JPH03232239A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03232239A
JPH03232239A JP2925990A JP2925990A JPH03232239A JP H03232239 A JPH03232239 A JP H03232239A JP 2925990 A JP2925990 A JP 2925990A JP 2925990 A JP2925990 A JP 2925990A JP H03232239 A JPH03232239 A JP H03232239A
Authority
JP
Japan
Prior art keywords
substrate
grooves
film
groove
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2925990A
Other languages
Japanese (ja)
Inventor
Hiroi Ootake
大竹 弘亥
Kazuhiko Shirakawa
一彦 白川
Toshiyuki Shinozaki
敏幸 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2925990A priority Critical patent/JPH03232239A/en
Publication of JPH03232239A publication Critical patent/JPH03232239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To prevent a disconnection of the contact parts of wirings on a source and a drain from being generated and to prevent the generation of the kink characteristics of an element by a method wherein a pair of first grooves and a second groove shallower than the first grooves are respectively formed in the surface of a single crystal silicon substrate and in the substrate surface between the first grooves by a photolithography method. CONSTITUTION:A photoresist film 12 is formed on a substrate 11, the substrate is etched by a reactive ion etching(RIE) method in a depth of about 15nm using this film 12 as a mask and a second groove 20 is formed. This groove is finally used as the bottom of a channel. Then, the film 12 is removed and after that, a photoresist film 14 is formed and the substrate 11 is etched by an RIE method in a depth of above 20nm using this film 14 as a mask to form first grooves 15. These grooves are finally used as bottoms other than the bottom of the channel part. Then, an oxide layer 22 and a polycrystalline silicon layer 17 are formed on the substrate 11 to obtain a flat surface. Then, another Si substrate 21 is laminated on the layer 17 in an atmosphere of 1100 deg.C, the rear 11b of the substrate 11 is subjected to mechanical polishing, then, the rear 11b is subjected to chemical polishing to perform the exposure of the layer 22.

Description

【発明の詳細な説明】 (イ′)産業上の利用分野 この発明は、半導体装置の製造方法に関する。[Detailed description of the invention] (b') Industrial application fields The present invention relates to a method for manufacturing a semiconductor device.

さろに詳しくはS OI (Si on In5ula
tor)に関し、ことに高速応答性の大規模集積回路な
どの製造に好適に用いられる。
For more details, please visit S OI (Si on In5ula)
tor), and is particularly suitable for manufacturing large-scale integrated circuits with high-speed response.

(ロ)従来の技術 従来のSol素子の製造方法は、第3図に示すように、
レーザビーム、電子ビームや酸素注入等により膜厚50
0++a+程度の厚膜SOI基板を作製し、次いで熱酸
化やドライエツチング処理を施すことにより膜厚100
〜200nmの薄膜SOI基板を得て、そこに、素子を
組み込んで行われている。ただし、11はシリコン基板
、12a及び12bは、拡散層、12cはチャネル部、
13は絶縁膜、16は配線、18はゲート電極、19は
ゲート絶縁膜である。
(B) Conventional technology The conventional method for manufacturing a Sol element is as shown in FIG.
Film thickness of 50 mm by laser beam, electron beam, oxygen injection, etc.
A thick film SOI substrate of approximately 0++a+ is fabricated, and then thermal oxidation and dry etching are performed to achieve a film thickness of 100.
A thin film SOI substrate with a thickness of ~200 nm is obtained and an element is incorporated therein. However, 11 is a silicon substrate, 12a and 12b are diffusion layers, 12c is a channel part,
13 is an insulating film, 16 is a wiring, 18 is a gate electrode, and 19 is a gate insulating film.

近年、膜厚が30〜loonm程度の超薄膜Sol素子
が、従来の膜厚の薄膜SOI素子に比べて、キング特性
の発生がなく、高い駆動力を有することが見出され超高
速素子の実現の為に庄目さイーでいろ。
In recent years, it has been discovered that ultra-thin film SOI devices with a film thickness of about 30 to 100 m thick have higher driving force without the occurrence of king characteristics than thin-film SOI devices with conventional film thicknesses, making it possible to realize ultra-high-speed devices. Let's be Shome Sae for the sake of this.

(ハ)発明が解決しようとする課題 上記の薄膜So■素子において、ドレイン破壊耐性の低
下が問題となっている。例えばチャネル長が0゜5μm
のnチャネルトランノスタにおいてSol膜厚50nm
と200r++nの素子特性の比較では50nmの素子
のほうが約1.5■耐圧が低下する。この理由として、
膜厚が薄くなるほどドレイン近傍の等ポテンシャル線の
曲線が小さくなる為と考えられる。また、50nmの素
子ではSiが薄いため、配線との接合部でSiが配線と
反応し、Siが配線中に拡散することにより空洞ができ
、断線症状を起こし易い。
(c) Problems to be Solved by the Invention In the above-mentioned thin film So2 device, a problem arises in that the resistance to drain breakdown decreases. For example, the channel length is 0°5μm
Sol film thickness 50 nm in n-channel trannostar
Comparing the device characteristics of 200r++n and 200r++n, the breakdown voltage of the 50nm device is about 1.5μ lower. The reason for this is
This is thought to be because the curve of the equipotential line near the drain becomes smaller as the film thickness becomes thinner. Furthermore, since Si is thin in a 50 nm element, Si reacts with the wiring at the junction with the wiring, and Si diffuses into the wiring, creating a cavity and easily causing disconnection symptoms.

この発明は、上記問題を解決するfこめになされたもの
であって、耐圧の低下や断線故障に対する信頼性が高く
、キング特性の発生がなく高い駆動力を有する薄膜So
l素子からなる半導体装置の製造方法を提供しようとす
るものである。
This invention has been made to solve the above problems, and is a thin film SO which has high reliability against voltage drop and disconnection failure, does not generate king characteristics, and has high driving force.
The present invention aims to provide a method for manufacturing a semiconductor device consisting of an L element.

(ニ)課題を解決するための手段 二の発明によこば、(a)単結晶シリコン基板表面に、
ホトリソグラフィ法によって、−1対の第1溝とその間
に第1溝より浅い第2溝を一形成し、(b)これらの溝
内を含む該基板の表面に絶縁膜を形成すると共にこれら
の溝内に多結晶もしくは非結晶シリコン又はそれらの化
合物を埋設し、(C)この後に、該基板の裏面を第1溝
底部の絶縁膜に達するまで除去することにより、第1溝
間に位置しかつ上記絶縁膜で隔離された単結晶シリコン
素子形成領域を構成し、(d)上記単結晶素子形成領域
に、上記第2溝形成部位に対向する単結晶シリコン内に
チャネルを形成し、この上にゲート絶縁膜を介してゲー
ト電極を積層すると共に、その両側の単結晶シリコン内
に、ソース、ドレインを形成することを特徴とする半導
体装置の製造方法が提供される。
(d) Means for solving the problem According to the second invention, (a) on the surface of a single crystal silicon substrate,
A pair of first grooves and a second groove shallower than the first groove are formed between them by a photolithography method, and (b) an insulating film is formed on the surface of the substrate including the inside of these grooves, and burying polycrystalline or amorphous silicon or a compound thereof in the groove; (C) then removing the back surface of the substrate until it reaches the insulating film at the bottom of the first groove; and forming a single crystal silicon element formation region isolated by the insulating film, (d) forming a channel in the single crystal silicon opposite to the second groove formation region in the single crystal element formation region; There is provided a method for manufacturing a semiconductor device, characterized in that a gate electrode is laminated via a gate insulating film, and a source and a drain are formed in single crystal silicon on both sides of the gate electrode.

この発明においては、単結晶シリコン基板表面に、ホト
リソグラフィ法によって、1対の第1溝とその間に第1
溝より浅い第2溝を形成する。上記第1溝は、単結晶シ
リコン基板裏面に絶縁膜で隔離されf二準拮晶ンリコン
素子形成項域を構成するf二めのらのであって、通常深
さ030〜0.55um。
In this invention, a pair of first grooves are formed on the surface of a single-crystal silicon substrate by photolithography, and a first groove is formed between the two grooves.
A second groove shallower than the groove is formed. The first groove is separated by an insulating film on the back surface of the single-crystal silicon substrate and constitutes a region for forming an f-2 quasi-antagonistic silicon element, and usually has a depth of 030 to 0.55 um.

幅0 、54m以下の横断面を有する1対の溝からなり
、公知のホトリソグラフィ法によって、基板表面に形成
することができる。この1対の溝の間隔は、通常1.0
μm以下とすることができる。上記第2溝は、上記単結
晶素子形成領域内に薄膜状のチャネルを形成するための
ものであって、第1溝の深さに対して形成を意図する薄
膜状チャネルの厚さに相当するだけ浅く形成するのが適
しており、通常深さ0.25〜0.55μm1幅0.5
μm以下の横断面を有する溝をl対の第1溝の間に形成
することができる。
It consists of a pair of grooves having a width of 0 and a cross section of 54 m or less, and can be formed on the substrate surface by a known photolithography method. The distance between this pair of grooves is usually 1.0
It can be less than μm. The second groove is for forming a thin film channel in the single crystal element formation region, and corresponds to the thickness of the thin film channel intended to be formed with respect to the depth of the first groove. It is suitable to form it as shallow as 0.25 to 0.55 μm in depth and 0.5 μm in width.
Grooves having a cross section of less than μm can be formed between the l pair of first grooves.

この発明においては、これらの溝内を含む該基板の表面
に絶縁膜を形成すると共にこれらの溝内に多結晶もしく
は非結晶シリコン又はそれらの化合物を埋設する。上記
絶縁膜は、隔離された単結晶シリコン素子形成領域を構
成するためのものであって、第1及び第2溝内を含む該
基板の表面に、例えば熱酸化法、CVD法等の方法から
適宜選定され几方法によって、酸化シリコン嘆、窒化シ
リコン嘆等を形成して用いることかてごろ。また、この
絶縁膜の膜厚は、通常0.3〜1.0μmとするのが適
している。上記多結晶らしくは非結晶ンリコン又はこれ
らの化合物は、上記単結晶シリコン素子形成領域を支持
する1こめのらのであって、上記絶縁膜が形成された溝
に埋設して用いることができ、この絶縁膜の上に、例え
ばCVD法、スパッタ法等によって積層して形成するこ
とができる。この積層された層は、通常この上に他の基
板を貼着して用いられるので表面を平坦に形成するのが
好ましい。
In this invention, an insulating film is formed on the surface of the substrate including inside these grooves, and polycrystalline or amorphous silicon or a compound thereof is buried in these grooves. The insulating film is for configuring an isolated single-crystal silicon element formation region, and is applied to the surface of the substrate including the inside of the first and second grooves by a method such as a thermal oxidation method or a CVD method. Silicon oxide, silicon nitride, etc. can be formed and used according to an appropriately selected method. Further, the thickness of this insulating film is usually suitably 0.3 to 1.0 μm. The above-mentioned polycrystalline but non-crystalline silicon or a compound thereof can be used by being buried in the groove in which the above-mentioned insulating film is formed, as it is a part that supports the above-mentioned single-crystal silicon element forming region. It can be formed by laminating it on an insulating film by, for example, a CVD method, a sputtering method, or the like. Since this laminated layer is usually used with another substrate attached thereon, it is preferable to form the surface flat.

この発明によれば、この後に、該基板裏面を第1溝底部
の絶縁膜に達するまで除去することにより、第1溝間に
位置しかつ上記絶縁膜で隔離された単結晶シリコン素子
形成領域を構成する。該基板裏面の除去は、絶縁膜で隔
離された単結晶シリコン素子形成領域を形成するための
ものであって、第1溝底部の絶縁膜に達するまで、例え
ば研磨、研削等によって行うことができる。また、この
除去は、まず高速研磨法によって、絶縁膜の近辺まで行
い、続いて選択研磨法によって絶縁膜に達するまで行う
のかよい。高速研磨法は、例えばIN的研磨等が挙げら
れる。選択研磨法は、例えば化学的研磨等が挙げられる
。基板裏面の除去によって上記第1及び第2溝を含む領
域に形成された絶縁膜で隔離されfコ単結晶シリコン素
子形成領域が構成される。
According to this invention, the back surface of the substrate is then removed until it reaches the insulating film at the bottom of the first groove, thereby removing the single crystal silicon element formation region located between the first grooves and isolated by the insulating film. Configure. The purpose of removing the back surface of the substrate is to form a single-crystal silicon element formation region isolated by an insulating film, and can be performed by, for example, polishing, grinding, etc. until the insulating film at the bottom of the first groove is reached. . Also, this removal may be performed first by a high-speed polishing method up to the vicinity of the insulating film, and then by a selective polishing method until reaching the insulating film. Examples of the high-speed polishing method include IN polishing. Examples of the selective polishing method include chemical polishing. By removing the back surface of the substrate, an f single-crystal silicon element forming region is formed isolated by an insulating film formed in a region including the first and second grooves.

この単結晶素子形成領域は、その内側の底部が中央部に
第2溝形成部位の突出を有するため外面に対して凹凸状
となり、中央部の厚さが、通常30〜6(lnm、その
両側の厚さが、通常0.4〜0.6μmとすることがで
きる。
This single-crystal element forming region has an uneven shape with respect to the outer surface because the inner bottom part thereof has a protrusion of the second groove forming part in the central part, and the thickness of the central part is usually 30 to 6 (lnm), and the thickness on both sides thereof is uneven. The thickness can be usually 0.4 to 0.6 μm.

この発明においては、上記単結晶素子形成領域に、上記
第2溝形成部位に対向する単結晶シリコン内にチャネル
を形成し、この上にゲート絶縁膜を介してゲート電極を
積層すると共に、その両側の単結晶シリコン内にソース
、ドレインを形成して半導体装置を作製する。
In the present invention, a channel is formed in the single crystal silicon in the single crystal element forming region opposite to the second groove forming region, and a gate electrode is laminated thereon via a gate insulating film, and a gate electrode is laminated on both sides of the channel. A semiconductor device is manufactured by forming a source and a drain in single crystal silicon.

上記チャネルは、第2溝形成部位に対向する単結晶−シ
リコン内に公知の方法によって不純物をドーピングする
二とによって形成すること赤でき、通常30〜60nm
厚さを有する。この厚さを上記範囲にすることによって
キング特性の発生かなく、高い駆動力を有した高速応答
性の素子を形成することがてきる。
The channel can be formed by doping impurities into the single crystal silicon facing the second groove formation site by a known method, and is usually 30 to 60 nm thick.
It has a thickness. By setting the thickness within the above range, it is possible to form a fast-responsive element with high driving force without the occurrence of king characteristics.

上記ゲート電極は、ゲート絶縁膜を介して、例えば多結
晶シリコン、タングステンソリサイド等の層を積層し、
ホトリソグラフィ法によって所定の形状にエツチングし
て形成することができる。
The gate electrode is formed by laminating layers of polycrystalline silicon, tungsten solicide, etc., with a gate insulating film interposed therebetween,
It can be formed by etching into a predetermined shape using a photolithography method.

この形状は、通常幅08μm以下、厚さ0.2〜0.4
μmの横断面を有する。ソース、ドレインは、例えば上
記ゲート電極をマスクにしてゲート電極の両側の単結晶
シリコン内に公知の方法によって不純物を注入して形成
することができる。
This shape usually has a width of 08 μm or less and a thickness of 0.2 to 0.4
It has a cross section of μm. The source and drain can be formed, for example, by using the gate electrode as a mask and implanting impurities into the single crystal silicon on both sides of the gate electrode by a known method.

(ホ)作用 第1溝か厚いソース、ドレインを形成させ、この厚いソ
ース、ドレインかソース、ドレイン上での配線接触部の
断線を防ぎ、また第2溝が第1.1!1との深さの差に
相当する薄いチャネルを形成させ、こ、)薄いチャネル
か素子6)キック特性の発生を防ぎ乃1つ高い駆動力を
導く。
(E) Effect: Form a thick source and drain in the first trench to prevent disconnection of the wiring contact portion on the thick source and drain, and also make the second trench deep with the first trench. A thin channel corresponding to the difference in height is formed, and 6) the thin channel element prevents the occurrence of kick characteristics and leads to a higher driving force.

(へ)実速例 第1図(a)は、この発明の一実施例のMOS型の半導
体装置の構成を示す説明図である。この半導体装置は、
基板11と絶縁膜13と拡散層121、!2bとゲート
電極18と配線層16とを含んで構成される。ここでS
01層は12a、12b、12cでめろ。第1図(b)
及び(c)は、第1図(a)の平面説明図であり、チャ
ネル幅(Wl、W2)及び素子の配置は各種混在する。
(f) Actual Speed Example FIG. 1(a) is an explanatory diagram showing the structure of a MOS type semiconductor device according to an embodiment of the present invention. This semiconductor device is
Substrate 11, insulating film 13, and diffusion layer 121! 2b, a gate electrode 18, and a wiring layer 16. Here S
01 layer is 12a, 12b, 12c. Figure 1(b)
and (c) are explanatory plan views of FIG. 1(a), in which various channel widths (Wl, W2) and arrangement of elements are mixed.

第2図は、この製造工程を説明するための説明図である
。第2図(a)に示すように、基板11上に約IAtm
厚のフォトレジスト膜12を形成し、これをマスクにし
て約15nmの深さに反応性イオンエツチング(RI 
E)によりエツチングして、第2溝20を形成する。こ
の第2溝20は最終的にはチャネル底部となる。次いで
、第2図(b)に示すようにフォトレジスト膜12を除
去した後、再びフォトレジスト膜14を形成し、これを
マスクにして基illに約20nmの深さにRIEによ
ってエツチングして第1溝15を形成する。二の第1溝
15は、最終的には、チャネル部以外の底部となる。
FIG. 2 is an explanatory diagram for explaining this manufacturing process. As shown in FIG. 2(a), about IAtm is placed on the substrate 11.
A thick photoresist film 12 is formed, and using this as a mask, reactive ion etching (RI) is performed to a depth of approximately 15 nm.
The second groove 20 is formed by etching according to step E). This second groove 20 ultimately becomes the bottom of the channel. Next, as shown in FIG. 2(b), after removing the photoresist film 12, a photoresist film 14 is formed again, and using this as a mask, the base plate is etched to a depth of about 20 nm by RIE. 1 groove 15 is formed. The second first groove 15 ultimately becomes the bottom of the portion other than the channel portion.

次いで、第2図(c)に示すように、基板ll上に膜厚
05μmの酸化層22及び膜厚54o++の多結晶Si
層I7を形成し平坦な表面を得る。ただし、酸化層22
の形成は、熱酸化法でもCVD法でも良いが、表面の平
坦性及びSi/310wの界面特性の面から熱酸化法と
CVD法の併用が好ましい。
Next, as shown in FIG. 2(c), an oxide layer 22 with a thickness of 05 μm and a polycrystalline Si layer with a thickness of 54o++ are formed on the substrate 11.
Form layer I7 to obtain a flat surface. However, the oxide layer 22
may be formed by a thermal oxidation method or a CVD method, but a combination of a thermal oxidation method and a CVD method is preferred from the viewpoint of surface flatness and Si/310w interface characteristics.

次いで、第2図(d)に示すように、多結晶Si層17
に別のSi基板21を1100℃の雰囲気中で貼り合わ
せる。この場合、酸化層が双方の表面に付いていても良
い。
Next, as shown in FIG. 2(d), a polycrystalline Si layer 17 is formed.
Then, another Si substrate 21 is bonded together in an atmosphere of 1100°C. In this case, oxide layers may be attached to both surfaces.

次いで、第2図(e)に示すように基板11の裏面zb
を機械的研磨によって高速に研磨する。
Next, as shown in FIG. 2(e), the back surface zb of the substrate 11 is
is polished at high speed by mechanical polishing.

次いで、第2図(f)に示すように、化学的研磨によっ
て選択研磨を施す。研磨の停止は酸化層22の露出で行
う。ここでチャネル部となる領域23及びチャネル部以
外の領域24の厚さは、それぞれ、50nm、200n
mとなる。まf;、これらの過程で、素子間分離工程ら
自動的に実現されている。この基板を用いて、通常のM
OS  FET製造工程により所望の素子を形成するこ
とにより第1[fflに示すうよな半導体装置を製造す
る。
Next, as shown in FIG. 2(f), selective polishing is performed by chemical polishing. Polishing is stopped when the oxide layer 22 is exposed. Here, the thickness of the region 23 that becomes the channel portion and the region 24 other than the channel portion are 50 nm and 200 nm, respectively.
m. In these processes, the element isolation process is automatically realized. Using this board, normal M
By forming a desired element through an OS FET manufacturing process, a semiconductor device as shown in the first [ffl] is manufactured.

得られた半導体装置は、チャネル部が超薄膜で、チャネ
ル部以外が薄膜構造を有し、応答速度が高速で信頼性が
高かった。尚、本発明は、上記実施例に限定されるもの
ではなく、その趣旨を逸脱しない範囲で種々変形して実
施することができる。
The obtained semiconductor device had an ultra-thin channel portion, a thin film structure in areas other than the channel portion, and had a high response speed and high reliability. It should be noted that the present invention is not limited to the above embodiments, and can be implemented with various modifications without departing from the spirit thereof.

(ト)発明の効果 この発明によれば、耐圧の低下や断線故障に対する信頼
性か高く、キンク特性の発生がなく、高い駆動力(高速
応答性)を有する薄膜SO■素子からなる半導体装置の
製造方法を提供することができる。
(G) Effects of the Invention According to the present invention, a semiconductor device comprising a thin film SO element has high reliability against voltage drop and disconnection failure, does not generate kink characteristics, and has high driving force (high speed response). A manufacturing method can be provided.

この発明の方法を用いることによって、高速応答性の大
規模集積回路の半導体装置を製造することができる。
By using the method of the present invention, a large scale integrated circuit semiconductor device with high speed response can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:土二の発明の実施例で作製し几半導体装置の説
明図、第2図は同じく製造工程の説明図、第3図は従来
の半導体装置の説明図である。 11・・・・・・基板、12・・・・・・ホトレジスト
膜、12a、12b・・・・・・拡散層、 12c・・・・・チャネル部、13・・・・・絶縁膜、
14・・・・・・ホトレジスト膜、15 ・・・・第1
溝、16・・・・・配線、17・・・・・・多結晶Si
層、18・・・・・・ゲート電極、 19・・・・・ゲート絶縁膜、20・・・・・・第2溝
、21・・・−・Si基板、22・・・・・・酸化層、
23・・・・・チャネル部となる領域、24・・・・・
・チャネル部以外の領域。 (a) 渭 図 918 ボ 図 (a) 第 2 図 (C) 第 図(d) 第 閃(f) 第 図
FIG. 1 is an explanatory diagram of a semiconductor device manufactured according to an embodiment of Toji's invention, FIG. 2 is an explanatory diagram of the manufacturing process, and FIG. 3 is an explanatory diagram of a conventional semiconductor device. 11...Substrate, 12...Photoresist film, 12a, 12b...Diffusion layer, 12c...Channel portion, 13...Insulating film,
14... Photoresist film, 15... First
Groove, 16... Wiring, 17... Polycrystalline Si
Layer, 18... Gate electrode, 19... Gate insulating film, 20... Second groove, 21... Si substrate, 22... Oxidation layer,
23... Area that will become the channel part, 24...
・Area other than the channel part. (a) Wei 918 Bo (a) Fig. 2 (C) Fig. (d) Flash (f) Fig.

Claims (1)

【特許請求の範囲】 1、(a)単結晶シリコン基板表面に、ホトリソグラフ
ィ法によって、1対の第1溝とその間に第1溝より浅い
第2溝を形成し、 (b)これらの溝内を含む該基板の表面に絶縁膜を形成
すると共にこれらの溝内に多結晶もしくは非結晶シリコ
ン又はそれらの化合物を埋設し、(c)この後に、該基
板の裏面を第1溝底部の絶縁膜に達するまで除去するこ
とにより、第1溝間に位置しかつ上記絶縁膜で隔離され
た単結晶シリコン素子形成領域を構成し、 (d)上記単結晶素子形成領域に、上記第2溝形成部位
に対向する単結晶シリコン内にチャネルを形成し、この
上にゲート絶縁膜を介してゲート電極を積層すると共に
、その両側の単結晶シリコン内に、ソース、ドレインを
形成することを特徴とする半導体装置の製造方法。
[Claims] 1. (a) forming a pair of first grooves and a second groove shallower than the first grooves therebetween by photolithography on the surface of a single-crystal silicon substrate; (b) forming these grooves; (c) After that, an insulating film is formed on the surface of the substrate including the first trench, and polycrystalline or amorphous silicon or a compound thereof is buried in these trenches; By removing the film until it reaches the film, a single crystal silicon element formation region located between the first grooves and isolated by the insulating film is formed; (d) forming the second groove in the single crystal element formation region; A channel is formed in the single crystal silicon facing the region, a gate electrode is laminated thereon via a gate insulating film, and a source and a drain are formed in the single crystal silicon on both sides. A method for manufacturing a semiconductor device.
JP2925990A 1990-02-07 1990-02-07 Manufacture of semiconductor device Pending JPH03232239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2925990A JPH03232239A (en) 1990-02-07 1990-02-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2925990A JPH03232239A (en) 1990-02-07 1990-02-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03232239A true JPH03232239A (en) 1991-10-16

Family

ID=12271281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2925990A Pending JPH03232239A (en) 1990-02-07 1990-02-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03232239A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376559A (en) * 1992-12-28 1994-12-27 Sony Corporation Method of manufacturing a lateral field effect transistor
US5436173A (en) * 1993-01-04 1995-07-25 Texas Instruments Incorporated Method for forming a semiconductor on insulator device
US5449638A (en) * 1994-06-06 1995-09-12 United Microelectronics Corporation Process on thickness control for silicon-on-insulator technology
US5484738A (en) * 1992-06-17 1996-01-16 International Business Machines Corporation Method of forming silicon on oxide semiconductor device structure for BiCMOS integrated circuits
US5814889A (en) * 1995-06-05 1998-09-29 Harris Corporation Intergrated circuit with coaxial isolation and method
KR100677048B1 (en) * 2005-10-04 2007-02-01 동부일렉트로닉스 주식회사 Semiconductor device and manufacturing method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5484738A (en) * 1992-06-17 1996-01-16 International Business Machines Corporation Method of forming silicon on oxide semiconductor device structure for BiCMOS integrated circuits
US5376559A (en) * 1992-12-28 1994-12-27 Sony Corporation Method of manufacturing a lateral field effect transistor
US5436173A (en) * 1993-01-04 1995-07-25 Texas Instruments Incorporated Method for forming a semiconductor on insulator device
US5449638A (en) * 1994-06-06 1995-09-12 United Microelectronics Corporation Process on thickness control for silicon-on-insulator technology
US5814889A (en) * 1995-06-05 1998-09-29 Harris Corporation Intergrated circuit with coaxial isolation and method
KR100677048B1 (en) * 2005-10-04 2007-02-01 동부일렉트로닉스 주식회사 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5238865A (en) Process for producing laminated semiconductor substrate
JP2831745B2 (en) Semiconductor device and manufacturing method thereof
JPS6114745A (en) Method of producing semiconductor strudture
JP2010074192A (en) Semiconductor device
JPH077144A (en) Soi transistor and forming method therefor
JPS6348180B2 (en)
US6194256B1 (en) Method for fabricating CMOS device
JPH03232239A (en) Manufacture of semiconductor device
JPH1131743A (en) Semiconductor device and manufacture of the same
KR100318458B1 (en) Method of isolation in SOI device
JPH06334503A (en) Longitudinal mis transistor
JPH03211876A (en) Semiconductor device
JP2741393B2 (en) Semiconductor device
JPH08167646A (en) Simox substrate, manufacture of simox substrate and manufacture of semiconductor device
JPH03163833A (en) Semiconductor device and manufacture thereof
JPH06104410A (en) Method for forming soi structure
JP3200961B2 (en) Method for manufacturing semiconductor device
JP3216488B2 (en) Method for manufacturing semiconductor device
JP2770808B2 (en) Semiconductor substrate and method of manufacturing the same
JPH02306665A (en) Semiconductor device and manufacture thereof
JP2004079645A (en) Semiconductor device and its manufacturing method
JP3198343B2 (en) Manufacturing method of three-dimensional integrated circuit device
JPH04103146A (en) Semiconductor device and manufacture thereof
JPH0346346A (en) Semiconductor integrated circuit device
JPH03177072A (en) Semiconductor device and its manufacture