JPH0323238A - Surface modifying method for glass base material - Google Patents

Surface modifying method for glass base material

Info

Publication number
JPH0323238A
JPH0323238A JP1156328A JP15632889A JPH0323238A JP H0323238 A JPH0323238 A JP H0323238A JP 1156328 A JP1156328 A JP 1156328A JP 15632889 A JP15632889 A JP 15632889A JP H0323238 A JPH0323238 A JP H0323238A
Authority
JP
Japan
Prior art keywords
glass substrate
glass
ion
laser
implanted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1156328A
Other languages
Japanese (ja)
Inventor
Takashi Tagami
田上 高志
Keiji Oyoshi
啓司 大吉
Shuhei Tanaka
修平 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1156328A priority Critical patent/JPH0323238A/en
Priority to DE4018804A priority patent/DE4018804A1/en
Priority to CA002018781A priority patent/CA2018781A1/en
Priority to GB9013187A priority patent/GB2234968B/en
Priority to IT02065990A priority patent/IT1248863B/en
Priority to FR9007678A priority patent/FR2648454B1/en
Publication of JPH0323238A publication Critical patent/JPH0323238A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0025Other surface treatment of glass not in the form of fibres or filaments by irradiation by a laser beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0055Other surface treatment of glass not in the form of fibres or filaments by irradiation by ion implantation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/007Other surface treatment of glass not in the form of fibres or filaments by thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To accelerate a reaction between implanted ions and glass-constituting elements without softening the whole glass base material and to obtain a good- quality surface modified layer by heating an ion-implanted part by means of laser light during or after ion implantation into the glass base material, CONSTITUTION:In the course of or after the implantation of nitrogen ions, etc., into a glass substrate, preferably an alkali-containing glass substrate or a low-alkali glass substrate, this glass substrate is irradiated with laser light, by which an ion-implanted layer is heated up to a glass-softening temp. or above and the surface of the base material is reformed. At this time, when a thin film of a material absorbing laser light, e.g. a thin semiconductor film of Si, etc., is provided on the surface of the glass base material and excimer laser, Ar laser, etc., capable of being highly absorbed by Si are used, the annealing operation of the substrate and the crystallization operation of the semiconductor film can be simultaneously carried out.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、イオン注入を用いたガラス基材の表面改質法
に間し、特に、良質な表面改質層を形成できる表面改貢
法に間する,
The present invention relates to a method for surface modification of glass substrates using ion implantation, and in particular to a surface modification method that can form a high-quality surface modification layer.

【従来の技WI】[Conventional technique WI]

従来から、イオン注入法を用いてガラス基板の表面を改
質する方法が知られている. 例えば、ナトリウムイオンを含んだガラス板にリンイオ
ンを約250keVのエネルギーで注入し、その後65
0℃でアニールして、注入したイオン種とガラス構成元
糞とを結合させて、ガラス板内部にリン珪酸ガラス層を
形成する方法、およびさらにその上に窒素イオンを約5
0keVのエネルギーで注入し660℃でアニールして
、注入しk窒素イオンとガラス構成元素とを結合させて
窒化珪素層を形成する方法が知られている. 〈例えば
特間昭63−222046).
A method of modifying the surface of a glass substrate using ion implantation has been known for some time. For example, phosphorus ions are implanted into a glass plate containing sodium ions at an energy of about 250 keV, and then 65
A method of forming a phosphosilicate glass layer inside the glass plate by annealing at 0°C to combine the implanted ionic species with the glass constituent material, and further adding nitrogen ions on top of the phosphosilicate glass layer.
A known method is to form a silicon nitride layer by implanting with an energy of 0 keV and annealing at 660° C. to combine the implanted nitrogen ions with glass constituent elements. (For example, Tokuma Showa 63-222046).

【発明が解決しようとする課H】[Question H that the invention attempts to solve]

しかしながら、上記従来方法の表面改質法では、イオン
注入を行なった後のアニールをガラス基板の軟化温度以
下で行なう必要があり、注入イオン種とガラス構成元素
との反応が十分でないため、w4待するほど良賞な表面
改質層が得られないという問題点があった. これは、安価なガラス基板を表面改質して、より高品位
の基板として工業用に使用する際の問題点となっていた
However, in the conventional surface modification method described above, it is necessary to perform annealing after ion implantation at a temperature below the softening temperature of the glass substrate, and the reaction between the implanted ion species and the glass constituent elements is not sufficient, so it is necessary to wait for w4. The problem was that it was not possible to obtain a surface-modified layer that was as good as it was. This has been a problem when surface-modifying an inexpensive glass substrate and using it as a higher-quality substrate for industrial use.

【課題を解決するための手段】[Means to solve the problem]

本発明は、上記問題点を解決するためになされたもので
あって、 イオン注入を用いたガラス基材の表面改質法
において、イオン注入の途中あるいは徨に、レーザー光
を用いてガラス基材のイオン注入した部分を加熱してい
る. レーザー光の照射条件としては、イオンを注入したガラ
ス表面層が高温にできるものであれば何れでも使用でき
る. 例えば、S1を多量に含むイオン注入層では、Siによ
る吸収の高いエキシマレーザー及び八「レーザー等を用
いることにより、ガラス基材内部を直接加熱出来る. また、イオン注入層で吸収の高いレーザー光を用いる他
に、ガラスでの吸収が高いCO2レーザーを照射して、
ガラス層から間接的にイオン注入層を加熱することもで
きる. また、該ha熱はガラス基材上に設けたレーザー光を吸
収する材料の薄11を介して行なっても良い.該薄膜の
種類とレーザー光の組合せは、該薄膜がイオン注入層を
含むガラス表面を高温に加熱できるものであれば何れで
も使用できる.例えば、Siをレーザー光を吸収する材
料の薄膜としてガラス表面に堆積する際には、レーザー
としてはSIMでの吸収が良いエキシマレーザー及び八
「レーザー等が使用できる. また、S102膜をガラス表面に堆積する際には、Si
Oz膜での吸収が良いCO2レーザーが使用できる. 該レーザー光を吸収する材料の薄膜として、S1等の半
導体膜を用いると、基板のアニール操作と、半導体膜の
結晶化操作とを同時に実施出来ることになり好ましい. ガラス基材上に設けたレーザー光を吸収する材料のWi
膜を介して加熱を行なう方法としては、[1]ガラス基
材の上に薄膜を堆積してイオン注入した後レーザー光を
wI射する. [2コイオン注入したガラス基材の上にi膜を堆積しな
がらレーザー光を照射する. [3]イオン注入したガラス基Iオの上にi1Mを堆積
した後レーザー光をWltJ′4する.等の方法が例示
出来る. 該レーザー光の!1i!利は任意の方向から実施でき、
例えば、ガラス基材の表面からであっても、あるいは裏
面からであってもかまわない. 該レーザー光の照射強度および照射時間は、イオン注入
したガラス基材の必要部分が、十分に加熱される範囲で
あって、ガラス基材の変形等の生じない範囲であれば、
任意の強度および時間で実施出来る.例えばレーザー光
を集光させてスポット的に基材に照射するのであれば、
短時間でガラス基材の必要部分の加熱は完了する. 本発明に使用するガラス基材としては、アルカJ含有ガ
ラス基板,低アルカリガラス基板.無アルカリガラス基
板等任意のガラス基板が使用出来る.なかでも、アルカ
リ含有ガラス基板または低アルカリガラス基板が、本発
明の主目的である表面特性の改質効果が大きく表れるの
で好ましい.
The present invention has been made in order to solve the above-mentioned problems, and in a method for surface modification of glass substrates using ion implantation, a laser beam is used to modify the surface of the glass substrate during or after ion implantation. The part where the ions were implanted is heated. Any laser beam irradiation conditions can be used as long as the glass surface layer into which ions are implanted can be heated to a high temperature. For example, in an ion-implanted layer containing a large amount of S1, the inside of the glass substrate can be directly heated by using an excimer laser, which is highly absorbed by Si, a laser, etc. In addition to using CO2 laser, which is highly absorbed by glass,
It is also possible to heat the ion implantation layer indirectly from the glass layer. Alternatively, the ha heating may be performed through a thin layer 11 of a material that absorbs laser light provided on the glass substrate. Any combination of the type of thin film and laser light can be used as long as the thin film can heat the glass surface including the ion-implanted layer to a high temperature. For example, when depositing Si as a thin film of a material that absorbs laser light on a glass surface, an excimer laser or a laser that has good absorption in SIM can be used as the laser. When depositing, Si
A CO2 laser with good absorption by the Oz film can be used. It is preferable to use a semiconductor film such as S1 as the thin film of the material that absorbs the laser light, since this allows the annealing operation of the substrate and the crystallization operation of the semiconductor film to be performed simultaneously. Wi, a material that absorbs laser light provided on a glass base material
As a method for heating through a film, [1] A thin film is deposited on a glass substrate, ions are implanted, and then a laser beam is irradiated. [Laser light is irradiated while depositing the i-film on the glass substrate into which 2 coin ions have been implanted. [3] After depositing i1M on the ion-implanted glass substrate Io, apply laser light WltJ'4. The following methods can be exemplified. The laser light! 1i! Interest can be implemented from any direction,
For example, it may be from the front side or the back side of the glass substrate. The irradiation intensity and irradiation time of the laser beam are within a range that sufficiently heats the necessary portion of the ion-implanted glass substrate and does not cause deformation of the glass substrate.
It can be performed at any intensity and time. For example, if laser light is focused and irradiated onto the base material in spots,
Heating of the necessary parts of the glass substrate is completed in a short time. Glass substrates used in the present invention include alkali J-containing glass substrates, low-alkali glass substrates. Any glass substrate can be used, such as an alkali-free glass substrate. Among these, alkali-containing glass substrates or low-alkali glass substrates are preferred because they exhibit a large effect of modifying surface properties, which is the main objective of the present invention.

【作用】[Effect]

本発明によれば、レーザー光によりイオン注入層を瞬時
に加熱し、アニールできるので、必要部分をガラス基材
の軟化温度以上に加熱出来る.そのため、注入イオン種
とガラス構成元素との結合が十分に起こり、良質の表面
改質層が形成できる.
According to the present invention, the ion-implanted layer can be instantaneously heated and annealed using a laser beam, so that the necessary portion can be heated to a temperature higher than the softening temperature of the glass substrate. Therefore, sufficient bonding occurs between the implanted ion species and the glass constituent elements, and a high-quality surface-modified layer can be formed.

【実施例】【Example】

実施例−1 ガラス基板の表面に、窒素イオンを30keVでIXI
OI7個/cm2注入し、ガラス&板の表面から0.0
6μmの深さに濃度ピークを持つイオン注入層を形成し
た.その後、ガラス基板の表面からCO2レーザー(波
長10.6μm)を照射した.C02レーザーの?M射
条件は、ビーム径が20011m、ビームパワーが45
W、走査速度1.  5m/m i nであった. この後、試料をX線光電子分光法で測定したところ、C
O2レーザーを照刺した試料では、CO2レーザーを照
剥していない試料に比べて窒化珪素瀾度が5〜xO倍に
測定された. また、イオン注入を行なった後、400℃で熱処理した
ものと較べても、窒化珪素濃度は5〜10倍と測定され
た. 上記窒化珪素の濶度は、ガラス基板に含まれるアルカリ
金属の拡散の防止能力に正の相間をすると考えられ、本
発明のレーザー光を用いた基板の加熱操作は、アルカリ
金属の拡散防止等のガラス基板表面特性の改良に効果が
あることがわかる.実施例−2 ガラス基板の表面に、リンイオンを100keVでIX
IOI7個/cm2注入し、ガラス基板の表面から0.
  1μmの深さに1度ピークを持つ第lのイオン注入
層を形成した後、窒素イオンを30keVでI X 1
 0I1/cm2注入してガラス基板の表面から0.0
6μmの深さに濶度ビークを持つ第2のイオン注入層3
を形成した. この後、上記実施例−1と同様の条件でCO2レーザー
(波長10.6μm)を照射した.この後、試料をX線
光電子分光法で測定したところ、CO2レーザーをp!
l躬した試料では、CO2レーザーを照射していない試
料に比べて、第1のイオン注入層のリン珪酸濃度は2〜
3倍に、第2のイオン注入層の窒化珪素濃度は5〜10
倍に測定された. また、イオン注入を行なった後、400℃で熱処理した
ものと較べても、リン珪酸濤度は2〜3倍に、窒化珪素
濶度は5〜lO倍に測定された.実施例−3 ガラス基板の表面に、珪素イオンを60keVでIXI
O17l/cm2注入してガラス基板の表面から0.0
6μmの深さに瀾度ビークを持つイオン注入層を形成し
た後、窒素イオンを30keVでlX1017個/cm
’注入して上記イオン注入層に重なる様に新たなイオン
注入層を形成した。 この後、該ガラス基板の表面あるいは裏面から、XeC
Iのエキシマレーザー(波長308nm)を100mJ
/cm2のビーム強度で1パルスp!JtJ4した. この試料をX線光電子分光法で測定したところ、エキシ
マレーザーを照射した試料では、エキシマレーザーを照
射していない試料に比べて、窒化珪素濃度が5〜lO倍
に測定された. また、イオン注入を行なった後、400℃で熱処理した
ものと較べても、窒化珪素濶度は5〜10倍と測定され
た. 以上説明した様に、本発明はl稽のイオンを注入した単
層の改質層の他に、複数のイオン種を注入した積層型の
改質層にも適用できることは明かである. 実施例−4 ガラス基板の表面に、窒素イオンを30keVでIXI
O”個/cm2注入し、ガラス基板の表爾から0.06
μmの深さに瀾度ビークを持つイオン注入層を形成した
後、該ガラス基板の表面に厚さ10nmの非晶質Si膜
を堆積し、該ガラス基板の表面からXeClのエキシマ
レーザー(波長308nm)を100mJ/cm’のビ
ーム強度で1パルス照刺した. この後、試料をX線光電子分光法で測定したところ、非
晶質SiMを堆積してエキシマレーザーをNII4Lr
た試料では、イオン注入後の試料に比べて窒化珪Ila
度が5〜10倍に測定された.また、イオン注入を行な
った後、400℃で熱処理したものと較べても、窒化珪
素瀾度は5〜10倍と測定された. 実施W4−5 ガラス基板の表面に、リンイオンを1 0 0 k e
VでIXIOl7個/cm2注入し、ガラス基板の表面
から0.  1μmの深さに濃度ピークを持つ第1のイ
オン注入層を形成した後、窒素イオンを3okeVでI
 X 1 0171M/ cm2注入してガラス基板の
表面から0.06μmの深さに濃度ピークを持つ第2の
イオン注入層を形成した.この後、該ガラス基板の表面
に厚さ10nmの非晶1(Si膜を堆積し、該ガラス基
板の表面から、上記実施例1と同様の条件でXeC+の
エキシマレーザーを照射した. この後、試料をX線光電子分光法で測定したところ、非
晶1fsiMを堆積してエキシマレーザ−を照射した試
料では、イオン注入後の試料に比べて、第1のイオン注
入層のリン珪酸濃度が2〜3倍に、第2のイオン注入層
の窒化珪素濃度が5〜10倍に測定された. また、イオン注入を行なった後、400℃で熱処理した
ものと較べても、リン珪tin度が2〜3f5に、窒化
珪素濃度が5〜IO倍に測定された.実施例−5 ガラス基板の表面に、珪素イオンを60keVでI X
 1 0”Off/ cm”注入してガラス基板の表面
から0.06μmの深さに濃度ピークを持つイオン注入
層を形成した後、窒素イオンを30keVでI XI 
O”u/cm2注入して上記イオン注入層に重なる様に
新たなイオン注入層を形成した.この後、該ガラス基板
の表面に厚ざ10nmの非晶質SI膜を堆積し、該ガラ
ス基板の表面から、上記実施例−4と同様の条件でXe
Clのエキシマレーザーを照躬した. この試料をX線光電子分光法で測定したところ、非品質
Sillを堆積してエキシマレーザーを照射した試料で
は、イオン注入後の試料に比べて、室化珪素濃度が5〜
IO倍に測定された.また、イオン注入を行なった後、
400℃で熱処理したものと較べても、窒化珪素濃度は
5〜lO@とill1定された. 実施例−7 ガラス基板の表面に、窒素イオンを3 0 k c V
でIXIOI7個/cm’注入し、ガラス基板の表面か
ら0.06μmの深さに濃度ピークを持つイオン注入層
を形成した後、該ガラス基板の表面にIグさ+7zmの
SiO2Mを堆積し、CO2レーザー(波長10.6μ
m)を照射した.CO2レーザーのI It条件は、ビ
ーム径が2 0 0 It m、ビームバワーが45W
、走査速度1.5m/minであった。 この後、試料をX線光電子分光法で測定したところ、S
iO2膜を堆積してCO2レーザーを照利した試料では
、イオン注入後の試料に比べて窒化珪g濃度が5〜10
倍と瀾定された. また、イオン注入を行なった後、400℃で熱処理した
ものと較べても、窒化珪素a度は5〜10倍と測定され
た. 上記実施例においては、レーザー光の照射をガラス基板
の表面から行なっているが、該照躬はガラス基板表面か
らに限らず裏面等任意の方向であってかまわない. また、ガラス基材の形状も、基板に限らず任意の形状で
あって良い・
Example-1 IXI nitrogen ions at 30 keV on the surface of a glass substrate
Inject 7 OI/cm2, 0.0 from the surface of glass & plate
An ion implantation layer with a concentration peak at a depth of 6 μm was formed. Thereafter, a CO2 laser (wavelength: 10.6 μm) was irradiated from the surface of the glass substrate. C02 laser? The M shooting conditions are a beam diameter of 20011 m and a beam power of 45 m.
W, scanning speed 1. It was 5m/min. After this, when the sample was measured by X-ray photoelectron spectroscopy, it was found that C
In the sample that was irradiated with the O2 laser, the silicon nitride hardness was measured to be 5 to xO times higher than that of the sample that was not irradiated with the CO2 laser. Furthermore, the silicon nitride concentration was measured to be 5 to 10 times higher than that of a sample that was heat-treated at 400° C. after ion implantation. The above-mentioned degree of silicon nitride is considered to have a positive correlation with the ability to prevent the diffusion of alkali metals contained in the glass substrate, and the heating operation of the substrate using the laser beam of the present invention is effective in preventing the diffusion of alkali metals. It can be seen that this method is effective in improving the surface characteristics of glass substrates. Example-2 IX phosphorus ions at 100 keV on the surface of a glass substrate
7 IOI/cm2 was injected, and 0.0% was injected from the surface of the glass substrate.
After forming the first ion-implanted layer having a peak of 1 degree at a depth of 1 μm, nitrogen ions were injected at I×1 at 30 keV.
0I1/cm2 injection from the surface of the glass substrate to 0.0
Second ion implantation layer 3 having a degree peak at a depth of 6 μm
was formed. Thereafter, CO2 laser (wavelength: 10.6 μm) was irradiated under the same conditions as in Example-1 above. After this, the sample was measured by X-ray photoelectron spectroscopy, and the CO2 laser was used at p!
The phosphosilicate concentration of the first ion-implanted layer was 2 to 2 in the sample that had been irradiated with CO2 laser compared to the sample that had not been irradiated with the CO2 laser.
3 times, the silicon nitride concentration of the second ion-implanted layer is 5-10
It was measured twice as much. Furthermore, even when compared with those heat-treated at 400° C. after ion implantation, the phosphosilicate degree was measured to be 2 to 3 times higher, and the silicon nitride degree was measured to be 5 to 10 times higher. Example-3 IXI silicon ions were applied to the surface of a glass substrate at 60 keV.
0.0 from the surface of the glass substrate by injecting O17l/cm2
After forming an ion implantation layer with a heat peak at a depth of 6 μm, nitrogen ions were injected at 30 keV at 1×1017 ions/cm.
' A new ion implantation layer was formed so as to overlap the above ion implantation layer. After that, from the front or back surface of the glass substrate,
I excimer laser (wavelength 308 nm) at 100 mJ
1 pulse p with a beam intensity of /cm2! I did JtJ4. When this sample was measured by X-ray photoelectron spectroscopy, the silicon nitride concentration was measured to be 5 to 10 times higher in the sample irradiated with excimer laser than in the sample not irradiated with excimer laser. Furthermore, the silicon nitride yield was measured to be 5 to 10 times higher than that of a sample that was heat-treated at 400°C after ion implantation. As explained above, it is clear that the present invention can be applied not only to a single-layer modified layer in which one or more ions are implanted, but also to a laminated modified layer in which multiple ion species are implanted. Example-4 IXI nitrogen ions at 30 keV on the surface of a glass substrate
O" pieces/cm2 were injected, and 0.06 from the surface of the glass substrate.
After forming an ion implantation layer with a heat peak at a depth of μm, an amorphous Si film with a thickness of 10 nm is deposited on the surface of the glass substrate, and a XeCl excimer laser (wavelength 308 nm) is applied to the surface of the glass substrate. ) was irradiated with one pulse at a beam intensity of 100 mJ/cm'. After this, when the sample was measured by X-ray photoelectron spectroscopy, it was found that amorphous SiM was deposited and the excimer laser was applied to NII4Lr.
Compared to the sample after ion implantation, the silicon nitride Ila
The intensity was measured to be 5 to 10 times higher. Furthermore, the degree of silicon nitride hardness was measured to be 5 to 10 times higher than that obtained by heat treatment at 400° C. after ion implantation. Implementation W4-5 Phosphorus ions were applied to the surface of the glass substrate at 100 ke.
7 IXIOl/cm2 were injected at V and 0.0 V from the surface of the glass substrate. After forming the first ion-implanted layer with a concentration peak at a depth of 1 μm, nitrogen ions were injected into the I
A second ion-implanted layer having a concentration peak at a depth of 0.06 μm from the surface of the glass substrate was formed by implanting X 1 0171 M/cm2. After this, an amorphous 1 (Si film) with a thickness of 10 nm was deposited on the surface of the glass substrate, and a XeC+ excimer laser was irradiated from the surface of the glass substrate under the same conditions as in Example 1. After this, When the sample was measured by X-ray photoelectron spectroscopy, it was found that the phosphosilicate concentration of the first ion-implanted layer was 2 to 2, compared to the sample after ion implantation in the sample in which amorphous 1fsiM was deposited and irradiated with excimer laser. The silicon nitride concentration in the second ion-implanted layer was measured to be 3 times higher and the silicon nitride concentration in the second ion-implanted layer was measured to be 5 to 10 times higher.Also, even when compared with the case where the silicon nitride concentration in the second ion-implanted layer was heat-treated at 400°C, the phosphorus silicon concentration was 2 times higher. At ~3f5, the silicon nitride concentration was measured to be 5~IO times higher.Example-5 Silicon ions were irradiated with IX at 60 keV onto the surface of a glass substrate.
1 After implanting 0"Off/cm" to form an ion implantation layer having a concentration peak at a depth of 0.06 μm from the surface of the glass substrate, nitrogen ions were implanted at 30 keV.
A new ion-implanted layer was formed by implanting O"u/cm2 so as to overlap the above ion-implanted layer. After this, an amorphous SI film with a thickness of 10 nm was deposited on the surface of the glass substrate. from the surface of Xe under the same conditions as in Example-4 above.
Illuminated a Cl excimer laser. When this sample was measured by X-ray photoelectron spectroscopy, it was found that the silicon chamber concentration in the sample deposited with non-quality Sill and irradiated with excimer laser was 5 to 5% higher than that in the sample after ion implantation.
Measured IO times. In addition, after performing ion implantation,
Even when compared with that heat treated at 400°C, the silicon nitride concentration was determined to be 5~1O@. Example-7 Nitrogen ions were applied to the surface of a glass substrate at 30 k c V
After injecting 7 IXIOI/cm' to form an ion-implanted layer with a concentration peak at a depth of 0.06 μm from the surface of the glass substrate, SiO2M of I×+7zm was deposited on the surface of the glass substrate, and CO2 Laser (wavelength 10.6μ
m) was irradiated. The CO2 laser I It conditions are a beam diameter of 200 It m and a beam power of 45 W.
, and the scanning speed was 1.5 m/min. After this, when the sample was measured by X-ray photoelectron spectroscopy, S
In the sample deposited with iO2 film and illuminated with CO2 laser, the silicon nitride concentration was 5 to 10% higher than in the sample after ion implantation.
It was determined that it was double. Furthermore, the silicon nitride a degree was measured to be 5 to 10 times higher than that of a material that was heat-treated at 400° C. after ion implantation. In the above embodiment, the laser beam is irradiated from the front surface of the glass substrate, but the irradiation is not limited to the front surface of the glass substrate, but may be from any direction such as the back surface. Furthermore, the shape of the glass base material is not limited to the substrate, and may be any shape.

【発明の効果】【Effect of the invention】

Claims (3)

【特許請求の範囲】[Claims] (1)イオン注入を用いたガラス基材の表面改質法にお
いて、イオン注入の途中あるいは後に、レーザー光を用
いて、ガラス基材のイオン注入した部分を加熱すること
を特徴とするガラス基材の表面改質法。
(1) A glass substrate surface modification method using ion implantation, in which the ion-implanted portion of the glass substrate is heated using laser light during or after ion implantation. surface modification method.
(2)該加熱を、ガラス基材上に設けたレーザー光を吸
収する材料の薄膜を介して行なう請求項1記載のガラス
基材の表面改質法。
(2) The method for surface modification of a glass substrate according to claim 1, wherein the heating is performed via a thin film of a material that absorbs laser light provided on the glass substrate.
(3)該加熱の温度が、該ガラス基材の軟化温度以上で
ある請求項1または2項記載のガラス基材の表面改質法
(3) The method for surface modification of a glass substrate according to claim 1 or 2, wherein the heating temperature is higher than the softening temperature of the glass substrate.
JP1156328A 1989-06-19 1989-06-19 Surface modifying method for glass base material Pending JPH0323238A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1156328A JPH0323238A (en) 1989-06-19 1989-06-19 Surface modifying method for glass base material
DE4018804A DE4018804A1 (en) 1989-06-19 1990-06-12 METHOD FOR MODIFYING THE SURFACE OF GLASS SUBSTRATES
CA002018781A CA2018781A1 (en) 1989-06-19 1990-06-12 Method of modifying the surface of glass substrate
GB9013187A GB2234968B (en) 1989-06-19 1990-06-13 Method of modifying the surface of a glass substrate
IT02065990A IT1248863B (en) 1989-06-19 1990-06-15 METHOD OF MODIFICATION OF THE SURFACE OF A GLASS SUBSTRATE
FR9007678A FR2648454B1 (en) 1989-06-19 1990-06-19 METHOD FOR MODIFYING THE SURFACE OF A GLASS SUBSTRATE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1156328A JPH0323238A (en) 1989-06-19 1989-06-19 Surface modifying method for glass base material

Publications (1)

Publication Number Publication Date
JPH0323238A true JPH0323238A (en) 1991-01-31

Family

ID=15625384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1156328A Pending JPH0323238A (en) 1989-06-19 1989-06-19 Surface modifying method for glass base material

Country Status (6)

Country Link
JP (1) JPH0323238A (en)
CA (1) CA2018781A1 (en)
DE (1) DE4018804A1 (en)
FR (1) FR2648454B1 (en)
GB (1) GB2234968B (en)
IT (1) IT1248863B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238378A (en) * 2006-03-09 2007-09-20 Central Glass Co Ltd Glass plate having high fracture toughness and method of manufacturing the same
JP2019513672A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Antireflection, scratch resistant glass substrate and method of manufacturing the same
JP2019513676A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Intermediate color antireflective glass substrate and method of manufacturing the same
JP2019513674A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Glass substrate with reduced internal reflectance and method of making same
JP2019513671A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Heat-treatable antireflective glass substrate and method of manufacturing the same
JP2019513675A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Anti-reflection glass substrate and method of manufacturing the same
JP2019515863A (en) * 2016-04-12 2019-06-13 エージーシー グラス ユーロップ エスエーAgc Glass Europe Sa Blue reflective glass substrate and method of manufacturing the same
JP2019524613A (en) * 2016-06-28 2019-09-05 コーニング インコーポレイテッド Thin glass-based article with high resistance to contact damage

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4467597B2 (en) 2007-04-06 2010-05-26 株式会社オハラ Inorganic composition article
DE102012213787A1 (en) * 2012-08-03 2014-02-06 Robert Bosch Gmbh Surface structuring for cell biological and / or medical applications
FR3002240B1 (en) 2013-02-15 2015-07-10 Quertech Ingenierie METHOD FOR TREATING AN ION BEAM TO PRODUCE SUSTAINABLE GLAND-FREE GLASS MATERIALS
EP3181533A1 (en) * 2015-12-18 2017-06-21 AGC Glass Europe Glass substrate for chemical strengthening and method for chemically strengthening with controlled curvature
US10731403B2 (en) * 2017-10-06 2020-08-04 Vkr Holding A/S Vacuum insulated glazing unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4281030A (en) * 1980-05-12 1981-07-28 Bell Telephone Laboratories, Incorporated Implantation of vaporized material on melted substrates
JPS5999713A (en) * 1982-11-30 1984-06-08 Agency Of Ind Science & Technol Manufacture of substrate for thin-film transistor
DE3539047C2 (en) * 1984-12-27 1994-06-01 Bayer Ag Process for decorating or marking objects with enamelled surfaces using a laser beam

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238378A (en) * 2006-03-09 2007-09-20 Central Glass Co Ltd Glass plate having high fracture toughness and method of manufacturing the same
JP2019513672A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Antireflection, scratch resistant glass substrate and method of manufacturing the same
JP2019513676A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Intermediate color antireflective glass substrate and method of manufacturing the same
JP2019513674A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Glass substrate with reduced internal reflectance and method of making same
JP2019513671A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Heat-treatable antireflective glass substrate and method of manufacturing the same
JP2019513675A (en) * 2016-04-12 2019-05-30 エージーシー グラス ユーロップAgc Glass Europe Anti-reflection glass substrate and method of manufacturing the same
JP2019515863A (en) * 2016-04-12 2019-06-13 エージーシー グラス ユーロップ エスエーAgc Glass Europe Sa Blue reflective glass substrate and method of manufacturing the same
JP2019524613A (en) * 2016-06-28 2019-09-05 コーニング インコーポレイテッド Thin glass-based article with high resistance to contact damage

Also Published As

Publication number Publication date
IT9020659A1 (en) 1991-12-15
FR2648454B1 (en) 1993-07-09
DE4018804A1 (en) 1990-12-20
GB2234968A (en) 1991-02-20
CA2018781A1 (en) 1990-12-19
IT1248863B (en) 1995-01-30
GB9013187D0 (en) 1990-08-01
IT9020659A0 (en) 1990-06-15
FR2648454A1 (en) 1990-12-21
GB2234968B (en) 1993-02-17

Similar Documents

Publication Publication Date Title
JPH0323238A (en) Surface modifying method for glass base material
US4234356A (en) Dual wavelength optical annealing of materials
US8975159B2 (en) Method for manufacturing bonded wafer
JP2003528462A (en) Method of forming extremely shallow junction by laser annealing and rapid thermal annealing
WO2007015388A1 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
JPH09102465A (en) Ion implanting method
US6544825B1 (en) Method of fabricating a MIS transistor
JPH02294027A (en) Method and device for annealing
JP2010503202A (en) Dynamic surface annealing method of implanted dopants by low temperature HDPCVD process for depositing light absorbing layer with high extinction coefficient
JPS6137205B2 (en)
JPH03266424A (en) Annealing process of semiconductor substrate
KR980005412A (en) Ultra Low Junction Formation Method for Semiconductor Devices
JPH0639694B2 (en) Ion implantation method
JP4043865B2 (en) Manufacturing method of semiconductor device using laser irradiation
JP3669384B2 (en) Method for forming a doping layer in a semiconductor substrate
JPS59103346A (en) Method of selectively heating insulator layer on semiconductor device
JPH05206049A (en) Ion implantation method and ion implantation device
US6432278B2 (en) Method for controlling refractive index of silica glass
US7115479B2 (en) Sacrificial annealing layer for a semiconductor device and a method of fabrication
CA1129969A (en) Dual wavelength optical annealing of materials
US6410374B1 (en) Method of crystallizing a semiconductor layer in a MIS transistor
US11769687B2 (en) Method for layer transfer with localised reduction of a capacity to initiate a fracture
JPS633447B2 (en)
JPH05206053A (en) Crystal damage remover
JPH01256124A (en) Manufacture of mos type semiconductor device