JPH03232728A - Production of silica glass - Google Patents

Production of silica glass

Info

Publication number
JPH03232728A
JPH03232728A JP2555590A JP2555590A JPH03232728A JP H03232728 A JPH03232728 A JP H03232728A JP 2555590 A JP2555590 A JP 2555590A JP 2555590 A JP2555590 A JP 2555590A JP H03232728 A JPH03232728 A JP H03232728A
Authority
JP
Japan
Prior art keywords
gel
silica glass
dry gel
temperature
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2555590A
Other languages
Japanese (ja)
Inventor
Kenzo Susa
憲三 須佐
Fusaji Hayashi
林 房司
Koichi Takei
康一 武井
Yoichi Machii
洋一 町井
Toshikatsu Shimazaki
俊勝 嶋崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2555590A priority Critical patent/JPH03232728A/en
Publication of JPH03232728A publication Critical patent/JPH03232728A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To enable production of a large-size monolithic silica glass free from defects such as an air bubble by calcining a dry gel from one direction in order when producing the subject silica glass using sol-gel process. CONSTITUTION:A sol obtained by hydrolysis of a silicon alkoxide, its polycondensation product, etc., is gelled while keeping the sol at room temperatures-70 deg.C and the resultant gel is dried at >= room temperatures for several weeks to prepare a dry gel. The obtained dry gel is heated at <=burning temperature and >= organic component-decomposition temperature, ordinarily 400-1000 deg.C in an oxidative atmosphere in order to oxidize or heat decompose organic components in the dry gel and to remove the components. The dry gel 4 is then put in a unit 5, sent to a furnace 1 and burnt (burning temperature: 1000-1600 deg.C, preferably temperature gradient: >=100 deg.C/cm, moving speed: <=2cm/h) from one direction in order, thus obtaining the objective silica glass 3.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は光学用、半導体工業用、電子工業用、理化学用
等に使用されるシリカガラスを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing silica glass used for optical, semiconductor, electronic, physical and chemical applications, etc.

[従来の技術] シリカガラスは耐熱性、耐蝕性および光学的性質に優れ
ていることから、半導体の製造に欠かせない重要な材料
であり、さらには光ファイバやIC製造用フォトマスク
基板、TPT基板などに使用され、その用途はますます
拡大している。
[Prior art] Silica glass has excellent heat resistance, corrosion resistance, and optical properties, so it is an important material indispensable for semiconductor manufacturing, and is also used as a material for optical fibers, photomask substrates for IC manufacturing, and TPT. It is used for circuit boards, etc., and its applications are expanding more and more.

従来のシリカガラスの製造法には、天然石英を電気炉ま
たは酸水素炎により溶解する方法、あるいは四塩化ケイ
素を酸水素炎又はプラズマ炎中で高温酸化し溶解する方
法があるが、いずれの方法も製造工程に2000℃ある
いはそれ以上の高温を必要とするため大量のエネルギー
を消費し、また製造時にそのような高温に耐える材料が
必要となるほか、更に高純度のものが得にくいなど経済
的、品質的にいくつかの問題点をもっている。
Conventional methods for manufacturing silica glass include melting natural quartz in an electric furnace or oxyhydrogen flame, or oxidizing and melting silicon tetrachloride at high temperature in an oxyhydrogen flame or plasma flame. However, the manufacturing process requires high temperatures of 2000°C or higher, which consumes a large amount of energy.In addition, materials that can withstand such high temperatures are required during manufacturing, and it is difficult to obtain high-purity materials, making it economically difficult. , there are some quality problems.

これに対し、近年ゾル−ゲル法と呼ばれるシリカガラス
を低温で合成する方法が注目されている。
On the other hand, in recent years, a method of synthesizing silica glass at low temperature called the sol-gel method has been attracting attention.

その概要を簡単に述べる。The outline will be briefly described below.

一般式S i  (OR) 4  (R:アルキル基)
で表わされるシリコンアルコキシドに水(アルカリまた
は酸でpHを調整してもよい)を加え、加水分解し、シ
リカヒドロシル(本発明においてはシリカゾルという)
とする。この時、シリコンアルコキシドと水が均一な系
となる様、一般には溶媒として適当なアルコール等の有
機溶媒が添加されている。このシリカゾルを静置、昇温
、ゲル化剤の添加等によってゲル化させる。その後、ゲ
ルを乾燥することにより乾燥ゲルとする。この乾燥ゲル
を適当な雰囲気中で焼成することによりシリカガラスを
得る。
General formula S i (OR) 4 (R: alkyl group)
Add water (pH may be adjusted with alkali or acid) to silicon alkoxide represented by and hydrolyze it to form silica hydrosil (referred to as silica sol in the present invention).
shall be. At this time, an appropriate organic solvent such as alcohol is generally added as a solvent so that the silicon alkoxide and water form a uniform system. This silica sol is gelled by standing still, increasing the temperature, adding a gelling agent, etc. Thereafter, the gel is dried to obtain a dry gel. Silica glass is obtained by firing this dried gel in a suitable atmosphere.

[発明が解決しようとする課題] しかし、ゾル−ゲル法によるシリカガラスの製造にはま
だ未解決の問題が残されている。乾燥ゲルは多孔質体で
あるため焼成する過程で気泡が焼結体に封じ込められや
すく、そのため気泡等の欠陥のないモノリシックな大形
のシリカガラスをゾル−ゲル法で製造することは困難な
ことである。
[Problems to be Solved by the Invention] However, there are still unresolved problems in the production of silica glass by the sol-gel method. Since dried gel is a porous material, air bubbles are easily trapped in the sintered body during the firing process, making it difficult to produce monolithic large-sized silica glass without defects such as air bubbles using the sol-gel method. It is.

本発明はゾル−ゲル法で気泡等の欠陥のない大形のモノ
リシックなシリカガラスを製造する方法を提供するもの
である。
The present invention provides a method for producing large monolithic silica glass free of defects such as bubbles by a sol-gel method.

[課題を解決するための手段] 本発明は、シリコンアルコキシドを加水分解してシリカ
ゾルとし、これをゲル化し、乾燥して乾燥ゲルとし、次
いで焼成するシリカガラスの製造法において、乾燥ゲル
を焼成する段階で、乾燥ゲルを一方向から順次焼成する
ことを特徴とするシリカガラスの製造法に関するもので
ある。
[Means for Solving the Problems] The present invention provides a method for producing silica glass in which silicon alkoxide is hydrolyzed to form a silica sol, this is gelled, dried to form a dry gel, and then fired, in which the dry gel is fired. The present invention relates to a method for producing silica glass characterized by sequentially firing a dried gel from one direction in the steps.

本発明におけるシリコンアルコキシドは、一般式S i
  (OR) 4  (R:アルキル基)で表されるも
ののほか、その重縮合物、例えば(RO)3S i ・
(O8i  (OR) 2) n・O8i  (OR)
(n=0〜8、Rニアルキル基)も用いられる。
The silicon alkoxide in the present invention has the general formula S i
In addition to those represented by (OR) 4 (R: alkyl group), polycondensates thereof, such as (RO)3S i ・
(O8i (OR) 2) n・O8i (OR)
(n=0-8, R-nialkyl group) is also used.

シリコンアルコキシドのアルキル基は加水分解のし易さ
、ゲル化時間の点から、メチル基、エチル基、プロピル
基又はブチル基等が用いられる。
As the alkyl group of silicon alkoxide, a methyl group, ethyl group, propyl group, or butyl group is used from the viewpoint of ease of hydrolysis and gelation time.

水と共に加える溶媒は、ゲル化時間及び得られる乾燥ゲ
ルの焼結のし易さの点から酸よりも塩基の方が好ましい
As the solvent to be added together with water, a base is preferable to an acid in terms of gelation time and ease of sintering the resulting dry gel.

水と共に加えるアルコール等の有機溶媒としては、水及
びアルコキシドの両者に対する溶解性の点から、メチル
アルコール、エチルアルコール、1−プロピルアルコー
ル、2−プロピルアルコール等のアルコール類、アセト
ン、ジメチルホルムアミド等が用いられる。
As the organic solvent such as alcohol added together with water, alcohols such as methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, acetone, dimethylformamide, etc. are used from the viewpoint of solubility in both water and alkoxide. It will be done.

シリコンアルコキシド、有機溶媒及び水は生成するゲル
をできる限り均一なものとするためにスタークなどを用
いてよく混合する。また、超音波を照射してもよい。ゾ
ル調製時にシリカの微粒子又はポリ酢酸ビニル、ポリア
ルキレングリコール、ポリアルキレングリコールエーテ
ル、ヒドロキシアルキルセルロース等の有機高分子化合
物を加えてもよい。
The silicon alkoxide, organic solvent, and water are thoroughly mixed using a Stark or the like to make the resulting gel as uniform as possible. Alternatively, ultrasonic waves may be irradiated. Fine particles of silica or organic polymer compounds such as polyvinyl acetate, polyalkylene glycol, polyalkylene glycol ether, and hydroxyalkyl cellulose may be added during sol preparation.

シリカゾルを容器に移し、室温〜70℃に保ってゲル化
し、これを室温以上の温度で数週間乾燥して乾燥ゲルと
する。
The silica sol is transferred to a container, kept at room temperature to 70°C to gel, and dried at a temperature above room temperature for several weeks to form a dry gel.

このようにして得られた乾燥ゲルは次にあらかじめ焼結
温度以下でかつ乾燥ゲル中に含まれる有機質成分を分解
する温度以上に保って、乾燥ゲル中に含まれる有機質成
分、すなわち原料のシリコンアルコキシド中のアルキル
基に起因する有機質成分やポリ酢酸ビニル、ポリエチレ
ングリコール等の有機高分子化合物、有機溶媒等の有機
質成分を分解除去しておくほうが好ましい。
The dried gel obtained in this way is then kept in advance at a temperature below the sintering temperature and above a temperature at which the organic components contained in the dried gel are decomposed, so that the organic components contained in the dried gel, i.e., the raw material silicon alkoxide, are removed. It is preferable to decompose and remove organic components such as organic components resulting from alkyl groups therein, organic polymer compounds such as polyvinyl acetate and polyethylene glycol, and organic solvents.

ここで、焼結温度以下でかつ有機質成分を分解する温度
以上とは、通常は400℃〜1000℃である。その分
解処理時の雰囲気は空気又は酸素ガス等、酸化性雰囲気
がよい。この処理により、乾燥ゲル中の有機質成分は酸
化もしくは熱分解を受け、除去される。有機質成分が除
去されることにより、次の焼成過程で遊離カーボンや気
泡等の欠陥が焼結体に封じ込められる危険性は更に少な
くなる。
Here, below the sintering temperature and above the temperature at which organic components are decomposed is usually 400°C to 1000°C. The atmosphere during the decomposition treatment is preferably an oxidizing atmosphere such as air or oxygen gas. Through this treatment, organic components in the dried gel undergo oxidation or thermal decomposition and are removed. By removing the organic components, the risk that defects such as free carbon and air bubbles will be trapped in the sintered body during the next firing process is further reduced.

このようにして得られた乾燥ゲルを焼成炉に送り、乾燥
ゲルを一方向から順次焼成する。第1図はこのようなシ
リカガラスの製造方法の一例を示すもので、図中1は焼
成炉、2は加熱ヒータ、3は焼成されたシリカガラス、
4は乾燥ゲル、5は乾燥ゲルを支持する治具である。
The dried gel thus obtained is sent to a firing furnace, and the dried gel is sequentially fired from one direction. FIG. 1 shows an example of a method for manufacturing such silica glass, in which 1 is a firing furnace, 2 is a heater, 3 is fired silica glass,
4 is a dry gel, and 5 is a jig for supporting the dry gel.

ここで、乾燥ゲルを一方向から順次焼成するとは、乾燥
ゲルを焼成炉中、移動させながら、その一端から順次焼
成することをいう。このとき、乾燥ゲルを移動させるの
ではなく、加熱源を移動させてもよい。乾燥ゲル又は加
熱源を移動させる方向は、特に限定するものではないが
、通常は垂直、又は水平の方向で行えばよい。
Here, firing the dried gel sequentially from one direction means firing the dried gel sequentially from one end while moving the dried gel in the firing furnace. At this time, the heating source may be moved instead of moving the dry gel. The direction in which the dry gel or the heat source is moved is not particularly limited, but it may generally be moved vertically or horizontally.

焼成温度は、ゾル−ゲル法によるシリカガラスの製造法
に一般に使用されている焼成温度、すなわち1000〜
1600℃である。
The firing temperature is the firing temperature generally used in the production method of silica glass by the sol-gel method, that is, 1000 ~
The temperature is 1600°C.

焼成炉の中の温度分布については、焼成炉の壁と垂直な
方向の面内、すなわち乾燥ゲルの移動方向と垂直な方向
の面内では均一とするのがよく、焼成炉の壁と平行な方
向、すなわち乾燥ゲルの移動方向と平行な方向では炉内
で最高温度に加熱される加熱ヒータ中央部の点から、焼
成される乾燥ゲルの方向に沿って20℃/cm以上、好
ましくは50℃/cm以上、最も好ましくは100℃/
Cm以上の温度勾配をもたせるとよい。
Regarding the temperature distribution inside the kiln, it is best to keep it uniform in the plane perpendicular to the kiln wall, that is, in the plane perpendicular to the moving direction of the dried gel, and to make it uniform in the plane parallel to the kiln wall. 20°C/cm or more, preferably 50°C along the direction of the dried gel to be fired, from the central point of the heater heated to the highest temperature in the furnace in the direction parallel to the moving direction of the dried gel. /cm or more, most preferably 100℃/
It is preferable to provide a temperature gradient of Cm or more.

多孔質体である乾燥ゲルには多数の開気孔が含まれてお
り、焼結法により無孔化する段階では、無孔化の完了し
た焼結体領域と開気孔の残存する未焼結体領域のあいだ
に過渡領域(遷移領域)が存在しており、乾燥ゲル中の
開気孔は焼結の進行とともに閉気孔となるが、閉気孔に
封じ込められた気体は、焼結が進むにつれて遷移領域を
拡散して開気孔の残存する未焼結体領域まで移動し、閉
気孔が消滅するものと考えられる。従って、焼結時に上
記の温度勾配が大きいほど遷移領域の幅が狭くなり、換
言すれば閉気孔中の気体の拡散距離が短くなり焼結体中
に残留する気泡が無くなると考えられる。
Dry gel, which is a porous body, contains many open pores, and at the stage of making it non-porous by the sintering method, the sintered body area that has been made non-porous and the unsintered body where open pores remain. There is a transition region between these regions, and the open pores in the dry gel become closed pores as sintering progresses, but the gas trapped in the closed pores moves into the transition region as sintering progresses. It is thought that the particles diffuse and move to the region of the unsintered body where open pores remain, and the closed pores disappear. Therefore, it is considered that the larger the temperature gradient is during sintering, the narrower the width of the transition region becomes.In other words, the diffusion distance of gas in the closed pores becomes shorter, and no air bubbles remain in the sintered body.

上記の温度勾配は少なくとも遷移領域では維持されるの
が好ましい。
Preferably, the temperature gradient mentioned above is maintained at least in the transition region.

焼成炉に対する乾燥ゲルの移動速度は、焼成炉の上記の
温度勾配により適宜選ぶが、通常は5cm/h以下、好
ましくは2cm/h以下の速度で行うとよい。
The speed of movement of the dried gel to the firing furnace is appropriately selected depending on the above-mentioned temperature gradient of the firing furnace, but it is usually at a speed of 5 cm/h or less, preferably 2 cm/h or less.

上記温度勾配、焼成温度、及び乾燥ゲルの移動速度はそ
れぞれ相互に影響し合う。温度勾配が大きいほど乾燥ゲ
ルの移動速度は小さく、また乾燥ゲルの移動速度を上げ
るためには焼成速度を高めなければならない。温度勾配
が大きく、乾燥ゲルの移動速度が小さいほど歩留りは高
くなる。
The temperature gradient, the calcination temperature, and the movement speed of the dried gel each influence each other. The larger the temperature gradient, the lower the movement speed of the dry gel, and in order to increase the movement speed of the dry gel, the firing rate must be increased. The larger the temperature gradient and the smaller the movement speed of the dried gel, the higher the yield.

焼成炉の雰囲気は、気泡がシリカガラス中に封じ込めら
れず、系外へ逃げやすい雰囲気とする。
The atmosphere in the firing furnace is such that air bubbles are not trapped in the silica glass and can easily escape from the system.

そのような雰囲気としては、Heガス雰囲気が最も好ま
しい。焼成条件によってはAr、N2.02、空気等の
ガス雰囲気やこれらのガスとHeガスの混合ガス雰囲気
とすることもできる。
The most preferable such atmosphere is a He gas atmosphere. Depending on the firing conditions, a gas atmosphere such as Ar, N2.02, or air, or a mixed gas atmosphere of these gases and He gas may be used.

上記焼成炉は、有機質成分分解部と焼成部に区分された
室をもつトンネル炉等で、有機質成分の分解と乾燥ゲル
の焼成が連続的に行えるものであってもよい。また、焼
成炉としては焼成部しか設けられていないが、焼成温度
の設定、乾燥ゲルの移動速度等を適宜調整することによ
り、有機質成分の分解と乾燥ゲルの焼成が連続的に行え
るものであってもよい。
The above-mentioned firing furnace may be a tunnel furnace or the like having a chamber divided into an organic component decomposition section and a firing section, and can continuously perform the decomposition of the organic components and the firing of the dried gel. In addition, although the firing furnace only has a firing section, it is possible to decompose the organic components and fire the dry gel continuously by appropriately adjusting the firing temperature settings, the moving speed of the dry gel, etc. You can.

以下実施例により、本発明を更に具体的に説明する。The present invention will be explained in more detail below with reference to Examples.

[実施例] 水90g、メチルアルコール200g、コリン0.07
gを混合し、これにポリ酢酸ビニル25gを添加し、溶
解させた。得られた溶液をシリコンメトキシドの重縮合
物(重量平均分子量:360〜470)175gにゆっ
くりと加え、混合し、シリカゾルを得た。これをポリフ
ッ化エチレンでコーティングした直径62mm、深さ2
50mmのガラス製円筒容器に入れ、アルミ箔で蓋をし
、室温でゲル化した。その後、蓋に孔を開け、50℃の
恒温器中で2週間乾燥し、更に120℃の恒温器に移し
て1日乾燥し、直径50mm、長さ200mmの乾燥ゲ
ルを得た。
[Example] 90 g of water, 200 g of methyl alcohol, 0.07 choline
25 g of polyvinyl acetate was added thereto and dissolved. The obtained solution was slowly added to 175 g of a polycondensate of silicon methoxide (weight average molecular weight: 360 to 470) and mixed to obtain a silica sol. This was coated with polyfluoroethylene to a diameter of 62 mm and a depth of 2.
It was placed in a 50 mm glass cylindrical container, covered with aluminum foil, and gelatinized at room temperature. Thereafter, a hole was made in the lid, and the gel was dried for two weeks in a thermostat at 50° C., and then transferred to a thermostatic oven at 120° C. and dried for one day to obtain a dried gel with a diameter of 50 mm and a length of 200 mm.

得られた乾燥ゲルを空気中50℃/hの昇温速度で室温
から800℃まで加熱し、乾燥ゲル中の有機物を酸化も
しくは熱分解した。これを第1図に示すように、雰囲気
がHeガスで、炉内の最高温度が1450℃に加熱され
、1450’Cに加熱された加熱ヒータ中央部の点から
焼成炉の壁と平行な方向に沿って約150℃/ c m
の温度勾配をもつ焼成炉中で、石英の治具を用いて下方
がら挿入し、それを1.0cm/hの温度で上方へ移動
させながら、上記ゲルを上端部から順次焼結ガラス化し
た。その結果、直径26mm、長さ100mmで内部に
気泡のない円柱状の透明なシリカガラスを得た。
The obtained dried gel was heated from room temperature to 800° C. in air at a heating rate of 50° C./h to oxidize or thermally decompose the organic matter in the dried gel. As shown in Figure 1, the atmosphere is He gas, the maximum temperature inside the furnace is heated to 1450°C, and the direction is parallel to the wall of the firing furnace from the central point of the heater heated to 1450'C. about 150℃/cm along
Using a quartz jig, the gel was inserted from the bottom into a firing furnace with a temperature gradient of 1.0 cm/h, and while moving upward at a temperature of 1.0 cm/h, the gel was sintered and vitrified sequentially from the top end. . As a result, a cylindrical transparent silica glass with a diameter of 26 mm and a length of 100 mm and no bubbles inside was obtained.

[発明の効果] 本発明によれば、気泡等の欠陥のない大形のシリカガラ
スをゾル−ゲル法により容易に製造できる。
[Effects of the Invention] According to the present invention, large-sized silica glass without defects such as bubbles can be easily produced by a sol-gel method.

また、本発明によればシリカガラスは従来より安価に製
造できるため、従来から使用されてきたIC製造用フォ
トマスク基材等の分野はもちろん、液晶表示用基材等に
も応用が拡大できる。
Furthermore, according to the present invention, silica glass can be manufactured at a lower cost than before, so it can be applied not only to fields such as photomask substrates for IC manufacturing, which have been conventionally used, but also to substrates for liquid crystal displays, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるシリカガラスの製造方法を示す断
面図である。 1・・・焼成炉       2・・・加熱ヒータ3・
・・焼成されたシリカガラス
FIG. 1 is a sectional view showing a method for manufacturing silica glass according to the present invention. 1... Firing furnace 2... Heating heater 3.
・・Fired silica glass

Claims (1)

【特許請求の範囲】[Claims] 1、シリコンアルコキシドを加水分解してシリカゾルと
し、これをゲル化し、乾燥して乾燥ゲルとし、次いで焼
成するシリカガラスの製造法において、乾燥ゲルを焼成
する段階で、乾燥ゲルを一方向から順次焼成することを
特徴とするシリカガラスの製造法。
1. In the method for manufacturing silica glass in which silicon alkoxide is hydrolyzed to produce silica sol, this is gelled, dried to form a dry gel, and then fired, the dry gel is fired sequentially from one direction in the step of firing the dry gel. A method for producing silica glass characterized by:
JP2555590A 1990-02-05 1990-02-05 Production of silica glass Pending JPH03232728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2555590A JPH03232728A (en) 1990-02-05 1990-02-05 Production of silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2555590A JPH03232728A (en) 1990-02-05 1990-02-05 Production of silica glass

Publications (1)

Publication Number Publication Date
JPH03232728A true JPH03232728A (en) 1991-10-16

Family

ID=12169197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2555590A Pending JPH03232728A (en) 1990-02-05 1990-02-05 Production of silica glass

Country Status (1)

Country Link
JP (1) JPH03232728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182172A1 (en) * 2000-08-01 2002-02-27 Lucent Technologies Inc. Process of sintering a gel body and preform for an optical fibre comprising the sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182172A1 (en) * 2000-08-01 2002-02-27 Lucent Technologies Inc. Process of sintering a gel body and preform for an optical fibre comprising the sintered body

Similar Documents

Publication Publication Date Title
JPH03232728A (en) Production of silica glass
JPS62265130A (en) Production of silica glass
JPH0259437A (en) Production of silica glass
JPH01138137A (en) Production of silica glass
JPH01119528A (en) Production of silica glass
JPH01119526A (en) Production of silica glass
JPH0259446A (en) Production of silica glass
JPH01138138A (en) Production of silica glass
JPH03215323A (en) Production of silica glass
JPH02248332A (en) Production of silica glass
JPS62292642A (en) Production of silica glass
JPH01138139A (en) Production of silica glass
JPS63215526A (en) Production of silica glass
JPH01138135A (en) Production of silica glass
JPH02248331A (en) Production of silica glass
JPH01138136A (en) Production of silica glass
JPS5969434A (en) Manufacture of quartz glass
JPH01138142A (en) Production of silica glass
JPH01138141A (en) Production of silica glass
JPH0114178B2 (en)
JPH01138140A (en) Production of silica glass
JPH03137029A (en) Production of silica glass
JPH01138143A (en) Production of silica glass
JPH0259438A (en) Production of silica glass
JPS59116134A (en) Manufacture of quartz glass