保持時間を長くする方法も考えられてもいるが、こ
の場合には、粒子の粗大化が起きやすく、これによって
焼結体の強度が低下するという問題がある。
On the other hand, as a method to reduce the sintering temperature and make the structure denser,
Although a method of lengthening the sintering holding time has been considered, in this case there is a problem that particles tend to become coarser, which reduces the strength of the sintered body.

このような高強度セラミックのもつ難焼結性は、その材
料の室温下及び高温下での優れた機械的特性を反映した
ものである。
The sinterability of such high-strength ceramics reflects the material's excellent mechanical properties at both room and high temperatures.

高強度セラミック材料を実用的材料として製造する上で
のもう1つの解決すべき開門は、その焼結した材料の目
的形状への加工が難しいことにある。
Another hurdle in producing high-strength ceramic materials as practical materials lies in the difficulty of processing the sintered material into the desired shape.

この難加工性も対象とする材料のもつ高い強度と硬度を
反映したものであり、材料の佐賀とは切り離して扱い得
ない問題である。
This difficulty in processing also reflects the high strength and hardness of the target material, and is an issue that cannot be treated separately from the material saga.

セラミック材料は、一般に脆い反面、高強度であり、硬
度も高いものが多(、難加工材が多い。
Although ceramic materials are generally brittle, they also have high strength and hardness (and many are difficult to process).

最近、高純度、高硬度のダイヤモンド焼結体も開発され
、これを用いた切削加工も試みられているが、切削性能
や加工コストの面でまだ満足する結果は得られていない
Recently, high-purity, high-hardness diamond sintered bodies have been developed, and cutting processes using these bodies have been attempted, but satisfactory results have not yet been obtained in terms of cutting performance and processing costs.

現在、主に、高価なダイヤモンド砥石により加工されて
おり、高い加工コストの一因となっている。
Currently, processing is mainly performed using expensive diamond grindstones, which contributes to high processing costs.

前述のように、高温構造用材料を対象としたセラミック
粉末は一般に難焼結性であり、助剤を用いた場合でも加
圧しながら焼結する方法が採られている。
As mentioned above, ceramic powder intended for high-temperature structural materials is generally difficult to sinter, and even when an auxiliary agent is used, a method of sintering under pressure is used.

この方法は、平板や円柱状の単純形状の素材の焼結には
適するが、複雑形状のものの焼結には適さない。
This method is suitable for sintering materials with simple shapes such as flat plates and cylinders, but is not suitable for sintering materials with complex shapes.

このため、この方法で製造した素材から実際の部材を成
形するには加工の取り代が多くなり能率が悪いばかりで
なく、加工コストが異常に高(なってしまう。
For this reason, when molding an actual member from the material manufactured by this method, not only does the machining allowance increase, resulting in inefficiency, but also the machining cost becomes abnormally high.

従って、製品コストの中で大きな割合を占めている加工
コストを低減するためには、できるだけ最終部品形状に
近い焼結体の製造技術の開発が強(望まれている。
Therefore, in order to reduce processing costs, which account for a large proportion of product costs, there is a strong desire to develop a technology for manufacturing sintered bodies as close to the final part shape as possible.

[発明が解決しようとする課題] 従来の技術で述べたものにあっては、下記のような問題
点を有していた。
[Problems to be Solved by the Invention] The conventional techniques described above have the following problems.

高強度セラミック粉末の焼結は、その焼結を助ける助剤
の添加が必要であり、この助剤は焼結体の高温特性を著
しく低下させるという問題があった。
Sintering of high-strength ceramic powder requires the addition of an auxiliary agent that aids in the sintering, and there is a problem in that this auxiliary agent significantly deteriorates the high-temperature properties of the sintered body.

さらに、そのような方法で得られた焼結体の加工におい
ては、加工コストがその製品コストの50%以上を占め
ることもあり、この種の材料の一層のコスト高を招き、
高強度セラミック焼結体のより広い用途拡大を妨げてい
るという問題があった。
Furthermore, when processing a sintered body obtained by such a method, the processing cost may account for more than 50% of the product cost, leading to further increases in the cost of this type of material.
There has been a problem in that it has hindered the expansion of wider applications of high-strength ceramic sintered bodies.

本願は、従来の技術の有するそのような問題点に鑑みな
されたものであり、その目的とするところは、次のよう
な事ので祭るものを提供しようとするものである。
The present application was created in view of such problems with the conventional technology, and its purpose is to provide something that addresses the following issues.

この発明は以上のような事情に鑑みなされたものであり
、高強度セラミック材料のもつ優れた特性を保持しつつ
、前述のような従来の製造方法のもつ欠点を改良し、切
削工具をはじめとする各種構造材幅として好適な高密度
、高強度なセラミック焼結体の製造方法を提供すること
を目的、としている。
This invention was made in view of the above circumstances, and while maintaining the excellent properties of high-strength ceramic materials, it improves the drawbacks of the conventional manufacturing method as described above, and is intended to improve cutting tools and other products. The purpose of this invention is to provide a method for producing a high-density, high-strength ceramic sintered body suitable for various structural material widths.

本発明者は、前述のような高強度セラミック材料をそれ
らの化合物粉末から直接焼結するのではな(、発熱性の
化学反応を利用してそれらの化合物をその構成元素から
合成し、同時にその反応熱を利用して焼結することによ
り、従来の焼結方法に比較して簡単な装置と手段により
、緻密で高強度なセラミック焼結体の得られることを見
出した。
Rather than directly sintering high-strength ceramic materials from their compound powders (as described above), the present inventors synthesize these compounds from their constituent elements using an exothermic chemical reaction, and at the same time synthesize them from their constituent elements. We have discovered that by sintering using reaction heat, a dense and high-strength ceramic sintered body can be obtained with simpler equipment and means than conventional sintering methods.

また、ここで上記発熱性の化学反応として、金属粉末の
関与するものを選ぶことにより、出発原料となる混合粉
末の成形は、高強度セラミックの化合物粉末を成形する
場合に比較して極めて容易となり、また高密度に成形し
ても、割れ等の欠陥の発生も著しく低減できることが分
かった。
In addition, by selecting a type of exothermic chemical reaction that involves metal powder, molding of the mixed powder serving as the starting material becomes extremely easier compared to molding a high-strength ceramic compound powder. It was also found that even when molded to high density, the occurrence of defects such as cracks can be significantly reduced.

本発明者は、これら2つの主な知見に基づき、高強度セ
ラミック材料の中でも特に優れた熱的、機械的性質を備
えた周期律表4a5a、6a族金属の炭化物、窒化物、
ほう化物及びそれらの固溶体よりなる緻密な焼結体をよ
り簡便な方法で低廉に製造する方法の開発を目指して鋭
意研究を重ねてきた。
Based on these two main findings, the present inventor has developed carbides and nitrides of metals from groups 4a5a and 6a of the periodic table, which have particularly excellent thermal and mechanical properties among high-strength ceramic materials.
We have been conducting intensive research with the aim of developing a method for producing dense sintered bodies made of borides and their solid solutions in a simpler and cheaper manner.

その結果、周期律表4a、5a、6a族金属の炭化物、
窒化物、ほう化物及びこれらの固溶体を発熱性化学反応
により生成することのできる上記金属の中の少なぐとも
成分と炭素、ほう素、炭化ほう素、窒化ほう素よりなる
非金属の中の少なくとも1成分とを均一に混合し、この
混合粉末を適当な強さで衝撃圧縮することにより切削等
の機械加工可能な強度を備えた相対密度90%以上の成
形体とした後、この成形体を焼結収縮を考慮して必要な
素材形状に機械加工し、IMPa以上の圧力下でこの加
工した素材、つまり成形体の一部または、全体を加熱す
ることにより上記金属成分と非金属成分の間の発熱性化
学反応を着火、進行させながら、上記成形体を焼結する
ことにより、最終形状に極めて近い形状をもつ高強度セ
ラミック焼結体の得られることを見出し、本発明をなす
に至った。
As a result, carbides of metals from groups 4a, 5a, and 6a of the periodic table,
Nitride, boride, and a solid solution thereof can be produced by an exothermic chemical reaction. At least one of the above-mentioned metals and at least one non-metal such as carbon, boron, boron carbide, and boron nitride. After uniformly mixing the two components and impact-compressing this mixed powder with an appropriate strength to form a molded body with a relative density of 90% or more and having strength that allows machining such as cutting, this molded body is By machining the material into the required shape taking into account sintering shrinkage and heating the processed material, that is, part or all of the molded body, under a pressure of IMPa or higher, the gap between the metal component and the non-metal component is created. The present inventors have discovered that a high-strength ceramic sintered body having a shape extremely close to the final shape can be obtained by sintering the above-mentioned molded body while igniting and allowing the exothermic chemical reaction to proceed, leading to the present invention. .

すなわち、この発明は、周期律表4a。That is, this invention applies to periodic table 4a.

5a、6a族金属の炭化物、窒化物、ほう化物及びこれ
らの固溶体よりなるセラミック焼結体を製造する方法に
おいて、周期律表4a、5a、6a族金属からなる金属
群の中の少なくともlflと、炭素、ほう素、炭化ほう
素、窒化ほう素よりなる非金属群の中の少なくとも1種
とを混合し、この混合粉末を成形型に充填し、衝撃圧縮
することにより相対密度90%以上(空隙率10%以下
)の粉末成形体とした後、I MPa以上の圧力で加圧
しながら、該粉末成形体の一部または全体を加熱するこ
とにより、上記金属群の中の少なくとも1 flと上記
非金属群の中の少なくとも1種の間の発熱性化学反応を
着火、進行させながら該粉末成形体を焼結させることを
特徴とする高強度セラミック焼結体の製造方法を提供す
る。
A method for producing a ceramic sintered body made of carbides, nitrides, borides, and solid solutions of group 5a and 6a metals, including at least lfl in the metal group consisting of metals from groups 4a, 5a, and 6a of the periodic table; At least one of the nonmetallic group consisting of carbon, boron, boron carbide, and boron nitride is mixed with the powder, and this mixed powder is filled into a mold and subjected to impact compression to reduce the relative density to 90% or more (void voids). 10% or less), and by heating a part or the whole of the powder compact while pressing at a pressure of I MPa or more, at least 1 fl of the above metal group and the above non-containing material are heated. Provided is a method for producing a high-strength ceramic sintered body, characterized in that the powder compact is sintered while igniting and advancing an exothermic chemical reaction between at least one metal group.

[課題を解決するための手段] 上記目的を達成するために、本発明のものは下記のよう
になるものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention is as follows.

すなわち本願のものは、ある橿のセラミック、特に高融
点のセラミックの合成においては、その構成元素からの
化合物の合成反応熱はモル当り数十〜数百KJにも達す
る。この大きな生成熱が原料混合粉末の成形体中に次々
と伝播して1反応の励起、開始、合成が順次持続してい
(。
That is, in the synthesis of a certain type of ceramic, especially a high melting point ceramic, the heat of reaction for synthesizing a compound from its constituent elements reaches tens to hundreds of KJ per mole. This large heat of formation propagates one after another into the compact of the raw material mixed powder, and the excitation, initiation, and synthesis of one reaction are sustained in sequence (.

例えば、炭化チタン1ric)をチタンfTilと炭素
fcl粉末から合成する場合には、炭化チタンfTic
)の化学量論比に合致するチタンfTilと炭素fcl
粉末を混合、成形し、例えば、その一端よりタングステ
ン等からなる加熱ワイヤーを用いて着火させ、反応を開
始させると、その反応は成形体全体にわたって進行し、
外部からの加熱を必要とせずに炭化チタンfTicl 
を合成することができる。
For example, when synthesizing titanium carbide (1 ric) from titanium fTil and carbon fcl powder, titanium carbide fTic
) matching the stoichiometric ratio of titanium fTil and carbon fcl
When the powder is mixed and molded, and a heating wire made of tungsten or the like is used to ignite the powder from one end to start the reaction, the reaction proceeds throughout the molded body.
Titanium carbide fTicl without the need for external heating
can be synthesized.

場合によっては、この合成と同時に焼結も起きるが得ら
れる焼結体は極めて多孔質なものである。
In some cases, sintering occurs simultaneously with this synthesis, but the resulting sintered body is extremely porous.

このようなセラミック合成方法は、合成用の特殊な炉を
必要とせず経済的である。
Such a ceramic synthesis method does not require a special furnace for synthesis and is economical.

上記反応は、その反応の性質から自己発熱反応または、
自己燃焼反応と呼ばれ、ここでは前者の呼び方を採用す
る。
Depending on the nature of the reaction, the above reaction may be a self-heating reaction or
This reaction is called a self-combustion reaction, and we will use the former term here.

本発明で対象とする周期律表4a、5a6a族金属の炭
化物、窒化物、ほう化物及びそれらの固溶体は、自己発
熱反応により合成でき典型的な材料である。
Carbides, nitrides, borides, and solid solutions of metals of groups 4a and 5a6a of the periodic table, which are the object of the present invention, are typical materials that can be synthesized by self-heating reactions.

例えば、次のような例をあげることができる。For example, the following examples can be given:

1種W+C−WC 2) fTa、Zrl+2B−+ (Ti、Zr1Bx
316Ti+284C→2TiC+4TiB*41Ti
+CN4’Ti (C,Nl 自己発熱反応にともなう熱による温度上昇は生成熱の全
てが生成物の温度上昇に使われると仮定して計算できる
Type 1 W+C-WC 2) fTa, Zrl+2B-+ (Ti, Zr1Bx
316Ti+284C→2TiC+4TiB*41Ti
+CN4'Ti (C,Nl) The temperature increase due to heat accompanying the self-heating reaction can be calculated on the assumption that all of the heat of formation is used to increase the temperature of the product.

例えば、Ti+C−* TiCの場合の生成エネルギー
は185KJ/molであり、その時の温度上昇は32
10Kにも達し、これは生成物であるTiCの融点に相
当する。
For example, the generation energy in the case of Ti+C-*TiC is 185KJ/mol, and the temperature rise at that time is 32KJ/mol.
It reaches as high as 10K, which corresponds to the melting point of the product TiC.

このことは、反応中に液相が出現することを示しており
、これにより、拡散による物質移動は容易になり、液相
の出現は強固な焼結体を製造するのに効果的に作用する
This indicates that a liquid phase appears during the reaction, which facilitates the mass transfer by diffusion, and the appearance of the liquid phase is effective in producing a strong sintered body. .

また、この液相の生成により対象とする材料のミクロ及
びマクロな面での変形は極めて容易となり、添加物を用
いない高強度セラミック材料のホットプレスで必要とな
る数百MPaという高い圧力を必要とすることなく緻密
な焼結体を得ることができる。
In addition, the generation of this liquid phase makes it extremely easy to deform the target material in both micro and macro aspects, requiring the high pressure of several hundred MPa required for hot pressing of high-strength ceramic materials without using additives. It is possible to obtain a dense sintered body without causing any sintering.

本発明において、高密度に成形した成形体の化学反応を
ともなった焼結の際、1MPa以上の圧力を用いるがこ
れは、以下のような理由による。
In the present invention, a pressure of 1 MPa or more is used during the sintering of the compact formed into a high-density molded body through a chemical reaction, and the reason for this is as follows.

1つは、本発明において成形体として相対密度90%以
上のものを用いるが依然として空隙が含まれており、こ
の空隙を焼結体外へ排除するためである。
One reason is that although a compact having a relative density of 90% or more is used in the present invention, it still contains voids, and these voids are to be eliminated from the sintered body.

もう1つは、この種の化学反応の性質による体積減少を
補うためである。
The other reason is to compensate for volume loss due to the nature of this type of chemical reaction.

多くの自己発熱反応の場合、原料系から生成系への体積
減少は10%−25%であり、物質移動がこの体積減少
に追随できなかった場合、得られる焼結体中にこの体積
減少分は気孔として取り残される。
For many self-heating reactions, the volume loss from the raw material system to the product system is 10%-25%, and if the mass transfer cannot keep up with this volume loss, the resulting sintered body will contain this volume loss. are left behind as pores.

従って、緻密な焼結体を得るには上記2つの原因による
空隙10〜35%を焼結中に加圧等の手段により排除す
る必要がある。
Therefore, in order to obtain a dense sintered body, it is necessary to eliminate 10 to 35% of the voids caused by the above two causes by means such as pressurization during sintering.

ここで加圧の手段として1軸性の簡単な方法を用いるこ
とができるが、より静水圧的加圧のできる方法が適する
Although a simple uniaxial method can be used as the pressurizing means, a method that allows hydrostatic pressurizing is more suitable.

また、この際必要とする圧力は、上記のような液相の出
現により低くできるが、反応中の液相の生成量は対象材
料により異なり、また、含まれる空隙の量も各々異なる
ため適宜緻密化に必要な圧力を設定する必要がある。
In addition, the pressure required at this time can be lowered by the appearance of the liquid phase as described above, but the amount of liquid phase produced during the reaction varies depending on the target material, and the amount of voids included also differs, so It is necessary to set the pressure necessary for

本発明に係る焼結体の製造では、実験の結果、少なくと
も1MPa以上の圧力が必要であった。
In the production of the sintered body according to the present invention, as a result of experiments, a pressure of at least 1 MPa or more was required.

高硬度セラミツク材料の粉末をそのまま出発原料として
焼結するのではなくその化合物の構成元素を用いて合成
反応と同時に焼結するようにすることのもう1つの利点
は、その出発原料となる混合粉末の成形体の高密度化が
極めて容易となることにある。
Another advantage of sintering the powder of a high-hardness ceramic material as a starting material, instead of sintering it directly as a starting material, is to use the constituent elements of the compound and sinter it simultaneously with the synthesis reaction. It is extremely easy to increase the density of the molded body.

本発明に係る出発原料には前述のように必ず4a、5a
、6a族金属の粉末が50体積%以上含有されており、
通常の金型を用いた粉末成形方法を用いても比較的容易
に相対密度60%程度(空隙率40%)の成形体を得る
ことができる。含有されている金属粉末が容易に塑性変
形し、空隙を埋めることによる効果と考えられる。
As mentioned above, the starting materials according to the present invention must include 4a and 5a.
, contains 50% by volume or more of group 6a metal powder,
A compact having a relative density of about 60% (porosity: 40%) can be obtained relatively easily even by using a powder compaction method using an ordinary mold. This effect is thought to be due to the contained metal powder being easily plastically deformed and filling the voids.

一方、炭化物、ほう化物と言った化合物粉末を出発原料
とした場合、それらの化合物の機械的強度は相当に高く
通常の金型を用いた場合では成形体の相対密度は高々5
0%程度までしか達しない。
On the other hand, when compound powders such as carbides and borides are used as starting materials, the mechanical strength of these compounds is quite high, and when a normal mold is used, the relative density of the molded product is at most 5.
It only reaches about 0%.

本発明に係る混合粉末の成形は前述のような理由により
比較的容易ではあるが、成形後、切削や切断といった機
械加工可能な強さをもつ高密度な成形体を得ることは、
金型の強度を考慮すると極めて難しい。
Although molding the mixed powder according to the present invention is relatively easy for the reasons mentioned above, it is difficult to obtain a high-density molded body having the strength to be machined by cutting or cutting after molding.
This is extremely difficult considering the strength of the mold.

そのような機械的加工のできる強さをもつ高密度成形体
を得るための手段として、数GPaという超高圧の利用
できる静的または、動的超高圧技術を用いることができ
る。
As a means for obtaining a high-density molded body strong enough to be subjected to such mechanical processing, static or dynamic ultra-high pressure techniques that can utilize ultra-high pressures of several GPa can be used.

しかし、前者の静的超高圧技術を用いる方法は必要とす
る装置が大規模で高価な上、その運転操作が難しいとい
う欠点がある。
However, the former method using static ultra-high pressure technology has the disadvantage that the required equipment is large-scale and expensive, and it is difficult to operate.

本発明は後者の動的超高圧力、つまり、衝撃圧縮を用い
ることにより、機械加工可能な強さをもつ高密度な成形
体を得ようとするものである。
The present invention attempts to obtain a high-density molded body having a strength that allows machining by using the latter dynamic ultra-high pressure, that is, impact compression.

衝撃圧縮により粉末を緻密化と同時に焼結させることも
可能であるが、このためには、高い圧力と温度が必要で
あり、そのような条件で衝撃圧縮すると、得られた焼結
体に多数の割れが発生してしまう。
It is also possible to densify and sinter the powder at the same time by impact compression, but this requires high pressure and temperature, and if impact compression is performed under such conditions, the resulting sintered body will contain many particles. Cracks will occur.

しかし、焼結まで達せず単に粉末の緻密化のみを起こす
圧力レベルであれば、割れは発生しにくいことが経験的
に知られている。
However, it is known from experience that cracks are less likely to occur if the pressure level is such that the powder merely becomes densified without reaching sintering.

この発明はそのような傾向を有利に利用しようとするも
のである。
This invention attempts to take advantage of such a tendency.

衝撃圧縮の特徴の1つは、1O−6秒という極めて短時
間であるが、数GPa〜数十GPaという高い圧力を発
生できる点にある。
One of the characteristics of impact compression is that it can generate a high pressure of several GPa to several tens of GPa, although it takes an extremely short time of 10-6 seconds.

このような高い圧力下では、金属材料は、超塑性状態を
示し、高速の物質移動をともなった緻密化が起きる。
Under such high pressures, metallic materials exhibit a superplastic state and densification occurs with high-speed mass transfer.

本発明に係る出発原料の混合粉末には50体積%以上そ
のような金属成分が含有されており、衝撃圧縮により相
対密度90%以上までの緻密化が可能となる。
The mixed powder of the starting raw material according to the present invention contains 50% by volume or more of such metal components, and can be densified to a relative density of 90% or more by impact compression.

この金属成分により成形体全体の緻密化が促進され、機
械加工可能な強さをもつ高密度な成形体が得られるもの
と考えられる。
It is believed that this metal component promotes the densification of the entire molded body, resulting in a high-density molded body that is strong enough to be machined.

また、この緻密化の際の金属成分同志の変形による絡み
合いは得られる成形体の強度を向上させる重要な役割を
果たすものである。
Further, the entanglement of the metal components due to deformation during this densification plays an important role in improving the strength of the obtained molded product.

本発明に係るセラミック焼結体の製造方法では、その出
発原料となる混合粉末は、自己発熱反応により炭化物、
ほう化物等を生成することのできる粉末よりなるが、こ
こでの反応熱が大きすぎ、液相の生成量が多くなりすぎ
る場合や高温すぎて粒子の成長が著しすぎる場合には混
合粉末の成形性を害さない程度まで、化合物としてのセ
ラミック粉末を添加して用いることもできる。
In the method for producing a ceramic sintered body according to the present invention, the mixed powder serving as the starting material undergoes a self-heating reaction to produce carbides,
It is made of powder that can produce borides, etc., but if the reaction heat here is too large and the amount of liquid phase produced is too large, or if the temperature is too high and the particle growth is too significant, the mixed powder Ceramic powder as a compound can also be added to an extent that does not impair moldability.

[作用1 効果と共に説明する。[Effect 1 Explain along with the effects.

[発明の実施例] 実施例について図面を参照して説明する。[Embodiments of the invention] Examples will be described with reference to the drawings.

衝撃圧縮により高密度な成形体を得る方法には爆薬を使
う方法と高圧ガスによって発射した高速飛翔体を衝突さ
せる方法がある。
There are two ways to obtain a high-density compact by impact compression: using explosives and colliding high-speed projectiles fired with high-pressure gas.

これらのいずれの方法を利用した場合でも、試料をバラ
バラに飛散させることなく1つの塊として回収すること
が重要である。
When using any of these methods, it is important to collect the sample as a single lump without scattering the sample into pieces.

幸い、この試料回収技術は進歩してきている。Fortunately, this sample collection technology is improving.

第1図において、1はこの発明方法に利用できる平面衝
撃圧縮装置であり、下方部分2と上方部分3とから構成
されている。
In FIG. 1, reference numeral 1 denotes a planar impact compression device that can be used in the method of the present invention, and is composed of a lower portion 2 and an upper portion 3.

2Aは周期律表4a、5a、6a族金属よりなる金属群
の中の少なくとも1成分と炭素、ほう素、炭化ほう素、
窒化ほう素よりなる非金属群の中の少なくとも1成分を
均一に混合して得た混合粉末4を充填する試料室2Bを
持つ試料容器である。
2A is at least one component in the metal group consisting of group 4a, 5a, and 6a metals of the periodic table, carbon, boron, boron carbide,
This is a sample container having a sample chamber 2B filled with a mixed powder 4 obtained by uniformly mixing at least one component of the non-metal group consisting of boron nitride.

その外側に衝撃処理後の試料容器2Aの回収を容易にす
るための鉄製モーメンタム・トラップ2Cを配置し、さ
らに、その下に同じく鉄製のモーメンタム・トラップ2
Dを設置する。
A steel momentum trap 2C is arranged outside of the sample container 2A to facilitate recovery of the sample container 2A after impact treatment, and a steel momentum trap 2C is placed below it.
Install D.

なお、試料容器2Aは、底板2Alと、底板2AIに上
方から着脱自在に嵌合する断面下向きコ字状の蓋2A2
から構成されている。
The sample container 2A includes a bottom plate 2Al and a lid 2A2 having a downward U-shaped cross section and detachably fitting into the bottom plate 2AI from above.
It consists of

モーメンタム・トラップ2Cは主に試料容器の側面方向
、またモーメンタム・トラップ2Dは試料容器下方向の
各々の運動量を吸収し、結果的に衝撃処理後の試料の回
収を容易にするためのものである。
The momentum trap 2C mainly absorbs the momentum in the side direction of the sample container, and the momentum trap 2D absorbs the momentum in the downward direction of the sample container, thereby facilitating the collection of the sample after impact treatment. .

混合粉末4を構成する金属成分の粉末と非金属成分の粉
末の混合には、乾式または、湿式法を利用できるが、使
用する粉末が微細な場合、湿式法が適する。
A dry method or a wet method can be used to mix the metal component powder and the non-metal component powder that constitute the mixed powder 4, but the wet method is suitable when the powder used is fine.

湿式法を用いた場合、混合後、乾燥、真空脱ガス処理し
、混合粉末4を得る。
When a wet method is used, after mixing, drying and vacuum degassing are performed to obtain mixed powder 4.

ここで、金属成分の粉末として、取扱上の安全を考慮す
ると金属成分の水素化物が利用でき、この状態で混合操
作を行ない、次の脱ガス処理の過程で脱水素し、金属成
分として混合する方法を取ることもできる。
Here, a hydride of the metal component can be used as the powder of the metal component, considering handling safety, and the mixing operation is performed in this state, dehydrogenated in the next degassing process, and mixed as the metal component. You can also take a method.

この水素化物を用いる方法では、その粉砕が容易であり
、微粒の金属粉末を利用したい場合には特に効果的であ
る。
This method using a hydride is easy to crush, and is particularly effective when using fine metal powder.

この混合粉末の試料容器2Aへの充填では、できるだけ
高密度に充填することが望ましく、相対密度40%以上
が好ましい。
When filling the sample container 2A with this mixed powder, it is desirable to fill it as densely as possible, and a relative density of 40% or more is preferable.

また、試料容器2Aの材質は、対象材料の成形に必要な
衝撃処理条件により、広範囲の材料を選択できるが、コ
ストの面からは鉄、銅、真ちゅうやステンレス等が適当
である。
Further, the material for the sample container 2A can be selected from a wide range of materials depending on the impact treatment conditions necessary for molding the target material, but from the viewpoint of cost, iron, copper, brass, stainless steel, etc. are suitable.

第1図の上方部分3は、この装置の爆薬構成部分である
が、円維状の爆薬レンズ3Aは雷管3Bによりその頂点
で点火され、爆薬レンズ3Aでの燃焼は平面的に下方に
伝播されるようになっている。
The upper part 3 in FIG. 1 is the explosive component of this device. A circular explosive lens 3A is ignited at its apex by a detonator 3B, and the combustion in the explosive lens 3A is propagated downward in a plane. It has become so.

さらに、その平面的燃焼がその下の爆薬3Cに伝播され
、爆薬に平面燃焼を起こし下へ伝播し、この燃焼で発生
した爆轟衝撃圧力により下の金属板である飛翔板3Dが
高速に加速され、下の試料容器2Aに衝突する。
Furthermore, the planar combustion is propagated to the explosive 3C below, causing planar combustion in the explosive and propagating downward, and due to the detonation impact pressure generated by this combustion, the flying plate 3D, which is the metal plate below, accelerates at high speed. and collides with the sample container 2A below.

この衝突により試料容器に平面衝撃波が発生し、これが
さらに混合粉末4に伝播され、混合粉末は衝撃圧縮され
、形成される。
This collision generates a plane shock wave in the sample container, which is further propagated to the mixed powder 4, and the mixed powder is impact-compressed and formed.

衝撃波の通過により混合粉末の部分で発生する圧力、温
度は、主に使用爆薬量と混合粉末の充填率で制御するこ
とができ、また、持続時間は第1図のような飛翔板を用
いた場合、その厚みにより変えることができる。
The pressure and temperature generated in the mixed powder area by the passage of the shock wave can be controlled mainly by the amount of explosive used and the filling rate of the mixed powder, and the duration can be controlled by using a flying plate as shown in Figure 1. It can be changed depending on the thickness.

3■の鉄板を2Km/s程度で試料容器に衝突させた場
合の圧力持続時間は約1.5 X 10−’秒であり、
極めて短い。
When a 3cm iron plate collides with a sample container at approximately 2 km/s, the pressure duration is approximately 1.5 x 10-' seconds,
Extremely short.

また、第1図のような方法では試料部分に〜1500℃
までの温度と同時に50GPaまでの圧力を比較的容易
に発生できる。
In addition, in the method shown in Figure 1, the sample area is heated to ~1500℃.
Temperatures up to 50 GPa and pressures up to 50 GPa can be generated relatively easily.

第2図はこの発明の方法に利用できる円筒衝撃圧縮装置
5の1実施例を示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing one embodiment of a cylindrical impact compression device 5 that can be used in the method of the present invention.

6は爆薬容器であり、外円筒6Aと、この外円筒の上下
に配置された上方板6Bと下方板6Cとから構成されて
いる。
Reference numeral 6 denotes an explosive container, which is composed of an outer cylinder 6A, and an upper plate 6B and a lower plate 6C arranged above and below the outer cylinder.

7は爆薬容器6と同軸的にその中心に位置した円筒状試
料容器であり、その上下には上下のプラグ?A、7Bが
設けられている。
7 is a cylindrical sample container coaxially located at the center of the explosive container 6, with upper and lower plugs above and below it. A and 7B are provided.

4は円筒状試料容器7の内に充填された混合粉末である
4 is a mixed powder filled in a cylindrical sample container 7.

この図では円筒状試料容器7に接して爆薬3Cが配置さ
れ雷管3Bで爆薬3Cが起爆される状態を示している。
This figure shows a state in which an explosive 3C is placed in contact with a cylindrical sample container 7 and is detonated by a detonator 3B.

その爆轟波が下方向へ伝播し、それに伴う爆轟衝撃波に
より、まず、その内側の円筒状試料容器7が軸方向へ衝
撃圧縮され、次にその内側の混合粉末4が同様にして衝
撃圧縮される。混合粉末4の部分に発生する圧力は使用
する爆薬の種類と量により調節できる。
The detonation wave propagates downward, and the accompanying detonation shock wave first shock-compresses the cylindrical sample container 7 inside the sample container 7 in the axial direction, and then the mixed powder 4 inside the same. be done. The pressure generated in the mixed powder 4 portion can be adjusted by the type and amount of explosive used.

ここで円筒状試料容器7及び爆薬容器6の外円筒6Aの
材質としては、金属、紙、木、プラスチックを利用でき
る。
Here, as the material of the outer cylinder 6A of the cylindrical sample container 7 and the explosive container 6, metal, paper, wood, and plastic can be used.

また、円筒状試料容器7の上方に位置する円錐状のプラ
グ7Aは金属や木で作ることができ、この部分は雷管3
Bで起爆され、爆薬3Cの中を球面状に広がる爆轟波が
円筒状試料容器7に達する前にこの球面状に広がる爆轟
波を平面状の爆轟波に整える役目をするものであり、均
一に試料を衝撃圧縮するためには欠かせないものである
Further, the conical plug 7A located above the cylindrical sample container 7 can be made of metal or wood, and this part is connected to the detonator 3.
It serves to shape the spherical detonation wave that is detonated by B and spreads in a spherical shape inside the explosive 3C into a flat detonation wave before it reaches the cylindrical sample container 7. , is essential for uniform impact compression of the sample.

本発明に係る方法では、IMPa以上の圧力下で成形体
の発熱反応を開始、進行させて焼結するが、はじめの成
形体中の空隙が多すぎると、この過程での緻密化が難し
くなる。
In the method according to the present invention, an exothermic reaction of the compact is started and progressed under a pressure of IMPa or higher to sinter the compact. However, if there are too many voids in the initial compact, densification during this process becomes difficult. .

また、本発明に係る方法では焼結前に成形体を必要形状
に機械加工するが、その目的のためには少なくとも成形
体の相対密度は90%以上必要であった。
Furthermore, in the method according to the present invention, the molded body is machined into the required shape before sintering, and for that purpose, the relative density of the molded body must be at least 90% or more.

混合粉末中の金属成分と非金属成分の配合割合にもよる
が、相対密度90%以下の成形体では、上記焼結過程で
の緻密化が充分でなく1強度の高い焼結体を得ることは
難しかった。
Although it depends on the blending ratio of metal components and non-metal components in the mixed powder, if the compact has a relative density of 90% or less, the densification in the sintering process described above will not be sufficient and a sintered compact with high strength will not be obtained. was difficult.

また、そのような成形体の強度は充分高くなく、切削や
切断といった機械加工には耐え難いものであった。
In addition, the strength of such molded bodies was not sufficiently high and could not withstand machining such as cutting or cutting.

混合粉末を相対密度90%まで緻密化するのに必要な衝
撃圧力は、混合粉末中の金属成分の性質と含有量に依存
し、最適条件を探すことが必要である。
The impact pressure required to densify the mixed powder to a relative density of 90% depends on the nature and content of the metal component in the mixed powder, and it is necessary to find the optimal conditions.

衝撃圧力をある程度以上あげられない場合や、より強度
の高い成形体を得たい場合には、混合粉末の成形を助け
る目的で、得られる焼結体の強度を害しない程度の金属
成分を余分に添加して用いることもできる。
If it is not possible to increase the impact pressure above a certain level, or if you want to obtain a molded product with higher strength, add an extra metal component to the extent that does not impair the strength of the resulting sintered product, in order to aid the molding of the mixed powder. It can also be used by adding it.

この際、反応に関係する金属成分のみでなく反応に関与
しない金属成分も用いることができる。
At this time, not only metal components involved in the reaction but also metal components not involved in the reaction can be used.

衝撃圧力の程度が適当な範囲にある場合、相対密度が9
0%以上で割れのない均一な成形体を得ることができる
When the degree of impact pressure is in a suitable range, the relative density is 9
At 0% or more, a uniform molded product without cracks can be obtained.

しかし、処理圧力が、各材料の組み合せで決まる限界の
圧力を越えると金属成分粒子間の焼き付き、つまり焼結
による粒間結合が生じるようになり、得られる成形体中
に大小の割れが発生し、好ましくない。
However, if the processing pressure exceeds the limit pressure determined by the combination of materials, seizure between metal component particles, or intergranular bonding due to sintering, will occur, resulting in small and large cracks in the resulting compact. , undesirable.

また、反応が起きる程度まで圧力が高くなると、成形体
中に割れや気孔が多数発生するようになる。
Furthermore, if the pressure increases to the extent that a reaction occurs, many cracks and pores will occur in the molded product.

従って、この発明の方法に用いる衝撃圧力の範囲は、衝
撃処理中に焼結が生じないか、生じても粒の成長が生じ
ない程度の中庸な圧力程度に限定されるものである。
Therefore, the range of impact pressure used in the method of this invention is limited to a moderate pressure that does not cause sintering during the impact treatment, or even if it does, does not cause grain growth.

一方、圧力が低すぎると混合粉末は相対密度90%以上
まで緻密化できず、前述のように、得られる成形体の強
度も低くなり、機械加工できないばかりでなく、焼結に
よっても緻密化が進行せず、結果的に安価で高強度なセ
ラミック焼結体を得ることができない。
On the other hand, if the pressure is too low, the mixed powder will not be able to be densified to a relative density of 90% or more, and as mentioned above, the strength of the resulting compact will be low, and not only will it not be possible to machine it, but it will also not be possible to densify it by sintering. As a result, an inexpensive and high-strength ceramic sintered body cannot be obtained.

以下実施例によりこの発明を更に詳しく説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1 平均粒径1ousのタンタル(Tal粉末と325メツ
シユ以下の炭化ほう素(B、C]粉末をモル比で3:l
となるように、調合し、n−ヘキサンを加えてボールミ
ル混合した。
Example 1 Tantalum (Tal powder with an average particle size of 1 ous and boron carbide (B, C) powder of 325 mesh or less in a molar ratio of 3:1)
N-hexane was added and mixed in a ball mill.

このボールミル混合した粉末を乾燥後、600℃で真空
脱ガス処理し、この実施例の混合粉末を得た。この混合
粉末を第1図に示した平面衝撃圧縮装置を用いて衝撃処
理した。
After drying this ball mill mixed powder, it was vacuum degassed at 600°C to obtain the mixed powder of this example. This mixed powder was subjected to impact treatment using a planar impact compression device shown in FIG.

ここでは混合粉末を第1区の試料室2Bに相対密度的5
5%となるように充填した。
Here, the mixed powder is placed in the sample chamber 2B of the first section at a relative density of 5.
It was filled to a concentration of 5%.

試料室2Bの材料として鉄を用い、その試料室2Bの大
きさは径25mm、高さ10mmであった。
Iron was used as the material for the sample chamber 2B, and the size of the sample chamber 2B was 25 mm in diameter and 10 mm in height.

爆薬3Cとして爆速7.2kffi/sのシュボン社製
のデータシートを使用し、飛翔板として厚さ3.2mm
の鉄板を使用した。
A data sheet made by Shubon with a detonation speed of 7.2 kffi/s was used as the explosive 3C, and a thickness of 3.2 mm was used as the flying plate.
An iron plate was used.

ここでは第1表に示した飛翔板速度03〜2.5に+I
/sでの成形試験を実施した。
Here, +I is added to the flight plate speed 03 to 2.5 shown in Table 1.
A molding test was conducted at /s.

衝撃処理後、試料容器を回収し、試料外側の鉄部分を切
削により取り除き、試料を取り出した後、その上下面を
研磨紙で軽く研磨した後、外観を観察した。
After the impact treatment, the sample container was recovered, the iron part on the outside of the sample was removed by cutting, the sample was taken out, and its upper and lower surfaces were lightly polished with abrasive paper, and its appearance was observed.

次に、それらの回収成形体につき、水を用いたアルキメ
デス法によりかさ密度を測定し、成形体の相対密度を算
出した。各成形体の切削加工試験はバイトとしてダイヤ
モンド焼結体を用い、周速的35m/minで加工し、
そのときの割れ発生やチッピング発生具合から切削加工
の可、不可を判定した。
Next, the bulk density of these recovered molded bodies was measured by the Archimedes method using water, and the relative density of the molded bodies was calculated. The cutting test for each compact was performed using a diamond sintered body as a cutting tool at a circumferential speed of 35 m/min.
At that time, it was determined whether cutting was possible or not based on the degree of cracking and chipping.

なお、飛翔板速度2.5km/sで得た試料は、X線回
折の結果、この時点ですでに発熱反応が半分程度進行し
、半焼結の状態となっており、多くの層状割れを起こし
ていた。このため切削加工も不可能であった。
In addition, as a result of X-ray diffraction, the sample obtained at a flying plate speed of 2.5 km/s shows that at this point, the exothermic reaction has already progressed by about half, and it is in a semi-sintered state, with many lamellar cracks. was. For this reason, cutting work was also impossible.

次に、5MPaのアルゴン加圧雰囲気の下で各成形体を
平板状のジルコニア焼結体の上に置き、その一端を着火
治具(タングステン線)に通電することにより加熱、着
火し、反応を開始させた。
Next, each molded body is placed on a flat zirconia sintered body under an argon pressurized atmosphere of 5 MPa, and one end of the molded body is heated and ignited by applying electricity to an ignition jig (tungsten wire) to cause a reaction. I started it.

反応は数秒で終了した。The reaction was completed in a few seconds.

冷却後焼結体の相対密度を測定し、さらにその一端をダ
イヤモンド回転砥石で、研磨仕上げした後、鏡面仕上げ
し、ビッカース圧痕法により、荷重20kgを用いて破
壊靭性値(以下Kic値)を測定した。
After cooling, the relative density of the sintered body was measured, and one end of the sintered body was polished with a diamond rotary grindstone, then mirror-finished, and the fracture toughness value (hereinafter referred to as Kic value) was measured by the Vickers indentation method using a load of 20 kg. did.

次に、同様にその鏡面仕上げした試料を用いて、室温下
で荷重100gを用いてビッカース微小硬度を測定した
。各飛翔板速度で得た試料についての結果を第1表にま
とめて示した。
Next, using the same mirror-finished sample, the Vickers microhardness was measured at room temperature using a load of 100 g. The results for the samples obtained at each flying plate speed are summarized in Table 1.

第  1  表 混合粉末:タンタル3モル+炭化ほう素2モル、 焼結: 5MPaアルゴン雰囲気 △ 外周部の小さい割れや欠け × 割れや気孔発生 飛翔板速度0.3km/sでは、回収焼結体の外観は割
れの発生もなく良好であったが、成形体密度は低く、切
削加工できる強度まで達していなかった。
Table 1 Mixed powder: 3 moles of tantalum + 2 moles of boron carbide, Sintering: 5 MPa argon atmosphere △ Small cracks and chips on the outer periphery Although the appearance was good with no cracks, the density of the compact was low and did not have enough strength to allow cutting.

この成形体では、タングステン線による加熱で反応は着
火開始できたが、得られた焼結体の相対密度は89%と
低かった。
In this molded body, the reaction could be started by heating with a tungsten wire, but the relative density of the obtained sintered body was as low as 89%.

飛翔板速度0.7〜1.9km/sの範囲で得られた成
形体は、第1表に示したように外観上の割れ等の欠陥も
なく、また、成形体相対密度は90%以上に達しており
、切削加工も可能であった。
As shown in Table 1, the molded bodies obtained at flying plate speeds in the range of 0.7 to 1.9 km/s had no defects such as cracks in appearance, and the relative density of the molded bodies was 90% or more. , and cutting processing was also possible.

これら試料の焼結体は相対密度96%以上に達し、Ki
c値も約3.8MPaJm以上であり、充分高い靭性を
もつものであることが分かった。また、これらの焼結体
の微小硬度は、2470−2850kg/1m”であっ
た。
The sintered bodies of these samples reached a relative density of 96% or more, and Ki
The c value was also about 3.8 MPaJm or more, indicating that it had sufficiently high toughness. Further, the microhardness of these sintered bodies was 2470-2850 kg/1 m''.

X線回折の結果、得た焼結体の主な構成相はTaBm、
TaCであり、未反応のTaやB、Cの回折綿は認めら
れなかった。
As a result of X-ray diffraction, the main constituent phases of the obtained sintered body were TaBm,
It was TaC, and no unreacted Ta, B, or C diffraction particles were observed.

また、比較のため飛翔板速度1 、3km/sで得た成
形体を0.5MPaのアルゴン雰囲気下で上記方法と同
様に加熱し、反応を開始させ、焼結体を得たが、相対密
度は80%であり、成形体のときより低下した。
For comparison, a molded body obtained at a flying plate speed of 1 and 3 km/s was heated in the same manner as above in an argon atmosphere of 0.5 MPa to initiate a reaction, and a sintered body was obtained, but the relative density was 80%, which was lower than that of the molded body.

また、もう一つの比較として、平均粒径10LLmのT
aB1とTaC扮末を用いてこれを2:lのモル比に混
合し、この混合粉末を飛翔板速度1.3km/sで衝撃
圧縮した。
Also, as another comparison, T with an average particle size of 10LLm
aB1 and TaC powder were mixed at a molar ratio of 2:1, and the mixed powder was impact compressed at a flying plate speed of 1.3 km/s.

得られた成形体は回収時に数個の小片に割れ、その小片
の一つで測定した相対密度は88%と低いものであった
The obtained compact was broken into several small pieces upon recovery, and the relative density measured in one of the small pieces was as low as 88%.

実施例2 平均粒径15LLmのバナジウムfVl粉末と粒径0.
6amの非晶質炭素(C)粉末をモル比で2:1となる
よう調合、混合した後、600℃で真空脱ガス処理し、
この実施例の混合粉末を得た。
Example 2 Vanadium fVl powder with an average particle size of 15 LLm and a particle size of 0.
After preparing and mixing 6 am amorphous carbon (C) powder at a molar ratio of 2:1, vacuum degassing treatment was performed at 600 ° C.
A mixed powder of this example was obtained.

この混合粉末を実施例1と同様の装置を用いて飛翔板速
度 02〜2.0km/sで衝撃処理した。
This mixed powder was subjected to impact treatment using the same apparatus as in Example 1 at a flying plate speed of 02 to 2.0 km/s.

なお、ここでは混合粉末の初期充填密度が60%となる
ようにして実施した。
In this case, the initial packing density of the mixed powder was 60%.

衝撃処理後の試料は実施例1と同様の方法で回収し、実
施例1と同様の手順で評価した。
The sample after the impact treatment was collected in the same manner as in Example 1, and evaluated in the same manner as in Example 1.

各条件で得られた結果を第2表に示す。Table 2 shows the results obtained under each condition.

飛翔板速度2.0km/sの試料は、X線回折の結果、
すでに発熱反応が起きて、炭化バナジウムが生成されて
おり、気孔の多い組織を呈し、また、大小の割れが発生
していた。
As a result of X-ray diffraction, for the sample with a flying plate speed of 2.0 km/s,
An exothermic reaction had already occurred, producing vanadium carbide, creating a porous structure and cracks of various sizes.

一方、0.2km/sで得た試料は、外見上問題はなか
ったが、強度不足であった。
On the other hand, the sample obtained at 0.2 km/s had no problems in appearance but lacked strength.

一方、0.2〜1.5に+a/sで得られた成形体を黒
鉛治具の上に載せ、圧力容器に入れた後、窒素ガスによ
り7MPaまで加圧し、実施例1と同様の方法により試
料を加熱し、反応を着火、開始させた。
On the other hand, the molded body obtained at +a/s of 0.2 to 1.5 was placed on a graphite jig, placed in a pressure vessel, and then pressurized to 7 MPa with nitrogen gas, using the same method as in Example 1. The sample was heated to ignite and start the reaction.

得られた焼結体について、実施例1と同様の手順で評価
し、その結果を第2表にまとめて示した。
The obtained sintered body was evaluated in the same manner as in Example 1, and the results are summarized in Table 2.

X Ii!回折の結果、得られた焼結体はいずれもVC
lVNよりなり、僅かにV fcNlの生成も認められ
た。焼結体は0.2に+++/sで得られたものを除い
て、全て相対密度981以上に達し、破壊靭性、微小硬
度も充分高い値が得られた。
X Ii! As a result of diffraction, the obtained sintered bodies were all VC
1VN, and slight generation of V fcNl was also observed. All of the sintered bodies reached a relative density of 981 or higher, with the exception of the one obtained at 0.2 +++/s, and sufficiently high values of fracture toughness and microhardness were obtained.

第  2  表 混合粉末:バナジウム2モル+炭素1モル焼結: 7M
F’a窒素雰囲気 *O △ × 欠け、割れなし 外周部の小さい欠けや割れ 割れや気孔発生 実施例3 平均粒径10um以下のモリブデン(Mat粉末、同じ
く平均粒径10μ■以下のハフニウムfHfl粉末、平
均粒径 1μm以下の非晶質ほう素(Bl粉末、平均粒
径 0.6LLm以下の炭素(C)粉末を各々モル比で
2:1:4:2となるように調合し、トルエンを用いて
温式混合し、この実施例の混合粉末とした。
Table 2 Mixed powder: 2 moles of vanadium + 1 mole of carbon Sintered: 7M
F'a nitrogen atmosphere *O △ × No chips or cracks Small chips or cracks on the outer periphery Cracks or pores Occurrence Example 3 Molybdenum (Mat powder with an average particle size of 10 μm or less, hafnium fHfl powder with an average particle size of 10 μm or less, Amorphous boron (Bl powder with an average particle size of 1 μm or less and carbon (C) powder with an average particle size of 0.6 LLm or less were mixed in a molar ratio of 2:1:4:2, respectively, and using toluene. The mixture was warmly mixed to obtain the mixed powder of this example.

この混合粉末を実施例1と同様の装置を用いて、飛翔板
速度0.3〜2.4に+n/sで衝撃処理した。
This mixed powder was subjected to impact treatment using the same apparatus as in Example 1 at a flying plate speed of 0.3 to 2.4 +n/s.

なお、ここでは混合粉末の初期充填密度が60%となる
ようにして実施した。
In this case, the initial packing density of the mixed powder was 60%.

各試料は実施例1と同様の方法により回収し、実施例1
と同様の手順でそれらの成形体を評価した。
Each sample was collected by the same method as in Example 1, and
The molded bodies were evaluated in the same manner as described above.

各条件で得られた結果を第3表に示す。Table 3 shows the results obtained under each condition.

飛翔板速度2.4km/sで得た成形体ではすでに反応
が進行しており、気孔の発生と共にクラックの発生も認
められた。
In the molded product obtained at a flying plate speed of 2.4 km/s, the reaction had already progressed, and cracks were observed as well as pores.

一方、0.3km/sで得た成形体では密度も低く、充
分な強度に達していなかった。
On the other hand, the compact obtained at 0.3 km/s had a low density and did not have sufficient strength.

次に、0.3〜1.8km/sで得られた試料を実施例
1と同様な方法で加熱着火し、反応を開始させ焼結体を
得た。
Next, the sample obtained at 0.3 to 1.8 km/s was heated and ignited in the same manner as in Example 1 to initiate a reaction and obtain a sintered body.

得られた焼結体についての試験結果を第3表にまとめて
示した。
The test results for the obtained sintered bodies are summarized in Table 3.

0、3km/sで得た試料を除いて、他のものは高い相
対密度と優れた物性を示すものであった。
Except for the sample obtained at 0.3 km/s, the others exhibited high relative density and excellent physical properties.

なお、それらの焼結体の主な構成相はx1種回折の結果
、lJo*c、 HfC,MoB、 1(fBiであり
、僅かにfMo、 Hfl ClfMo、 Hfl B
の生成も認められた。
As a result of x1 type diffraction, the main constituent phases of these sintered bodies are lJo*c, HfC, MoB, 1(fBi, and slightly fMo, Hfl ClfMo, Hfl B
The formation of was also observed.

第  3 表 焼結: 5MPaアルゴン雰囲気 *O △ × 欠け、割れなし 外周部の小さい欠けや割れ 割れや気孔発生 実施例4 325メツシユ以下の粒径の水素化チタン(TiHz)
粉末をボールミル粉砕して得た粒径1uI1種以下のT
iHm粉末と平均粒径 1μm以下の窒化ほう素fBN
)粉末を各々モル比で3.2+2となるようにn−ヘキ
サンを用いてボールミル混合した。
Table 3 Sintering: 5 MPa argon atmosphere *O △ × No chips or cracks Small chips or cracks on the outer periphery Cracks or pores generated Example 4 Titanium hydride (TiHz) with a particle size of 325 mesh or less
T with a particle size of 1 uI or less obtained by ball milling the powder
iHm powder and boron nitride fBN with an average particle size of 1 μm or less
) The powders were mixed in a ball mill using n-hexane so that the molar ratio was 3.2+2.

その混合粉末を乾燥した後、600℃で真空下で加熱し
、TiHsをTi金属に還元することによりTiとON
の混合粉末を得た。
After drying the mixed powder, it was heated at 600°C under vacuum to reduce TiHs to Ti metal, thereby converting Ti and ON.
A mixed powder was obtained.

この混合粉末を第2図に示した円筒衝撃圧縮装置を用い
て衝撃処理した。
This mixed powder was subjected to impact treatment using a cylindrical impact compression device shown in FIG.

ここでは円筒状試料容器7として、内径301、外径3
5a+mの真ちゅう製バイブを用い、試料部分の長さは
100m+l+とした。
Here, the cylindrical sample container 7 has an inner diameter of 301 and an outer diameter of 3.
A 5a+m brass vibrator was used, and the length of the sample section was 100m+l+.

また、爆薬としてアンホ爆薬を使用し、その厚みを5〜
60mmとして成形試験を実施した。
In addition, an anho explosive is used as an explosive, and its thickness is 5~
A molding test was conducted with the length set at 60 mm.

衝撃処理後、試料を回収し、外観観察後、その軸方向の
中央部分より厚さ5mmの円板状試料を切り出し、密度
を測定した。
After the impact treatment, the sample was collected, and after observing its appearance, a disk-shaped sample with a thickness of 5 mm was cut out from the center in the axial direction, and the density was measured.

また、切削加工試験は、実施例1と同じ(ダイヤモンド
工具を用いて成形体の一端を切削してみて、加工の可、
不可を判断した。この結果は第4表に示すようであり、
爆薬厚み5− では、まだ緻密化が充分でなく、強度の
低いものであった。
The cutting test was the same as in Example 1 (one end of the molded body was cut using a diamond tool,
It was decided that it was not possible. The results are shown in Table 4,
When the explosive thickness was 5-, the densification was not sufficient and the strength was low.

一方、爆薬厚み60mmでは、すでに反応がほぼ完全に
進んでおり、試料に割れや気孔が多数発生しており、相
対密度は82%と低いものであった。
On the other hand, when the explosive thickness was 60 mm, the reaction had already progressed almost completely, many cracks and pores were generated in the sample, and the relative density was as low as 82%.

爆薬厚みlO〜40ff1mで得た成形体の相対密度は
90%以上に達し、切削加工は可能であった。
The relative density of the molded body obtained with an explosive thickness of lO~40ff1m reached 90% or more, and cutting was possible.

これらの成形体について円板状に切り出した試料を3M
Paのアルゴンガス中1000℃に1時間加熱し、反応
を着火、開始させ、焼結体を得た。得られた焼結体の主
な構成相は、X線回折の結果、TiNとTiBsであり
、未反応のTiは認められなかった。
A disk-shaped sample of these molded bodies was cut out using 3M
The mixture was heated to 1000° C. for 1 hour in argon gas of Pa to ignite and start the reaction, and a sintered body was obtained. As a result of X-ray diffraction, the main constituent phases of the obtained sintered body were TiN and TiBs, and no unreacted Ti was observed.

各焼結体についての評価結果を第4表にまとめて示す、
爆薬厚みlO〜40n+mで得られた試料では、相対密
度も高く、破壊靭性、硬度とも充分高い値を示した。
The evaluation results for each sintered body are summarized in Table 4.
Samples obtained with explosive thicknesses of 1O to 40n+m had high relative densities and exhibited sufficiently high values for both fracture toughness and hardness.

第  4  表 混合粉末:水素化チタンfTiH*)3.2化ほう素I
BN12モル 焼結: 3MPaアルゴン雰囲気 モル+窒 *O欠け、割れなし △ 外周部の小さい欠けや割れ × 割れや気孔発生 [発明の効果] 以上のように本発明の方法によれば、衝撃圧縮により、
高強度セラミック焼結体を得る出発原料となる混合粉末
を相対密度90%以上まで比較的容易に緻密化でき、機
械加工可能な程度の強さを持つ成形体を得ることができ
る。
Table 4 Mixed powder: Titanium hydride fTiH*) 3.Boron 2ide I
Sintering with 12 moles of BN: 3 MPa argon atmosphere moles + nitrogen*O No chips or cracks △ Small chips or cracks on the outer periphery × Cracks or pores generated [Effects of the invention] As described above, according to the method of the present invention, impact compression ,
A mixed powder serving as a starting material for obtaining a high-strength ceramic sintered body can be relatively easily densified to a relative density of 90% or more, and a molded body having a strength that can be machined can be obtained.

本発明の方法においては、出発原料となる混合粉末は、
自己発熱反応により炭化物、ほう化物などを生成するこ
とのできる粉末よりなり、上記衝撃処理で得られた高密
度成形体の焼結には、その一端を加熱することにより、
反応を着火、開始させるのみで、高温強度の優れた炭化
物やほう化物などよりなる高強度セラミック焼結体を得
ることができる。
In the method of the present invention, the mixed powder serving as the starting material is
The high-density compact obtained by the above-mentioned impact treatment is sintered by heating one end of the powder, which is made of powder that can generate carbides, borides, etc. through a self-heating reaction.
A high-strength ceramic sintered body made of carbides, borides, etc. with excellent high-temperature strength can be obtained by simply igniting and starting the reaction.

また、本発明による高強度セラミック焼結体の製造方法
では、高密度成形体の焼結段階での収縮が少ないため、
焼結後の加工コストを大幅に削減できるものである。
In addition, in the method for producing a high-strength ceramic sintered body according to the present invention, the shrinkage of the high-density compact during the sintering stage is small;
This can significantly reduce processing costs after sintering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の高強度セラミック焼結体の製造方法
に適用できる平面衝撃圧 縮装置の実施例を示す縦断面図、 第2図はこの発明の高強度セラミック焼結体1 。 2 。 2A。 B 2C。 3A。 3B。 3C。 3D。 4 。 5 。 6A。 6B。  C 7。 の製造方法に適用できる円筒衝撃圧 縮装置の実施例を示す縦断面図であ る。 平面衝撃圧縮装置、 下方部分、 試料容器、 試料室、 2D、、、モーメンタム・トラップ1 、上方部分、 爆薬レンズ、 雷管1 、爆薬、 飛翔板、 混合粉末、 円筒衝撃圧縮装置1 、爆薬容器、 外円筒、 上方板、 下方板、 円筒状試料容器、 7A、  7B。 プラグ。
FIG. 1 is a longitudinal cross-sectional view showing an embodiment of a planar impact compression device that can be applied to the method for producing a high-strength ceramic sintered body of the present invention, and FIG. 2 is a high-strength ceramic sintered body 1 of the present invention. 2. 2A. B2C. 3A. 3B. 3C. 3D. 4. 5. 6A. 6B. C7. FIG. 2 is a longitudinal cross-sectional view showing an example of a cylindrical impact compression device that can be applied to the manufacturing method of FIG. Planar impact compression device, lower part, sample container, sample chamber, 2D, momentum trap 1, upper part, explosive lens, detonator 1, explosive, flight plate, mixed powder, cylindrical impact compression device 1, explosive container, outside Cylinder, upper plate, lower plate, cylindrical sample container, 7A, 7B. plug.

Claims (1)

【特許請求の範囲】  周期律表4a,5a,6a族金属の炭化 物、窒化物、ほう化物及びこれらの固溶体よりなるセラ
ミック焼結体を製造する方法において、周期律表4a,
5a,6a族金属からなる金属群の中の少なくとも1種
と炭素、ほう素、炭化ほう素、窒化ほう素よりなる非金
属群の中の少なくとも1種とを混合し、この混合粉末を
成形型に充填し、衝撃圧縮することにより相対密度90
%以上(空隙率10%以下)の粉末成形体とした後、1
MPa以上の圧力で加圧しながら、該粉末成形体の一部
又は、全体を加熱することにより、上記金属群の中の少
なくとも1種と上記非金属群の中の少なくとも1種の間
の発熱性化学反応を着火、進行させながら粉末成形体を
焼結させることを特徴とする高強度セラミック焼結体の
製造方法。
[Scope of Claims] A method for producing a ceramic sintered body comprising carbides, nitrides, borides, and solid solutions of metals of groups 4a, 5a, and 6a of the periodic table,
At least one member of the metal group consisting of group 5a and 6a metals is mixed with at least one member of the non-metal group consisting of carbon, boron, boron carbide, and boron nitride, and the mixed powder is molded into a mold. The relative density is 90 by filling the
% or more (porosity 10% or less), after forming a powder compact, 1
By heating a part or the whole of the powder compact while pressurizing at a pressure of MPa or more, the exothermic property between at least one member of the metal group and at least one member of the non-metal group is reduced. A method for producing a high-strength ceramic sintered body, characterized by sintering a powder compact while igniting and advancing a chemical reaction.
JP1276486A 1989-10-23 1989-10-23 Production of high strength ceramic sintered compact Pending JPH03137060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1276486A JPH03137060A (en) 1989-10-23 1989-10-23 Production of high strength ceramic sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1276486A JPH03137060A (en) 1989-10-23 1989-10-23 Production of high strength ceramic sintered compact

Publications (1)

Publication Number Publication Date
JPH03137060A true JPH03137060A (en) 1991-06-11

Family

ID=17570125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1276486A Pending JPH03137060A (en) 1989-10-23 1989-10-23 Production of high strength ceramic sintered compact

Country Status (1)

Country Link
JP (1) JPH03137060A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252183A (en) * 1985-06-21 1987-03-06 ニユ− メキシコ テツク リサ−チ フアンデ−シヨン Manufacture and equipment for powder formed body
JPS62158169A (en) * 1985-12-27 1987-07-14 工業技術院長 Simultaneous synthesization and formation of high melting point inorganic compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252183A (en) * 1985-06-21 1987-03-06 ニユ− メキシコ テツク リサ−チ フアンデ−シヨン Manufacture and equipment for powder formed body
JPS62158169A (en) * 1985-12-27 1987-07-14 工業技術院長 Simultaneous synthesization and formation of high melting point inorganic compound

Similar Documents

Publication Publication Date Title
Rabinskiy et al. Fabrication of porous silicon nitride ceramics using binder jetting technology
KR100260368B1 (en) Composite material and process for producing the same
US4695321A (en) Dynamic compaction of composite materials containing diamond
JPS6252183A (en) Manufacture and equipment for powder formed body
JPH11515054A (en) Single-step synthesis and densification of ceramic-ceramic and ceramic-metal composites
EP0429665B1 (en) Method of producing sintered ceramic materials
US6613462B2 (en) Method to form dense complex shaped articles
WO2019210285A2 (en) Selective sintering-based fabrication of fully dense complex shaped parts
Thadhani Shock compression processing of powders
AU2006281014A1 (en) Resistant ceramic material and method for making same
JP7533872B2 (en) Method for manufacturing diamond-based block tool blanks
JP4809096B2 (en) TiB2-based Ti-Si-C composite ceramics and method for producing sintered body thereof
JPH03137060A (en) Production of high strength ceramic sintered compact
JPH03137061A (en) Production of high strength ceramic combined sintered compact
JPH02252660A (en) Calcined compact of hardly calcinable powder, its abrasive grain and grindstone and production thereof
JPH11322454A (en) Diamond-containing composite sintered compact and its production
Akimov Cold isostatic pressing as a method for fabricating ceramic products with high physicomechanical properties
JPH03137062A (en) Production of ceramic combined sintered compact
RU2146187C1 (en) Composite product and method for making it
JP3946896B2 (en) Method for producing diamond-silicon carbide composite sintered body
JP2835618B2 (en) Method for producing whisker reinforced ceramic sintered body
JPH0323278A (en) Whisker reinforced ceramic sintered body and production thereof
JP3255750B2 (en) Method for producing diamond-like sintered body
JPS60246270A (en) Ceramic simultaneously synthesizing and sintering process
Sawaoka Dynamic consolidation of non-oxide ceramic powders