JPH0323212A - Method for recovering lithium - Google Patents

Method for recovering lithium

Info

Publication number
JPH0323212A
JPH0323212A JP1158532A JP15853289A JPH0323212A JP H0323212 A JPH0323212 A JP H0323212A JP 1158532 A JP1158532 A JP 1158532A JP 15853289 A JP15853289 A JP 15853289A JP H0323212 A JPH0323212 A JP H0323212A
Authority
JP
Japan
Prior art keywords
lithium
compound
water
adsorption
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1158532A
Other languages
Japanese (ja)
Inventor
Takuya Omura
卓也 大村
Hideki Kato
秀樹 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP1158532A priority Critical patent/JPH0323212A/en
Priority to FR909007642A priority patent/FR2648727B1/en
Priority to DE4019840A priority patent/DE4019840A1/en
Publication of JPH0323212A publication Critical patent/JPH0323212A/en
Priority to US07/879,740 priority patent/US5256615A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To extremely efficiently recover Li from an Li-contg. liq. by selectively adsorbing the Li on an inorg. ion exchanger represented by a specified general formula and eluting the adsorbed Li. CONSTITUTION:An inorg. ion exchanger represented by a general formula HxA1-xM2(PO4)2 (where A is Li, Na or K, M is Zr, Ti or Sn and x<1) is prepd. and brought into contact with an Li-contg. liq. to adsorb the Li on the ion exchanger. This ion exchanger is separated and brought into contact with an eluting soln. to elute the adsorbed Li.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] 本発明は、特定の無機イオン交換体を用いることにより
、例えば海水、地下水等のリチウムを含む液体から選択
的にリチウムイオンを吸着した後、溶離させることによ
りリチウムを回収する方法に関し、海水、地下水等の天
然水又はリチウムイオンを含有する各種廃液等の液体処
理工業において有用なものである. 〔従来の技術〕 近年、リチウム金属及びその化合物は幅広い分野、例え
ばセラミックス、電池、冷媒吸収剤及び医薬品等に用い
られており、又将来的にも合金材料、大容1i1池及び
核融合燃料等としての利用が考えられており、リチウム
の需要の著しい増加が見込まれている. リチウム金属及びその化合物は、現在主としてスボジュ
ーメン、アンプリゴナイト、ペタライト及びレビドライ
ト等のリチウム含有鉱物(リチウム含有率は2〜6重量
%)及びリチウム濃度の高い塩湖及び地下水等を原料と
して製造されており、我が国では上記の1ノチウム資源
に乏しいため、需要の殆どが輸入によって賄われている
現状であるが、低濃度ながらリチウムを含有する地熱水
又は温泉水等は比較的豊富に存在するので、これらの資
源からリチウムを効率的に回収する方法が望まれている
. 一般に天然資源中のリチウムは、多量のアルカリ金属や
アルカリ土類金属に伴って存在するため、液体中におい
てイオンとして存在するリチウム(以下単にリチウムと
いう)を効率良く回収するには、リチウムを選択的に分
離することが必要であるが、リチウムはナトリウム等、
他のアルカリ金属やアルカリ土頚金属とその化学的性質
が類似している為、一般的なイオン交換体であるイオン
交換樹脂を用いて液体中のリチウムを吸着するという回
収方法によっては、リチウムを選択的に分離することは
極めて困難である. 水溶液からリチウムを回収する方法としては、太陽光の
照射により海水或は塩湖水等を蒸発し、食塩等を析出除
去した後、リチウム塩を採取する方法等もあるが、この
方法では、莫大な面積を必要とし、気象条件による制約
も大きいという欠点があり、実用化は困難な状況にある
. リチウムを回収する他の方法としては、海水、温泉水、
地下水等に含まれるリチウムを、水酸化アルミニウム共
沈法により回収する方法が知られているが、この方法に
おいてはリチウムに対する吸着量及び吸着速度が小さい
という欠点があり、実用化は困難となっている. 一方、無機イオン交換体を用いるリチウム回収方法とし
て、無定形水酸化アルミニウム、金属アルミニウム、含
水酸化スズ、多孔質のミクロボーラス型のマンガン酸化
物、ヒ酸ナトリウム、アンチモン酸、アンチモン酸スズ
、アンチモン酸チタン、リン酸スズ、リン酸ジルコニウ
ム、リン酸チタン等のリチウム吸着性を示す化合物を用
いる方法も考えられるが、何れの化合物を使用する場合
においても、イオン交換操作との関係上粒状等に成形さ
れたものを使用することが望ましいが、このように威形
すると、イオン交換特性が大幅に低下するという問題が
ある他、無定形水酸化アルミニウム、金属アルミニウム
及び含水酸化スズにおいては、吸着量及び吸着速度が小
さいという問題があり、マンガン酸化物を使用する場合
には、高温熟水中での安定性が低いという問題があり、
ヒ素或はアンチモン酸を含有する化合物の場合にはヒ素
イオン或はアンチモンイオン等に起因する毒性の問題が
ある. 又、最近リチウムに対して吸着性を示す新規な化合物と
して、NHgZrgP30+z・nHzO (但し、n
はO−0.4を表す.)で示されるリン酸アンモニウム
ジルコニウム化合物を加熱して脱アンモニアすることに
得られる、一M式HZrzP30+zで表されるリン酸
水素ジルコニウム化合物が提案されたが(vf開昭60
−96523) 、この化合物においてはナトリウムに
対しても同様な吸着特性を示すため、リチウムを選択的
に回収することが困難であるという問題がある. [本発明が解決しようとする課!!!]海水、天然ガス
かん水、地熱水、温泉水等の天然水及び製塩かん水、各
種工場廃液等のリチウムを含む液体からリチウムを効率
的に吸着した後、溶離して回収するには、リチウムに対
する選択吸着性に優れ、かつ吸着速度及び吸IFfiが
大きくかつ液体中で安定であり毒性の問題がなく、更に
吸着・溶離の繰り返し使用が可能であり、更にイオン交
換特性を低下させずに粒状或は膜状等に成形することが
可能であることが要求される.本発明は、上記の要求を
全て満足する無機イオン交換体を使用して、上記各種の
リチウム含有液体からリチウムを極めて効率的に回収す
る方法を提供することをtiaとする. (ロ)発明の構威 [課題を解決するための手段] 本発明者等は鋭意検討した結果、下記一般式で表される
化合物が、上記の要求を全て満足する化合物であり、こ
れを用いることによりリチウムを含む水溶液から極めて
効率的に回収することができることを見出し、本発明を
完或するに至った.即ち、本発明は、一般弐H−A+−
Mz ( P O4) x(上式において、Xは1未満
の正数、AはLl、Na,Kより選ばれる少なくとも1
#1、MはZrSTi、Snより選ばれる少なくとも1
種)で示される化合物を、リチウム含育液体と接触さで
示される化合物を、リチウム含有液体と接触させること
を特徴とするリチウムの回収方法である.以下、本発明
において用いる化合物及びその使用方法について説明す
る, 〈無機イオン交換体〉 本発明で用いる無機イオン交換体は、一般弐H,A.−
.M.(p04)s (上式において、Xは1未満の正
数、AはL+,Na,Kより選ばれる少なくともl種、
MはZr,Ti,Snより選ばれる少なくとも1種であ
る.以下これを化合物lという.)により示される化合
物であり、本発明は化合物Iのプロトンとリチウムとの
イオン交換を利用するものである. 化合物Iの製造方法については、マテリアルリサーチ 
ブレテン(Mat, Res. Bull) vojl
2,pl71−182. 1977或はアクタ ケミカ
 スカンジナビ力(^cta. CHEMrC^. S
cand) voj22,p1822−1832.19
68等に記載されており、例えば炭酸リチウム(Lii
COs) 、炭酸ナトリウム(Na*COs)及び炭酸
カリウム(κICOs)等の、上記一般式における元素
Aを含有する塩より選ばれる少なくとも一種、酸化ジル
コニウム(ZrOz) 、酸化チタン(Tilt)及び
酸化スズ(Snow)等のガ元素含有塩より遍ばれる少
なくとも一種及びリン酸三水素アンモニウム(NH4H
xPO4)及びリン酸アンモニウム( (NHa) .
POa )等のリン酸塩壱モル比で約b4:6の割合で
混合し、l100〜1400℃、好ましくは1300”
Cにおいて焼或することにより得られるAMx(POa
)s(以下化合物■という,)を、常温〜100゜Cの
塩酸、硝酸等の無機酸中に浸漬する酸処理を行った後、
乾燥することにより容易に得られる.化合物Iにおける
xO)値は、化合物任を酸処理によりする際の酸の濃度
、温度及び処理時間等により制御することができる.こ
のような酸処理によっては、化合物■中の元素Aを全て
プロトンと置換することは事実上極めて困難であり、8
i微量の元素Aが残留するので、Xは1未満の正数とな
る.プロトンとリチウムとのイオン交換容量を大きくす
るには、好ましくはXの値を0.5以上、更に好ましく
は0.8以上の値とするとよい.上記の様にして得られ
る化合物■は、一般に粉末状であり、その粒径は0.0
1〜100μ−が好ましく、0.1〜10μ−の範囲が
更に好ましい.粒径が0.Olp■より小さいと、粉末
同志が凝集現象を起こしたり、結合剤を用いて威形する
場合には、粉末状の粒子が結合剤で被われてしまい、イ
オン交換特性を十分に発揮することができなくなる恐れ
があり、逆に粒径が100μ−より大きいと、結合剤を
用いて戒形する場合に粒子と結合剤との接触部少なくな
り機械的強度の大きい戊形体が得られないという恐れが
ある. 化合物Iは、PH値が12以下の水溶液中において極め
て安定であり、溶解性を示さないばかりか、リチウムを
選択的に吸着するので、他のイオン種が共存している場
合においても、何等問題は生じない. 化合物■の形状としては、上記のようにして得られる粉
末状のままでもよいが、化合物Iをカラム充填方式等で
使用する場合には、通液抵抗を減少させるために粒状、
棒状、円筒状等の適当な大きさ及び形状に威形して使用
することが望ましく、逆洗、再生等の操作に十分耐える
だけの機械的強度を有することが好ましい. 化合物!又は化合物■を、結合剤を用いて又は用いない
で、膜或いは粒状に威形した後、焼威して得られる戒形
体を酸処理(化合物Hを用いた場合のみ)することによ
り、容易に化合物■の各種或形体を得ることができる.
驚くべきことに、化合物!の各種戊形体は、従来のリチ
ウム吸着剤とは異なり、威形した場合においてもイオン
交換特性の低下がなく、カラム充填方式によりイオン交
換を行うことが可能であり、工業的な使用上極めて有利
である. く威形方法〉 戒形方法は、大別して結合剤を用いる方法及び結合剤を
用いない方法がある. i)結合剤を用いる方法 結合剤としては有機賞のものと無機質のものがあるが、
無機イオン交換体の耐熱性を十分に利用するには、無機
質の結合剤を使用する方が好ましい.無機質結合剤の中
でも、粘土!!物と金属アルコキシド又はその加水分解
物を併用する方法は粒状に威形した後の機械的強度やイ
オン交換特性の?下が少ない傾向があるので、好ましい
ものである. O粘土鉱物 粘土鉱物としては、例えばベントナイト、カオリン、硅
藻土、木節粘土、蛙目粘土等があり、含水ケイ酸塩系の
膨潤性層状化合物であればよい.これらの中では、工業
的に入手が容易であることから特にベントナイトが好ま
しい.粘土鉱物の好ましい配合量は、100重量部(以
下単に部と略す)の化合物!又は化合物■に対して1〜
70部、より好ましくは2〜40部である.配合量が1
部未満では、粒状に戒形された化合物■の機械的強度が
低下し、70部より多くしても機械的強度を向上させる
効果が小さく、イオン交換能の低下を引き起こす恐れが
ある. ○金属アルコキシド又はその加水分解物金属アルコキシ
ドは、アルコール類の水酸基の水素を金属で置換した化
合物であり、具体例としてはSi (OR) a 、τ
i(OR)a 、AI■(OR)x及びZr (OR)
 a(Rはメチル、エチル、プロビル及びブチル等のア
ルキル基)等があり、これらの中でもシリコンのアルコ
キシドは他の金属のアルコキシドに比較して加水分解速
度が小さく、容易に安定なゾル状とすることができるの
で好ましい. 金属アルコキシド加水分解物は、通常の方法により調製
することができるものであり〔例えば、作花 済夫 著
、「ゾルーゲルの科学J 、8−241、アグネ承風社
発行(1988年)〕,溶媒中における金属アルコキシ
ドの加水分解と重合反応の進行度に応じてゾル状又はゲ
ル状になるが、後述する造粒工程での混練を容易にする
ため、ゾル状のものを使用することが好ましい. 金属アルコキシド又は金属アルコキシド加水分解物のい
ずれを用いてもよいが、後述する造粒工程での混線時間
を短くするためには、好ましくは金属アルコキシド加水
分解物がよい. 上記の金属アルコキシドの溶媒としては、メタノール、
エタノール、プロバノール、ブタノール等のアルコール
類、エチレングリコール、エチレンオキシド、トリエタ
ノールアミン、キシレン、フォルムアミト′、ジメチル
フォルムアミド、ジオキサン及びシュウ酸等があり、好
ましくはアルコール類を用いる. 金属アルコキシド又はその加水分解物の最通配・合量は
、用いる粘土鉱物の種類及び量等によって種々変動する
が、100部の化合物I又は化合物■に対して、金属ア
ルコキシドの固形分(金属アルコキシドから生成される
金属酸化物の重量に換算される置)として1〜60部好
ましくは、3〜30部、更に好ましくは3〜20部とす
るのがよい.配合量が1部未満では威形された化合物I
のイオン交換特性が低下し、60部より多いと、或形さ
れた化合物1の機械的強度が低下する傾向がある.○威
形工程 各種威形体は、混合・混練、造粒及び焼戒からなる一般
的な威形工程を経て戒形すればよい.まず、混合・混練
工程について説明する.混合・混練工程において、化合
物■又は化合物■、粘土鉱物、金属アルコキシド又はそ
の加水分解物及び水等の各成分を混合する.このときの
混合順序については任意であり、各成分を均一に混合す
ればよい.混合・,混練操作の一例として、例えば化合
物■又は化合物■に上記粘土鉱物を添加し、二一ダー等
により均一に混合した後、更に上記金属アルコキシド又
は金属アルコキシド加水分解物及び適当量の水を添加し
温式混合すればよい.このとき添加する水は、混合・混
練操作を容易にするために配合される成分であり、その
配合量としては、化合物!又は化合物■の種類及び粒度
、粘土鉱物及び金属アルコキシド又は金属アルコキシド
加水分解物の種類及び量等により異なるが、通常スラリ
ー中の固形分100部に対して1〜100部、好ましく
は1〜50部がよい.上記のようにして得られたスラリ
ーを更に二一グー等で数時間〜1日間混練する. 造粒方式についても特に制限はないが、工業的規模にお
いて歩留りや再現性等に優れた、押し出し造粒法を用い
ることが好ましい.なお、得られた造粒物を通常の遠心
回転方式等により球状へ整粒するとよい. その後、上記の様にして得られた造粒物を焼威し、充分
な機械的強度を付与することにより、粒状に威形された
化合物I又は化合物■を得る.このときの焼威条件は、
化合物I又は化合物■の種類及び粒度、粘土鉱物及び金
属アルコキシド又は金属アルコキシド加水分解物の種類
及び配合量等により異なるが、焼成時の最高焼戒温度を
通常400”C以上で、かつ化合物I又は化合物■の融
点以下の温度とし、最高焼或温度の保持時間を1〜8時
間、より好ましくは2〜6時間とするのがよい.焼或温
度が400’C未満では、或形された化合IFII又は
化合物■のII械的強度が低下し、無機イオン交換体の
融点より高いと、粒子が互いに融着したり、場合によっ
てはイオン交換特性が著しく低下する場合がある. 焼成時の昇温速度については特に制限がなく、通常の昇
温速度、即ちlO〜800゜C /hr、好ましくは3
0〜200℃/hrとすればよい. ii )結合剤を用いない方法 加圧成形法、可塑威形法或いは鋳込み威形法等により、
粉末状の化合物1又は化合物■を、粒状、棒状及びベレ
フト状等の適当な形状に戚形した後、800〜1200
℃、1〜7時間の条件で焼威することにより、機械的強
度に優れた戒形体を容易に得ることができる. くリチウムを含有する液体〉 化合物■と接触させることによりリチウムを回収するこ
とができる対象液としては、リチウムを含む液体であれ
ば何等制限されることなく、例えば海水、天然ガスかん
水、地熱水及び温泉水等の天然水又は製塩かん水、工場
廃水及び有m熔剤を含む廃液等がある. これらのリチウム含有液体の温度は、イオン交換する対
象が液状であればよいが、一般にリチウム含有液体の温
度が高い程、リチウムの吸着速度が高い傾向があるので
、操作上の制限がなければ、リチウム含有液体の温度は
高いことが好ましい.又、リチウム含有液体のPH値は
12以下であることが好ましいが、PHが4以下ではリ
チウム吸着量が低下する傾向があるので、より好ましい
PH値の範囲としては、5〜11である.化合物■とリ
チウム含有液体との接触は回分式及び連続式のいずれに
よっても行うことができ、接触後の化合物■をリチウム
含有液から分鰭する操作は、一般的な固液分離手段によ
ればよい.〈溶離液〉 以上のようにしてリチウムを吸着した化合物I壱分離し
、これを溶離液と接触させることにより、リチウムを化
合物Iから溶離させ、リチウムを回収する. このとき用いる溶離液としては、塩酸、砿酸、硝酸又は
リン酸等の無機酸があり、これらを2種以上混合して使
用しても良い.又、これらの無機酸とアンモニウム塩水
溶液と併用しても良い.溶離の条件としては、溶離液の
濃度、温度が高い程及び処理時間が長い程、リチウムの
脱利達度が大きい傾向がある.しかし、操作上の制限が
有れば、室温付近の温度で十分である. [作用] 化合物■は、R2cの空間群を有する三次元骨格構造の
化合物であり、(PO4)酸素四面体、(ZrOi)酸
素六面体及び(AO&)酸素六面体が互いに頂点を共有
しながら結合しており、(aO*)酸素六面体における
Aイオンの周囲の空間がリチウムの出入りにとって極め
て好適であり、この特異な構造は化合物■を化合物Iに
誘導した後も維持されるため、リチウムを選択的に吸着
するという性質のみならず、吸着されたリチウムとプロ
トンとが、熔離液と接触させることにより可逆的に置換
すると考えられる. −1に無機イオン交換体のイオン交換特性は、結晶水に
由来し、高温で加熱処理すると結晶水が消失するととも
に、イオン交換特性もなくなる場合が多いが、本発明に
おいて用いる化合物Iは、結晶水を有しないので、成形
するための高温加熱処理後も、何等イオン交換特性が低
下しない.[実施例、参考例及び比較例] 以下に実施例及び比較例により本発明を更に具体的に説
明する. 参考例l 炭酸リチウム、酸化ジルコニウム及びリン酸アンモニウ
ムを所定の割合で混合したものを焼成することにより得
た、LiZrz(POn)s (化合物n)1gを、1
00”Cの2N塩#100aj中で1晩攬拌した後、濾
過水洗し、110℃で1晩乾燥することにより、化合物
lを得た.濾液中のLi濃度を測定した結果、化合物■
の一般式において、AはLiで、MはZrであり、又X
の値は0.9であった.実施例l 参考例1で得た粉末状の化合物Iの0.1gを、天然海
水(リチウム濃度0.17mg/l) 2 Lに添加し
、24時間攪拌した.その後、粉末を濾別、洗浄、乾燥
後、5N塩酸で溶離し、塩酸中のリチウム濃度を測定す
ることにより、リチウムの吸着量及び濃縮率を求めた.
なお、濃縮率は次式により算出した。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] The present invention provides a method for selectively removing lithium from lithium-containing liquids such as seawater and groundwater by using a specific inorganic ion exchanger. This method relates to recovering lithium by adsorbing and eluting ions, and is useful in the liquid treatment industry for natural waters such as seawater and groundwater, or various waste liquids containing lithium ions. [Prior Art] In recent years, lithium metal and its compounds have been used in a wide range of fields, such as ceramics, batteries, refrigerant absorbents, and pharmaceuticals, and in the future, they will also be used in alloy materials, large-capacity 1I1 ponds, nuclear fusion fuels, etc. The demand for lithium is expected to increase significantly. Lithium metal and its compounds are currently produced mainly from lithium-containing minerals such as subodumene, ampligonite, petalite, and lebidolite (lithium content is 2 to 6% by weight), and from salt lakes and groundwater with high lithium concentrations. In Japan, the above-mentioned notium resources are scarce, and most of the demand is currently met by imports, but geothermal water or hot spring water that contains lithium, albeit at a low concentration, is relatively abundant. , a method to efficiently recover lithium from these resources is desired. Generally, lithium in natural resources exists together with large amounts of alkali metals and alkaline earth metals, so in order to efficiently recover lithium that exists as ions in liquids (hereinafter simply referred to as lithium), it is necessary to selectively collect lithium. It is necessary to separate lithium into sodium, etc.
Because its chemical properties are similar to other alkali metals and alkaline earth metals, lithium cannot be recovered depending on the recovery method of adsorbing lithium in liquid using ion exchange resin, a common ion exchanger. Selective separation is extremely difficult. One method of recovering lithium from an aqueous solution is to evaporate seawater or salt lake water by irradiating it with sunlight, precipitate out salt, etc., and then collect lithium salt. The drawbacks are that it requires a large area and is severely restricted by weather conditions, making it difficult to put it into practical use. Other methods of recovering lithium include seawater, hot spring water,
A method is known to recover lithium contained in groundwater etc. by aluminum hydroxide co-precipitation method, but this method has the disadvantage that the adsorption amount and adsorption rate for lithium is small, making it difficult to put it into practical use. There is. On the other hand, as a lithium recovery method using an inorganic ion exchanger, amorphous aluminum hydroxide, metallic aluminum, hydrated tin oxide, porous micro-bolus type manganese oxide, sodium arsenate, antimonic acid, tin antimonate, antimonic acid A method using compounds that exhibit lithium adsorption properties such as titanium, tin phosphate, zirconium phosphate, and titanium phosphate can be considered, but when using any compound, it is difficult to form it into granules due to the ion exchange operation. It is desirable to use aluminum hydroxide, but if the ion exchange properties are significantly deteriorated, there is a problem that the adsorption amount and the There is a problem of low adsorption rate, and when using manganese oxide, there is a problem of low stability in high temperature mature water.
In the case of compounds containing arsenic or antimonic acid, there is a problem of toxicity due to arsenic ions or antimony ions. In addition, recently, NHgZrgP30+z・nHzO (however, n
represents O-0.4. A zirconium hydrogen phosphate compound expressed by the 1M formula HzrzP30+z was proposed by heating and deammonizing the ammonium zirconium phosphate compound expressed by
-96523), this compound exhibits similar adsorption properties for sodium, making it difficult to selectively recover lithium. [The problem that the present invention attempts to solve!] ! ! ] After efficiently adsorbing lithium from liquids containing lithium such as seawater, natural gas brine, geothermal water, hot spring water, etc., salt manufacturing brine, and various factory waste fluids, it is necessary to elute and recover lithium. It has excellent selective adsorption, has a large adsorption rate and absorption IFfi, is stable in liquids, has no toxicity problems, can be used repeatedly for adsorption and elution, and can be used in granular or is required to be able to be formed into a film shape, etc. The object of the present invention is to provide a method for very efficiently recovering lithium from the various lithium-containing liquids using an inorganic ion exchanger that satisfies all of the above requirements. (b) Structure of the invention [Means for solving the problem] As a result of intensive study, the present inventors found that the compound represented by the following general formula is a compound that satisfies all of the above requirements, and uses this compound. The inventors have discovered that lithium can be recovered extremely efficiently from an aqueous solution containing lithium, and have completed the present invention. That is, the present invention provides general 2H-A+-
Mz (P O4) x (In the above formula, X is a positive number less than 1, A is at least 1 selected from Ll, Na, K
#1, M is at least one selected from ZrSTi, Sn
This method of recovering lithium is characterized by contacting the compound represented by (species) with a lithium-containing liquid. Hereinafter, the compounds used in the present invention and the method for using the same will be explained. <Inorganic ion exchanger> The inorganic ion exchanger used in the present invention is a general 2H, A. −
.. M. (p04)s (In the above formula, X is a positive number less than 1, A is at least l types selected from L+, Na, K,
M is at least one selected from Zr, Ti, and Sn. This is hereinafter referred to as compound l. ), and the present invention utilizes ion exchange between the protons of Compound I and lithium. For the manufacturing method of Compound I, please contact Material Research.
Bulletin (Mat, Res. Bull) vojl
2, pl71-182. 1977 or Acta Chemica Scandinavian Power (^cta.CHEMrC^.S
cand) voj22, p1822-1832.19
For example, lithium carbonate (Lii
At least one salt selected from salts containing element A in the above general formula, such as COs), sodium carbonate (Na*COs), and potassium carbonate (κICOs), zirconium oxide (ZrOz), titanium oxide (Tilt), and tin oxide ( At least one kind of moth element-containing salts such as
xPO4) and ammonium phosphate ((NHa).
Mix phosphate salts such as POa at a molar ratio of about 4:6 and heat at 100 to 1400°C, preferably 1300°C.
AMx (POa
)s (hereinafter referred to as compound ■) is subjected to acid treatment by immersing it in an inorganic acid such as hydrochloric acid or nitric acid at room temperature to 100°C,
It can be easily obtained by drying. The xO) value of Compound I can be controlled by the acid concentration, temperature, treatment time, etc. when the compound is treated with acid. By such acid treatment, it is actually extremely difficult to replace all of element A in compound (1) with protons;
i Since a trace amount of element A remains, X is a positive number less than 1. In order to increase the ion exchange capacity between protons and lithium, the value of X is preferably set to 0.5 or more, more preferably 0.8 or more. Compound (2) obtained as above is generally in powder form, and its particle size is 0.0
The range is preferably from 1 to 100μ, more preferably from 0.1 to 10μ. Particle size is 0. If it is smaller than Olp■, the powder particles may aggregate, or if a binder is used to shape the particles, the powder particles will be covered with the binder, making it impossible to fully exhibit ion exchange properties. On the other hand, if the particle size is larger than 100μ, there is a risk that when forming with a binder, there will be fewer contact areas between the particles and the binder, making it impossible to obtain a cylindrical body with high mechanical strength. There is. Compound I is extremely stable in an aqueous solution with a pH value of 12 or less, exhibits no solubility, and selectively adsorbs lithium, so it poses no problems even when other ionic species coexist. does not occur. The shape of Compound (I) may be in the powder form obtained as described above, but when Compound I is used in a column packing method, etc., it may be in the form of granules,
It is preferable to use it in an appropriate size and shape, such as a rod or cylinder, and it is preferable that it has sufficient mechanical strength to withstand operations such as backwashing and recycling. Compound! Alternatively, compound (1) can be shaped into a film or granules with or without a binder, and then the formed body obtained by burning can be treated with an acid (only when compound H is used). Various forms of compound (1) can be obtained.
Amazingly, the compound! Unlike conventional lithium adsorbents, the ion-exchange properties of the various rod-shaped bodies do not deteriorate even when they are oversized, and ion exchange can be performed using a column packing method, making them extremely advantageous for industrial use. It is. Kui Kata Method> Kui Kata Method can be broadly divided into methods that use a binder and methods that do not use a binder. i) Method using a binder There are two types of binders: organic ones and inorganic ones.
To take full advantage of the heat resistance of inorganic ion exchangers, it is preferable to use an inorganic binder. Among inorganic binders, clay! ! Is there a method to use metal alkoxide or its hydrolyzate in combination to improve mechanical strength and ion exchange properties after shaping into particles? This is preferable because it tends to have less lower parts. O Clay Minerals Clay minerals include, for example, bentonite, kaolin, diatomaceous earth, Kibushi clay, and Frog's eye clay, and any swellable layered compound based on hydrous silicate may be used. Among these, bentonite is particularly preferred because it is industrially easily available. The preferred amount of clay mineral is 100 parts by weight (hereinafter simply referred to as "parts") of the compound! or 1 to compound ■
It is 70 parts, more preferably 2 to 40 parts. The blending amount is 1
If the amount is less than 70 parts, the mechanical strength of the granular compound (2) will decrease, and even if it is more than 70 parts, the effect of improving the mechanical strength will be small and there is a risk of a decrease in ion exchange ability. ○Metal alkoxide or its hydrolyzate Metal alkoxide is a compound in which the hydrogen of the hydroxyl group of alcohols is replaced with a metal, and specific examples include Si (OR) a , τ
i(OR)a, AI■(OR)x and Zr(OR)
a (R is an alkyl group such as methyl, ethyl, propyl, and butyl), etc. Among these, silicon alkoxides have a lower hydrolysis rate than alkoxides of other metals and can be easily made into a stable sol. This is preferable because it allows you to The metal alkoxide hydrolyzate can be prepared by a conventional method [for example, by Masao Sakuhana, "Sol-gel Science J, 8-241, published by Agne Seifusha (1988)]", using a solvent. Depending on the progress of the hydrolysis and polymerization reaction of the metal alkoxide therein, it becomes a sol or a gel, but it is preferable to use a sol in order to facilitate kneading in the granulation process described below. Either a metal alkoxide or a metal alkoxide hydrolyzate may be used, but in order to shorten the crosstalk time in the granulation process described below, a metal alkoxide hydrolyzate is preferably used. As a solvent for the above metal alkoxide. is methanol,
Examples include alcohols such as ethanol, propanol, butanol, ethylene glycol, ethylene oxide, triethanolamine, xylene, formamide, dimethylformamide, dioxane, and oxalic acid. Alcohols are preferably used. The usual blending and total amount of metal alkoxide or its hydrolyzate varies depending on the type and amount of clay mineral used, but the solid content of metal alkoxide (metal alkoxide It is preferably 1 to 60 parts, preferably 3 to 30 parts, and more preferably 3 to 20 parts in terms of the weight of the metal oxide produced. If the amount is less than 1 part, the compound I
If the amount exceeds 60 parts, the mechanical strength of compound 1 tends to decrease. ○Ogata process Various types of ogata can be formed through the general ogata process consisting of mixing, kneading, granulation, and burning. First, we will explain the mixing and kneading process. In the mixing/kneading step, the components such as compound (1) or compound (2), clay mineral, metal alkoxide or its hydrolyzate, and water are mixed. The mixing order at this time is arbitrary, and it is sufficient to mix each component uniformly. As an example of a mixing/kneading operation, for example, the above clay mineral is added to Compound (1) or Compound (2), and the mixture is homogeneously mixed using a colander or the like, and then the above metal alkoxide or metal alkoxide hydrolyzate and an appropriate amount of water are added. Just add it and mix warmly. The water added at this time is a component added to facilitate mixing and kneading operations, and the amount of water added is a compound! Or, although it varies depending on the type and particle size of compound (1), the type and amount of clay mineral and metal alkoxide or metal alkoxide hydrolyzate, etc., it is usually 1 to 100 parts, preferably 1 to 50 parts, based on 100 parts of solid content in the slurry. Good. The slurry obtained as described above is further kneaded with Niichi Gu or the like for several hours to one day. There are no particular restrictions on the granulation method, but it is preferable to use the extrusion granulation method, which has excellent yield and reproducibility on an industrial scale. It is recommended that the obtained granules be sized into spheres using a conventional centrifugal rotation method. Thereafter, the granules obtained in the above manner are burned to impart sufficient mechanical strength, thereby obtaining Compound I or Compound (2) shaped into granules. The incineration conditions at this time are
Although it varies depending on the type and particle size of Compound I or Compound II, the type and amount of clay mineral and metal alkoxide or metal alkoxide hydrolyzate, etc., the maximum firing temperature during firing is usually 400"C or higher, and Compound I or It is preferable to set the temperature below the melting point of compound (2) and keep the maximum baking temperature for 1 to 8 hours, more preferably 2 to 6 hours.If the baking temperature is less than 400'C, the compound If the II mechanical strength of IFII or compound ① decreases and is higher than the melting point of the inorganic ion exchanger, the particles may fuse to each other, and in some cases, the ion exchange properties may decrease significantly. Temperature rise during calcination There is no particular restriction on the rate, and the usual heating rate, i.e., 1O~800°C/hr, preferably 3
It may be set at 0 to 200°C/hr. ii) Methods that do not use binders, such as pressure molding method, plastic molding method, casting molding method, etc.
Powdered compound 1 or compound
By incinerating at ℃ for 1 to 7 hours, it is possible to easily obtain a cylindrical body with excellent mechanical strength. Liquids containing lithium> Liquids from which lithium can be recovered by contacting with compound ■ are not limited in any way as long as they contain lithium, such as seawater, natural gas brine, and geothermal water. and natural water such as hot spring water, salt-manufactured brine, industrial wastewater, and wastewater containing smelting agents. The temperature of these lithium-containing liquids may be adjusted as long as the target to be ion-exchanged is liquid, but generally speaking, the higher the temperature of the lithium-containing liquid, the higher the rate of adsorption of lithium, so unless there are operational limitations, The temperature of the lithium-containing liquid is preferably high. Further, the pH value of the lithium-containing liquid is preferably 12 or less, but if the pH is 4 or less, the amount of lithium adsorbed tends to decrease, so the more preferable pH value range is 5 to 11. The contact between the compound ■ and the lithium-containing liquid can be carried out either batchwise or continuously, and the operation of separating the compound ■ from the lithium-containing liquid after contact can be carried out using a general solid-liquid separation method. good. <Eluent> By separating Compound I which adsorbed lithium as described above and contacting it with an eluent, lithium is eluted from Compound I and lithium is recovered. Examples of the eluent used at this time include inorganic acids such as hydrochloric acid, boronic acid, nitric acid, and phosphoric acid, and two or more of these may be used as a mixture. In addition, these inorganic acids and ammonium salt aqueous solutions may be used in combination. Regarding elution conditions, the higher the concentration and temperature of the eluent, and the longer the treatment time, the greater the degree of lithium desorption. However, if there are operational limitations, temperatures around room temperature may be sufficient. [Function] Compound ■ is a compound with a three-dimensional skeleton structure having a space group of R2c, in which (PO4) oxygen tetrahedron, (ZrOi) oxygen hexahedron, and (AO&) oxygen hexahedron are bonded to each other while sharing vertices. The space around the A ion in the (aO*) oxygen hexahedron is extremely suitable for the entry and exit of lithium, and this unique structure is maintained even after compound ■ is induced into compound I, so lithium can be selectively transferred. In addition to the property of adsorption, it is thought that the adsorbed lithium and protons are reversibly replaced by contact with the eluent. -1, the ion exchange properties of inorganic ion exchangers are derived from crystallization water, and when heat treated at high temperatures, the crystal water disappears and the ion exchange properties also disappear in many cases, but Compound I used in the present invention Since it does not contain water, its ion exchange properties do not deteriorate at all even after high-temperature heat treatment for molding. [Examples, Reference Examples and Comparative Examples] The present invention will be explained in more detail below using Examples and Comparative Examples. Reference Example 1 1 g of LiZrz(POn)s (compound n) obtained by firing a mixture of lithium carbonate, zirconium oxide, and ammonium phosphate in a predetermined ratio,
Compound 1 was obtained by stirring overnight in 2N salt #100aj of 00"C, filtering and washing with water, and drying at 110°C overnight. As a result of measuring the Li concentration in the filtrate, Compound 1 was obtained.
In the general formula, A is Li, M is Zr, and
The value was 0.9. Example 1 0.1 g of the powdered Compound I obtained in Reference Example 1 was added to 2 L of natural seawater (lithium concentration 0.17 mg/l) and stirred for 24 hours. Thereafter, the powder was filtered, washed, dried, and eluted with 5N hydrochloric acid, and the lithium concentration in the hydrochloric acid was measured to determine the amount of lithium adsorbed and the concentration ratio.
Note that the concentration rate was calculated using the following formula.

更に、天然海水中のリチウム以外のアルカリ金属、アル
カリ土類金属についても同樟に吸着量及び′a縮率を求
め、それらの結果を第1表に示した,第I表から、Hx
LII−wZrz(Pot)z(x=0.9”)は、リ
チウム以外のアルカリ金属及びアルカリ土類金属に比べ
てリチウムに対する濃縮率が著しく大きく、これを用い
れば天然海水からリチウムの回収を極めて効率的に行う
ことができることがわかる.実施例2 参考例Iで得た化合物【のlgt−池熱水(リチウム濃
度5.2mg/l) 2 1に添加し、24時間攪拌し
た.その後、化合物Iを濾別、水洗後、乾燥した.濾液
中のリチウム濃度を測定することにより、リチウム吸着
量を求めた。化合物Iを乾燥後、5N塩酸100sjに
漫涜し、80゜Cで3時間保温してリチウムを溶鰭した
.同じ化合物1を用いて、このような吸着・溶離による
リチウム回収操作を5回繰り返し、各々の回収操作にお
ける濾液中のリチウム濃度及び塩酸中のリチウム濃度を
測定することにより、リチウム吸着量、リチウム吸着率
及びリチウム説着率を求め、それらの結果を第2表に示
した.第2表より、}IIILi+−NZr*(POa
)s (xJ.9)を用いるリチウム回収方法は、リチ
ウムの吸着・溶離を繰り返してもリチウム回収能力が低
下しないことがわかる. 実施例3 参考例1で得た化合物1500g、粘土鉱物であるベン
トナイト55g、水120 g及び金属アルコキシド加
水分解物としてエチルシリケートから調製したシリカゾ
ル(固形分15%、溶媒:エタノール)を560gを添
加して、ニーダーで2時間混練した(回転速度100r
pm) *この混練物をスクリュー2軸でスクリュー先
端横面に0.5■φのスクリーンをセットした押し出し
造粒機で造粒し(スクリュー回転速度20rpm ) 
、0.5m−φの棒状顆粒物を得た. 得られた棒状顆粒物を、円笥状容器の下部に回転板を有
する整粒機に入れ、700rp−の回転速度で30秒間
回転させ、0.5開一の球状物を得た,この球状物を電
気炉内で800゜C、2 hr焼威した.この焼成され
た球状物1gを海水20 1中で24時間攪拌し、濾過
後洗浄乾燥した.その後、5N塩酸で溶離し、塩酸中の
リチウム濃度を測定して、リチウム吸着量及び濃縮率を
実施例1と同様にして求め、それらの結果を第3表に示
した.又、この焼威された球状物1gを、90’Cの熱
湯100ml とともに分液ロー} (250s L)
に入れ、100回/分の振蕩器に30分かけた結果、破
砕、粉化が見られず形状は維持されていた. 以上のことから、無機系結合剤を用いて球状に威形され
たHgLit−lIzrt(POn)s(+1−0.9
)は、イオン交換特性が殆ど低下せず、しかも機械的強
度が大きいので、カラム充填方式等によって使用するこ
とが可能であることがわかる. 実施例4 参考例1で得た化合物1  500gに四フッ化エチレ
ン樹脂粉末(平均粒径0.1 pm) 50g、フッ素
系非イオン界面活性剤5g、水350g及びエタノール
110 gを添加、混合し、二一ダーで15分間混練し
た(回転速度100rpm) ,上記混練物をスクリュ
ー21dlでスクリエ一先端横面にl――φのスクリー
ンをセットした押し出し造粒機で造粒し(スクリュー回
転速度20rpm ) 、is一一の棒状顆粒物を得た
.得られた棒状顆粒物を円筒状の容器の下部に回転板を
有する整粒機に入れ、1■φの球状物を得た.得られた
球状物を電気炉内で360’CでIO分間焼威した.こ
の焼威された球状物1gを、海水201中に添加し24
時間攪拌後、濾過洗浄乾燥した.その後、O. IN塩
酸で溶離し、塩酸中のリチウム濃度を測定し、リチウム
吸着量及び濃縮率を実施例1と同様にして求めた. 更に、リチウム以外のアルカリ金属、アルカリ土類金属
についても同様にして吸着量及び濃縮率を求め、それら
の結果を第4表に示した.又、この焼威された球状物を
実施例1と同様にして、分液ロート中で30分振蕩させ
た結果、破砕、粉化は見られず、形状は維持されていた
.以上のことから、LLi+−lIzrx(POa)s
(x=0.9)は有機系結合剤を用いて粒状に威形した
後もリチウム吸着特性が殆ど低下せず、又粒状物の機械
的強度も大きく、実用的であることがわかる.実施例5 参考例lで得た化合物1500 gに市販のシリカゾル
(平均粒径15μ−150 gを添加し、ニーダーで2
時間混練した(回転数100rpm) ,この混練物を
スクリュー二輪でスクリュー先端横面に1■φのスクリ
ーンをセットした押し出し造粒機で造粒し(スクリュー
回転速度2Orpm ) 、1g,φの棒状顆粒物を得
た.得られた棒状顆粒物を円筒状の容器下部に回転板を
有する整粒機に入れ、回転数700rp■で30秒間回
転させ、造粒体の回転運動により1−一一の球状物を得
た.得られた球状物を電気炉内で800“Cにて2時間
焼威した.この焼威された粒状物1gを海水201中で
24時間攪拌後、濾過洗浄した後乾燥した.その後、5
N塩酸で溶離し、塩酸中のリチウム濃度を測定すること
によりリチウム吸着量及び濃縮率を求めた.更に、リチ
ウム以外のアルカリ金属、アルカリ土類金属についても
同様にして吸着量及び濃縮率を求め、それらの結果を第
5表に示した.又、焼威された球状物1gを90℃の水
100mlとともに分液ロー} (250ml)に入れ
100回/分の速度で30分振蕩機にかけた結果、破砕
、粉化は見ら?ず形状は維持された. 以上のことから本発明のリチウム回収方法は無機系結合
剤を用いて粒状に威形後も、リチウム吸着能が低下せず
、機械的強度が高い成形物を得ることができることがわ
かる. 実施例6〜8 実施例3〜5で用いた化合物■をLiZr■(POa>
sに変更した以外は、実施例3、4及び5と全く同様に
して、各々実施例6、7及び8の球状物を作製した.得
られた球状物1gを0.5N塩酸50hl中に浸漬し、
80℃で3日間保温後、濾過洗浄乾燥して球状物を得た
. これらの球状物各1gを海水201の中に添加し、実施
例3〜5と同様にしてリチウム吸着量及び濃縮率を求め
、実施例6、7及び8の結果を各々第6、7及び8表に
示した. 又、これらの焼威された球状物1gを、実施例3〜5と
同様にして振蕩器にかけた結果、何れの場合においても
、破砕や粉化が見られず、形状の変化は何等認められな
かった. 実施例9 参考例1で得た化合物Iを錠剤成形機でペレフ} (1
3開φXlowm )に威形した.このペレントを多数
作製し、1000゜Cで2時間加熱しカラム充填用のべ
レフトとした.このようにして得られたべレフトを直径
4c■のカラムに高さ40cmになるように充填し、カ
ラム上部から60’Cの地熱水を5cm/winの流速
で通した. 流出液において、地熱水中に含まれるリチウム濃度の1
000分の1以下の濃度となり、60゜Cの地熱水を5
0001通すまで、リチウムの貫流が認められなかった
.カラムの見かけ体積は500cm’であることから、
地熱水中に含まれるリチウム濃度の1万倍以上に−Im
されたことになる.Ui着されたリチウムは、5N塩酸
をIL通すことにより、95%以上の収率で回収された
. 実施例10 参考例lで得た化合IFIIの代わりにLiZrx(P
Oa)zを用いてペレット威形し、実施例9と同様にし
てカラム充填用のペレットを得た. このペレットを直径4c一〇カラムに高さ40cmにな
るように充填し、ますカラム上部から5Nの塩酸を通液
した.カラムより流出する塩酸中のリチウムの濃度を測
定することにより、ペレットを構威する化合物がLiZ
r*(POa)sからH.しiI−wZrzcPOa>
3(X・0.9)に変わったことをi1認した.このカ
ラムを用いて実施例9と同様にして地熱水を通した.流
出液のリチウム濃度は、地熱水の1000分のl以下と
なり、soootの地熱水を通すまでリチウムの質流が
認められなかった.吸着されたリチウムは5N塩酸を1
1通すことにより、95%以上の収率で回収された. 又、参考N1で得た化合物Iの代わりにZrをT3又は
Snに置き換えたもの及びそれら3つの場合でLtをN
a又はKに置き換えたものについて実施例1〜5及び9
と同様に、又LiZrx(POn)zの代わりにZrを
Ti又はSnに置き換えたもの及びそれら3つの場合で
LiをNa又はKにIき換えたものについて実施例6〜
8及び10と同様にしてリチウムの回収を行った結果、
何れの場合においても金属種を置換する前の実施例と同
様のリチウム回収特性及び機械的強度が認められた。
Furthermore, the adsorption amount and 'a reduction rate of alkali metals and alkaline earth metals other than lithium in natural seawater were determined for the same camphor tree, and the results are shown in Table 1. From Table I, Hx
LII-wZrz(Pot)z(x=0.9”) has a significantly higher concentration ratio for lithium than alkali metals and alkaline earth metals other than lithium, and using it will greatly improve the recovery of lithium from natural seawater. It can be seen that it can be carried out efficiently. Example 2 The compound obtained in Reference Example I was added to lgt-ike hot water (lithium concentration 5.2 mg/l) 2 1 and stirred for 24 hours. Compound I was separated by filtration, washed with water, and dried.The lithium adsorption amount was determined by measuring the lithium concentration in the filtrate.After drying Compound I, it was soaked in 100 sj of 5N hydrochloric acid and kept at 80°C for 3 hours. Using the same compound 1, repeat the lithium recovery operation by adsorption and elution five times, and measure the lithium concentration in the filtrate and the lithium concentration in hydrochloric acid in each recovery operation. The lithium adsorption amount, lithium adsorption rate, and lithium adsorption rate were determined, and the results are shown in Table 2. From Table 2, }IIILi+-NZr*(POa
)s (xJ.9) shows that the lithium recovery ability does not decrease even if lithium adsorption and elution are repeated. Example 3 1500 g of the compound obtained in Reference Example 1, 55 g of bentonite which is a clay mineral, 120 g of water, and 560 g of silica sol (solid content 15%, solvent: ethanol) prepared from ethyl silicate as a metal alkoxide hydrolyzate were added. and kneaded in a kneader for 2 hours (rotation speed 100 r).
pm) *This kneaded material was granulated using an extrusion granulator with two screws and a 0.5 φ screen set on the side surface of the screw tip (screw rotation speed 20 rpm).
, 0.5 m-φ rod-shaped granules were obtained. The obtained rod-shaped granules were placed in a granulator having a rotary plate at the bottom of a round container and rotated at a rotation speed of 700 rpm for 30 seconds to obtain spherical particles with a diameter of 0.5. was incinerated in an electric furnace at 800°C for 2 hours. 1 g of this calcined spherical material was stirred in 20 ml of seawater for 24 hours, filtered, washed and dried. Thereafter, it was eluted with 5N hydrochloric acid, the lithium concentration in the hydrochloric acid was measured, and the lithium adsorption amount and concentration ratio were determined in the same manner as in Example 1. The results are shown in Table 3. In addition, 1 g of this incinerated spherical material was separated into 100 ml of boiling water at 90'C (250 s L).
When placed in a shaker and shaken at 100 times/min for 30 minutes, no crushing or pulverization was observed and the shape was maintained. From the above, HgLit-lIzrt(POn)s (+1-0.9
) has almost no deterioration in ion-exchange properties and has high mechanical strength, so it can be seen that it can be used in a column packing method. Example 4 To 500 g of Compound 1 obtained in Reference Example 1, 50 g of tetrafluoroethylene resin powder (average particle size 0.1 pm), 5 g of fluorine-based nonionic surfactant, 350 g of water, and 110 g of ethanol were added and mixed. The mixture was kneaded for 15 minutes in a screwdriver (rotational speed 100 rpm). The above kneaded material was granulated using an extrusion granulator with a 21 dl screw and a l--φ screen set on the side surface of one end of the screw (screw rotation speed 20 rpm). ), is11 rod-shaped granules were obtained. The obtained rod-shaped granules were placed in a granulator having a rotating plate at the bottom of a cylindrical container to obtain spherical particles with a diameter of 1 mm. The resulting spherical material was incinerated in an electric furnace at 360'C for IO minutes. Add 1 g of this incinerated spherical material to 201 g of seawater and 24
After stirring for an hour, the mixture was filtered, washed and dried. After that, O. Elution was performed with IN hydrochloric acid, the lithium concentration in the hydrochloric acid was measured, and the lithium adsorption amount and concentration ratio were determined in the same manner as in Example 1. Furthermore, the adsorption amounts and concentration ratios of alkali metals and alkaline earth metals other than lithium were determined in the same manner, and the results are shown in Table 4. Further, when this incinerated spherical material was shaken for 30 minutes in a separatory funnel in the same manner as in Example 1, no crushing or pulverization was observed, and the shape was maintained. From the above, LLi+-lIzrx(POa)s
(x = 0.9) shows that the lithium adsorption properties hardly deteriorate even after shaping into granules using an organic binder, and the mechanical strength of the granules is high, making them practical. Example 5 Commercially available silica sol (average particle size 15μ-150g) was added to 1500g of the compound obtained in Reference Example 1, and the mixture was mixed with a kneader for 2
The mixture was kneaded for hours (rotation speed: 100 rpm), and this kneaded product was granulated using an extrusion granulator with two screws and a 1-φ screen set on the side surface of the screw tip (screw rotation speed: 2 Orpm) to obtain 1 g, φ rod-shaped granules. I got it. The obtained rod-shaped granules were placed in a granulator having a rotary plate at the bottom of a cylindrical container and rotated at a rotational speed of 700 rpm for 30 seconds to obtain 1-11 spherical particles by rotation of the granules. The obtained spherical material was incinerated in an electric furnace at 800"C for 2 hours. 1 g of the incinerated granular material was stirred in seawater 201 for 24 hours, filtered and washed, and then dried.
The lithium adsorption amount and concentration ratio were determined by elution with N-hydrochloric acid and measuring the lithium concentration in the hydrochloric acid. Furthermore, the adsorption amounts and concentration ratios of alkali metals and alkaline earth metals other than lithium were determined in the same manner, and the results are shown in Table 5. Also, when 1 g of the incinerated spherical material was placed in a separator (250 ml) with 100 ml of water at 90°C and subjected to a shaker for 30 minutes at a speed of 100 times/minute, no crushing or powdering was observed. The shape was maintained. From the above, it can be seen that the lithium recovery method of the present invention does not reduce the lithium adsorption ability even after shaping into granules using an inorganic binder, and it is possible to obtain molded products with high mechanical strength. Examples 6 to 8 Compounds used in Examples 3 to 5 were replaced with LiZr (POa>
The spherical objects of Examples 6, 7, and 8 were produced in exactly the same manner as Examples 3, 4, and 5, except for changing to s. 1 g of the obtained spherical material was immersed in 50 hl of 0.5N hydrochloric acid,
After keeping it warm at 80°C for 3 days, it was filtered, washed and dried to obtain a spherical product. 1 g of each of these spherical objects was added to seawater 201, and the lithium adsorption amount and concentration rate were determined in the same manner as in Examples 3 to 5. It is shown in the table. Furthermore, when 1 g of these incinerated spherical objects was subjected to a shaker in the same manner as in Examples 3 to 5, no crushing or pulverization was observed in any case, and no change in shape was observed. There wasn't. Example 9 Compound I obtained in Reference Example 1 was processed using a tablet molding machine} (1
It has an impressive 3-opening φXlowm. A large number of pellets were prepared and heated at 1,000°C for 2 hours to form a beam left for column filling. The thus obtained bereft was packed into a column with a diameter of 4 cm to a height of 40 cm, and 60'C geothermal water was passed through the top of the column at a flow rate of 5 cm/win. In the effluent, the concentration of lithium contained in geothermal water is 1
The concentration is less than 1/000, and the geothermal water at 60°C is
No lithium flow was observed until 0001 was passed. Since the apparent volume of the column is 500 cm',
Lithium concentration is more than 10,000 times higher than that contained in geothermal water - Im
This means that it has been done. The lithium deposited on Ui was recovered with a yield of over 95% by passing 5N hydrochloric acid through the IL. Example 10 LiZrx (P
A pellet was formed using Oa)z, and a pellet for column filling was obtained in the same manner as in Example 9. The pellets were packed into a 4cm diameter column to a height of 40cm, and 5N hydrochloric acid was passed from the top of the column. By measuring the concentration of lithium in the hydrochloric acid flowing out from the column, it was determined that the compound forming the pellet was LiZ.
r*(POa)s to H. iI-wZrzcPOa>
i1 confirmed that it had changed to 3(X・0.9). Geothermal water was passed through this column in the same manner as in Example 9. The lithium concentration in the effluent was 1000 times less than that of the geothermal water, and no quality flow of lithium was observed until the sooot geothermal water was passed through. The adsorbed lithium is dissolved in 5N hydrochloric acid
A yield of more than 95% was recovered by passing through the tube once. In addition, in place of Compound I obtained in Reference N1, Zr was replaced with T3 or Sn, and in these three cases, Lt was replaced with N
Examples 1 to 5 and 9 for those replaced with a or K
Similarly, Examples 6 to 3 were prepared by replacing Zr with Ti or Sn in place of LiZrx(POn)z, and replacing Li with Na or K in these three cases.
As a result of recovering lithium in the same manner as in 8 and 10,
In either case, the same lithium recovery characteristics and mechanical strength as in the example before replacing the metal species were observed.

x8 (ハ)発明の効果 本発明で用いる化合物は、リチウムを選択的に吸着する
特性に優れており、かつ吸着容量及び吸着速度が大きく
、そのうえ水溶液中で非常に安定であり、毒性の問題が
少なく、膜或は粒子状に或形加工した後もイオン交換特
性が変化しないという優れた特長を有するため、この化
合物を吸着材として用いることにより地熱水、温泉水、
天然ガスかん水、製塩かん木及び海水等の天然水又は各
種工場廃液からリチウムを極めて効率よく吸着し、その
後無機酸を用いて溶離することにより容易にリチウムを
回収することができる.従って、本発明は清水、地下水
等の天然水又はリチウムを含有する各種廃液等の液体処
理工業において極めて有用である.
x8 (c) Effects of the invention The compound used in the invention has excellent properties of selectively adsorbing lithium, has a large adsorption capacity and adsorption rate, and is very stable in an aqueous solution, so there is no problem of toxicity. It has the excellent feature that its ion exchange properties do not change even after being processed into membranes or particles, so by using this compound as an adsorbent, geothermal water, hot spring water,
Lithium can be easily recovered by adsorbing it extremely efficiently from natural water such as natural gas brine, salt production shrubs, and seawater, or from various industrial waste fluids, and then eluting it with an inorganic acid. Therefore, the present invention is extremely useful in the liquid treatment industry for natural water such as fresh water and groundwater, or various waste liquids containing lithium.

Claims (1)

【特許請求の範囲】[Claims] 1、一般式H_XA_1_−_XM_2(PO_4)_
3(上式において、Xは1未満の正数、AはLi、Na
、Kより選ばれる少なくとも1種、MはZr、Ti、S
nより選ばれる少なくとも1種)で示される化合物を、
リチウム含有液体と接触させた後、分離し、これを溶離
液と接触させることを特徴とするリチウムの回収方法。
1, General formula H_XA_1_-_XM_2(PO_4)_
3 (In the above formula, X is a positive number less than 1, A is Li, Na
, at least one selected from K, M is Zr, Ti, S
At least one compound selected from n),
A method for recovering lithium, which comprises bringing it into contact with a lithium-containing liquid, separating it, and bringing it into contact with an eluent.
JP1158532A 1989-06-21 1989-06-21 Method for recovering lithium Pending JPH0323212A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1158532A JPH0323212A (en) 1989-06-21 1989-06-21 Method for recovering lithium
FR909007642A FR2648727B1 (en) 1989-06-21 1990-06-19 GRAIN MINERAL ION EXCHANGER
DE4019840A DE4019840A1 (en) 1989-06-21 1990-06-21 Granular inorganic ion exchanger - with good heat resistance and mechanical strength
US07/879,740 US5256615A (en) 1989-06-21 1992-05-06 Granular inorganic exchangers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1158532A JPH0323212A (en) 1989-06-21 1989-06-21 Method for recovering lithium

Publications (1)

Publication Number Publication Date
JPH0323212A true JPH0323212A (en) 1991-01-31

Family

ID=15673788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1158532A Pending JPH0323212A (en) 1989-06-21 1989-06-21 Method for recovering lithium

Country Status (1)

Country Link
JP (1) JPH0323212A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168461A (en) * 2010-02-22 2011-09-01 Eco-System Recycling Co Ltd Method for producing high-concentration lithium liquid from lithium-containing liquid and method for producing lithium carbonate
JP2020097011A (en) * 2018-12-19 2020-06-25 住友金属鉱山株式会社 Method of producing granulated substance of lithium adsorbent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168461A (en) * 2010-02-22 2011-09-01 Eco-System Recycling Co Ltd Method for producing high-concentration lithium liquid from lithium-containing liquid and method for producing lithium carbonate
JP2020097011A (en) * 2018-12-19 2020-06-25 住友金属鉱山株式会社 Method of producing granulated substance of lithium adsorbent

Similar Documents

Publication Publication Date Title
Chitrakar et al. Recovery of lithium from seawater using manganese oxide adsorbent (H1. 6Mn1. 6O4) derived from Li1. 6Mn1. 6O4
Zhao et al. pH‐Controlled Switch over Coadsorption and Separation for Mixed Cs+ and Sr2+ by an Acid‐Resistant Potassium Thioantimonate
Sagara et al. Preparation and adsorption properties of λ-MnO2-cellulose hybrid-type lon-exchanger for lithium ion. Application to the enrichment of lithium ion from seawater
Li et al. Investigation of the adsorption characteristics of Cr (VI) onto fly ash, pine nut shells, and modified bentonite
CN103303996A (en) Application of activated aluminum oxide defluorination adsorbing material with different surface features
US5256615A (en) Granular inorganic exchangers
JP3706842B2 (en) Adsorption method of lithium ion from aqueous solution containing lithium by adsorbent
KR100972140B1 (en) Method for synthesis of lithium manganese oxide by hydroysis and solvent-exchange process and preparation of ion-exchange type lithium adsorbent using the lithium manganese oxide
JP3550661B2 (en) Method for producing porous granular lithium adsorbent
JPH0323212A (en) Method for recovering lithium
WO2020017538A1 (en) Inorganic ion exchanger, method for producing same and method for purifying water containing radioactive strontium
JPS60153940A (en) Adsorbent of dissolved fluorine ion
CN116159531A (en) Preparation method of hollow fiber membrane lithium ion adsorbent
JPH038439A (en) Granular lithium adsorbent and method for recovering lithium by using this adsorbent
US4313844A (en) Inorganic ion exchanger
JPH105585A (en) Lithium ion adsorbing agent
JPS6362546A (en) Composite type lithium adsorbent and its production
JPH024442A (en) High performance lithium adsorbent and its preparation
JPS61256922A (en) Immobilizing method for strontium incorporated in aqueous solution
JPH0326334A (en) Recovery agent of lithium and its production
JP2019089043A (en) Metal ion adsorbent and composite adsorbent using the same
JP2001224957A (en) Agent for selectively separating lithium and its manufacturing method
Nabi et al. EDTA-stannic (IV) iodate: preparation, characterization and its analytical applications for metal content determination in real and synthetic samples
JP4572309B2 (en) Specific alkali metal ion adsorbent and method for producing high purity lithium or high purity cesium
JPS6036831B2 (en) Treatment method for water containing arsenic and silica