JPH03230480A - Alkali-zinc storage battery - Google Patents

Alkali-zinc storage battery

Info

Publication number
JPH03230480A
JPH03230480A JP2026552A JP2655290A JPH03230480A JP H03230480 A JPH03230480 A JP H03230480A JP 2026552 A JP2026552 A JP 2026552A JP 2655290 A JP2655290 A JP 2655290A JP H03230480 A JPH03230480 A JP H03230480A
Authority
JP
Japan
Prior art keywords
zinc
electrode
battery
electrolyte
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2026552A
Other languages
Japanese (ja)
Inventor
Yoshihiro Eguchi
能弘 江口
Kenkichi Fujii
健吉 藤井
Toshiyuki Atsuta
敏之 温田
Kazuya Okabe
一弥 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP2026552A priority Critical patent/JPH03230480A/en
Publication of JPH03230480A publication Critical patent/JPH03230480A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To suppress a dendrite short circuit and a shape change and obtain the long-life cycle characteristic by filling carboxymethyl-cellulose in residual spaces of a liquid holding layer. CONSTITUTION:An electrode group constituted of a zinc electrode 2 mainly made of zinc oxide or metal zinc, a nickel electrode 1, a separator 4 inserted between both electrodes 1, 2, and a liquid holding layer 3 and an electrolyte absorbed and held by the electrode group and limited to the degree that no free liquid exists are provided. Carboxymethyl-cellulose is filled in the residual spaces of the liquid holding layer 3 at the ratio 15-70%. The electrolyte is uniformly held for a long period.

Description

【発明の詳細な説明】 産業上の利用分骨 本発明は、ボータ1〜機器用、可搬用、据置用、電気自
動車用の電源として用いられる密閉形アルカリ亜鉛蓄電
池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application The present invention relates to a sealed alkaline zinc storage battery used as a power source for boats, equipment, portable, stationary, and electric vehicles.

従来技術とその問題点 アルカリ亜鉛蓄電池は高エネルギー密度、高出力特性を
有し、且つ経済性や安全性に優れているなどの利点を有
している。しかしながら亜鉛の溶解度が高いために、充
電時に電解液中に存在する亜鉛酸イオンが負極上に樹枝
状或は海面状に析出し、セパレータの貫通シ曹−トを起
こしたり、或いは形状変化つまりシェープチェーンジの
ために利用率の低下を招く等の理由によりサイクル寿命
が低下していた。
Prior art and its problems Alkaline zinc storage batteries have advantages such as high energy density, high output characteristics, and excellent economy and safety. However, due to the high solubility of zinc, zincate ions present in the electrolyte may precipitate on the negative electrode in a dendritic or sea-like form during charging, causing sheeting through the separator or causing shape changes. The cycle life was reduced due to factors such as a decrease in utilization rate due to chain gear.

この欠点を改善するために亜鉛極と正極との間に液量が
制限された電解液を有する多層セパレータを配するよう
に構成したアルカリ亜鉛蓄電池が提案されている。これ
までのアルカリ亜鉛蓄電池は、正及び負極に接した保液
層としてポリアミド系或いはポリオレフィン系あるいは
七ρロース系の不織布が使われている。また不織布間に
はセロハン、多孔性P、P、膜等を配することによりプ
ントフィト成長によるVw−トがかなり改善された。し
かしながら、亜鉛極に接する不織布の電解液の保液力が
不十分なため、電解液がだれ落ち電解液分布が不均一と
なり、その結果液抵抗が不均一となり、充放電サイケy
を続けていくうちに亜鉛極の形状変化が生じ、長期にわ
たるサイクル寿命が得られない欠点があった。
In order to improve this drawback, an alkaline zinc storage battery has been proposed in which a multilayer separator having a limited amount of electrolyte is disposed between the zinc electrode and the positive electrode. In conventional alkaline zinc storage batteries, a polyamide-based, polyolefin-based, or hepta-rose nonwoven fabric is used as a liquid retaining layer in contact with the positive and negative electrodes. Furthermore, by disposing cellophane, porous P, P, membrane, etc. between the nonwoven fabrics, Vw-t due to puntophyte growth was significantly improved. However, because the electrolyte holding power of the nonwoven fabric in contact with the zinc electrode is insufficient, the electrolyte drips and the electrolyte distribution becomes uneven, resulting in uneven liquid resistance and charge/discharge cycle problems.
As the process continues, the shape of the zinc electrode changes, resulting in a disadvantage that a long cycle life cannot be achieved.

そこで、保液力を向上させるため、界面活性剤を塗布す
るなどの提案がなされてきた。しかし、界面活性剤を使
用した不織布を用いた電池は、サイクル初期においては
良好な特性を示すが、サイクルが長期にわたると、界面
活性剤が電解液中へ溶出したり、或いは分解され、保液
力が低下し、結果的には電解液を均一に保持することが
できなかった。
Therefore, proposals have been made to apply surfactants to improve the liquid retention ability. However, batteries using nonwoven fabrics containing surfactants show good characteristics at the beginning of the cycle, but as the cycle continues for a long time, the surfactant dissolves into the electrolyte or decomposes, causing the liquid retention to deteriorate. The force decreased, and as a result, it was not possible to maintain the electrolyte uniformly.

発明の目的 本発明は上記従来の問題点に鑑みなされたものであり、
長期間電解液を均一に保持した、デンドフイトシ1−ト
及びシェイデチェンジを抑制した、長寿命のサイクル特
性を有するアルカリ亜鉛蓄電池を提供することを目的と
するものである。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
The object of the present invention is to provide an alkaline zinc storage battery that maintains an electrolytic solution uniformly for a long period of time, suppresses dendophytosis and shade change, and has long-life cycle characteristics.

発明の構成 本発明は上記目的を達成するべく、 酸化亜鉛又は金属亜鉛を主成分とする亜鉛極と、ニッケ
Iv極と、これら両極間に介在するセパレータと保液層
から成る極群と、該極群に吸収保持され且つ遊離な液が
存在しない程度に制限されたア〃カリ電解液とを有する
アルカリ亜鉛蓄電池において、前記保液層の残存空間に
対してカルボキyメチ〜セルロースが15〜70%の割
合で充填されていることを特徴とするアルカリ亜鉛蓄電
池である。
Structure of the Invention In order to achieve the above object, the present invention comprises an electrode group consisting of a zinc electrode whose main component is zinc oxide or metallic zinc, a nickel IV electrode, a separator and a liquid retaining layer interposed between these two electrodes, and In an alkaline zinc storage battery having an alkaline electrolyte that is absorbed and retained in the electrode group and is limited to such an extent that no free liquid exists, carboxymethy-cellulose has a content of 15 to 70% relative to the remaining space of the liquid retaining layer. It is an alkaline zinc storage battery characterized by being filled at a rate of %.

実施例 以下、本発明の詳細について一実施例により説明する。Example Hereinafter, the details of the present invention will be explained using one example.

第1図は本発明の一実施例を示したアルカリ亜鉛蓄電池
の一部破截斜視図、第2図は力〜ボキンメチルセルロー
スの膨潤度と電解液濃度との関係を示した図、第3図は
保液層の力μポキシメf〜セルロースの充填率と保液率
の関係を示した図、第4図は保液層の力μボキシメチμ
セyロースの充填率と液だれ指数の関係を示した図、第
5図は極板及びセパレータが互いに対向する位置関係を
示した平面図、第6図は亜鉛極板における電流分布を示
した図、第7図は本発明の電池と従来品の電池の充放電
サイクル特性を示した図である。
Fig. 1 is a partially cutaway perspective view of an alkaline zinc storage battery showing an embodiment of the present invention, Fig. 2 is a diagram showing the relationship between force and swelling degree of bokin methyl cellulose and electrolyte concentration, Fig. 3 Figure 4 shows the relationship between the force of the liquid retaining layer μ poxime f ~ the filling rate of cellulose and the liquid retaining rate, and Figure 4 shows the force μ poxime f of the liquid retaining layer
A diagram showing the relationship between the filling rate of Ceyrose and the dripping index. Figure 5 is a plan view showing the positional relationship in which the electrode plates and separators face each other. Figure 6 shows the current distribution in the zinc electrode plate. 7 are diagrams showing the charge/discharge cycle characteristics of the battery of the present invention and a conventional battery.

ここで1はニッケル極、2は亜鉛極、3は保液層、4は
セパレータ、5は電槽である。
Here, 1 is a nickel electrode, 2 is a zinc electrode, 3 is a liquid retaining layer, 4 is a separator, and 5 is a battery case.

亜鉛極は多数の孔が形成された銅パンチング集電停を芯
金として、その両面に亜鉛活物質シートが付着している
。端子により全ての亜鉛極がつながっている。ニッケル
極は焼結式ニッケ〃多孔体に水酸化部フケμを主成分と
する活物質を化学含浸法により充填した公知の正極板で
ある。端子により正極につながっている。さらに各々の
極板はセパレータ及び分子量10.000〜15.00
0の力〃ボキVメチH*1va−y、(以下0.M、O
,と記す。)60襲が充填された保液層に包まれている
・ &0jllOII#のKOH水溶液を注液し、公称容量
30ムhのニッケル亜鉛蓄電池を作製した。
The zinc electrode uses a copper punched current collector with many holes as a core metal, and zinc active material sheets are attached to both sides of the metal core. All zinc poles are connected by terminals. The nickel electrode is a known positive electrode plate in which a sintered nickel porous body is filled with an active material whose main component is hydroxide dandruff μ by a chemical impregnation method. Connected to the positive pole by a terminal. Furthermore, each electrode plate has a separator and a molecular weight of 10.000 to 15.00.
0 power Boki V mechi H*1va-y, (hereinafter 0.M, O
, is written. ) A nickel-zinc storage battery with a nominal capacity of 30 mh was prepared by injecting a KOH aqueous solution of &0jllOII#, which was surrounded by a liquid-retaining layer filled with 60 ml.

C,M、a、は電解液の濃度により膨潤度が変化する。The degree of swelling of C, M, and a changes depending on the concentration of the electrolytic solution.

従って、C,M、C,の保液層への充填率を考える場合
、濃度によって充填適正値を変える必要がある。調査す
る電解液濃度は電池活物質利用率にあまり影響を与えな
い5w5ol/l (d−1,20)〜10.4111
01/l (d−1,41)の範囲とした@その結果を
第2図に示した。次にC,M、0.が最も膨張するKO
H濃度6 mol/lと、膨張度が最も小さいKOH濃
度9mol/lについて、 13.M、C,ノ充填可能
範囲を測定した。電池に電解液を十分に注液した後の保
液層のC,M、O,充填率と保液率との関係を調べた。
Therefore, when considering the filling rate of C, M, and C into the liquid retaining layer, it is necessary to change the appropriate filling value depending on the concentration. The electrolyte concentration to be investigated is 5w5ol/l (d-1,20) to 10.4111, which does not have much influence on the battery active material utilization rate.
01/l (d-1,41)@The results are shown in FIG. Next, C, M, 0. is the most expanding KO
For a H concentration of 6 mol/l and a KOH concentration of 9 mol/l, which has the smallest expansion degree, 13. The range in which M, C, and C can be filled was measured. After a sufficient amount of electrolyte was injected into the battery, the relationship between C, M, O, filling rate, and liquid retention rate of the liquid retention layer was investigated.

その結果を第3図に示した。第5図の結果からO,M、
O,の充填率が高いほど保液率が高いことがわかる・a
、W、a、の充填率は高い方がよいことになるが、6”
OR/1では充填率が40%を越えた時% qwsol
/llでは充填率が70襲を越えた時、保液率が100
−を越えている。これはO,M、O,が保液層の残存空
間以上に電解液を吸収して膨潤したためでぁる。これで
は、電槽が膨らむ結果となり、電池性能に悪影響を与え
ることになる。従って、電槽が膨らまない値として各々
、40%、70%以下にすることが適当である。
The results are shown in Figure 3. From the results in Figure 5, O, M,
It can be seen that the higher the filling rate of O, the higher the liquid retention rate・a
, W, a, the higher the filling rate, the better.
In OR/1, when the filling rate exceeds 40%, % qwsol
/ll, when the filling rate exceeds 70, the liquid retention rate is 100.
- exceeds. This is because O, M, and O absorb more electrolyte than the remaining space in the liquid retaining layer and swell. This results in the battery case expanding, which adversely affects battery performance. Therefore, it is appropriate to set the values below 40% and 70%, respectively, so that the battery case does not swell.

しかし、c、m、c、の充填率が少なすぎると液だれか
生じ、その結果、内部抵抗が不均一になり電池性能が維
持できない。
However, if the filling rate of c, m, and c is too small, a drop will occur, resulting in uneven internal resistance and failure to maintain battery performance.

電池に電解液を十分注液した時の保液層のC1M、C,
の充填率と液だれ指数の関係を調べた。
C1M, C, of the liquid retaining layer when enough electrolyte is injected into the battery
The relationship between the filling rate and the drip index was investigated.

尚、ここで言う液だれ指数とは第5図に示したa及び8
1C相当する位置の不織布の液量に対して、次式 1部分の液l により得られる値のことである。第4図の結果より電池
性能に影響を与えない下限値としては、各々、6mo(
1/l KOH,9mol/(j KOH〕’flL解
液に対し液だれ指数が1となるC、M、C,充填率は1
5%、50%が適当である。
Note that the drip index referred to here refers to a and 8 shown in Figure 5.
This is the value obtained by calculating the liquid volume of the nonwoven fabric at a position corresponding to 1C by using the following formula, 1 part of the liquid 1. From the results shown in Figure 4, the lower limit values that do not affect battery performance are 6mo (
1/l KOH, 9mol/(j KOH]'flL C, M, C, filling rate is 1 so that the dripping index is 1 for the solution
5% and 50% are appropriate.

このことからC,X、C,の充填率は濃度をlimする
ことにより最大15〜70噂が充填可能範囲となる。
From this, the filling rate of C,

この中で最も保液量が最大となるのはKOH濃度が8.
(l+ol#でc、m、c、充填率が6C1%の時であ
った。
Among these, the one with the highest liquid retention amount is the KOH concentration of 8.
(This was when l+ol#, c, m, c, filling rate was 6C1%.

保液層の極板寸法が140X140mで前記の容量が3
0ムhの電池を用いて、放電々流6ムで放電深度を公称
容量の60%、充電々流3Aで充電量は放電容量の10
5%とした時の充放電サイクル数と放電容量の関係につ
いて調べた0ここで電池Aは本発明の電池であり、電池
Bは保液111CO,M、G、を充填していない従来品
の電池である。尚、電池Bの保液層にC,M、O,を充
填していない以外はすべて電池Aと同じ構成である。
The electrode plate size of the liquid retaining layer is 140 x 140 m and the above capacity is 3
Using a battery of 0 μh, the depth of discharge is 60% of the nominal capacity with a current of 6 μm, and the amount of charge is 10% of the discharge capacity with a current of 3 A.
The relationship between the number of charge/discharge cycles and the discharge capacity when the ratio is 5% was investigated. Here, battery A is the battery of the present invention, and battery B is a conventional product that is not filled with the retaining liquid 111CO, M, G. It's a battery. The structure of battery B is the same as that of battery A except that the liquid retaining layer of battery B is not filled with C, M, and O.

この結果について第7図に示した0従来品の電池は、充
放電サイクμを続けるほど放電容量が低下している。
Regarding this result, the discharge capacity of the conventional battery shown in FIG. 7 decreases as the charge/discharge cycle μ continues.

本発明の電池ムは400サイクル時点においても初期容
量の70%を維持している。
The battery of the present invention maintains 70% of its initial capacity even after 400 cycles.

二の原因を肩ぺるべく、電池Aと電池Bについて、亜鉛
極の電流分布を測定し、第6図に示した。
In order to eliminate the second cause, the current distribution of the zinc electrode was measured for batteries A and B, and is shown in FIG.

測定方法は第5図のa、b、c、a、eの5つの部分に
おいて測定した。電池BはC部分をピークとしてd、e
部分の電流(!F度が大きいのに対して、電池Aは電流
密度がほとんど均一となっていた。電池BはC,M、C
,が充填されていない不織布を用いているため電解液が
下方或いは中央に移動し、電解液の不均一を生じる。そ
の結果電流分布も不均一となり利用率を低下させたもの
と考える。また、電流が多く流れているところは電解液
も多く存在しているためデンドフイトシッートの起こり
易い状態になっておりこれがサイクル寿命を短(したも
のと考える。
The measurement method was performed at five parts a, b, c, a, and e in FIG. Battery B has a peak of d, e at part C.
In contrast to the large current (!F degree) in battery A, the current density was almost uniform in battery B.
Since a nonwoven fabric is used that is not filled with , the electrolyte moves downward or to the center, causing non-uniformity of the electrolyte. As a result, the current distribution also became non-uniform, which is thought to have lowered the utilization rate. In addition, in areas where a large amount of current flows, there is also a large amount of electrolyte, making it easy for dendritic seats to occur, which is thought to have shortened the cycle life.

一方、電池Aは不縁布にC,M、G、を充填したものを
使用しているため電解液の不均一が起こらず電池Bのよ
うな問題が抑制され良好なサイクル寿命を実現できたも
のと思われる。
On the other hand, battery A uses a non-woven fabric filled with C, M, and G, so the electrolyte does not become uneven, and problems like those in battery B are suppressed, resulting in a good cycle life. It seems to be.

発明の効果 上述した如く、本発明は長期間電解液を均一に保持した
、グンドフイトシ璽−ト及びンエイデチェンジを抑制し
た、長寿命のサイダμ特性を有するアルカリ亜鉛蓄電池
を提供することが出来るので、その工業的価値は極めて
大である。
Effects of the Invention As described above, the present invention can provide an alkaline zinc storage battery that maintains the electrolyte uniformly for a long period of time, suppresses Gundheit shift and change, and has a long-life cider μ characteristic. Therefore, its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示したアルカリ亜鉛蓄電池
の一部破截斜視図、第2図はO,M。 C0の膨潤度と電解液濃度の関係を示した図、第6図は
保液層のC,M、C,充填率と保液率の関係を示した図
、第4図は保液層のC,M、O,の充填率と液だれ指数
の関係を示した図、第5図は極板及びセパレータの位置
関係を示した図、第6図は極板における電流分布を示し
た図、第7図は充放電サイクル特性を示した図である。 1・・・ニッケルFM   2・−・亜鉛極6・・・保
i11      4・・・セパレータ5・・・電槽
FIG. 1 is a partially cutaway perspective view of an alkaline zinc storage battery showing an embodiment of the present invention, and FIG. 2 is an O, M diagram. Figure 6 shows the relationship between C0 swelling degree and electrolyte concentration. Figure 6 shows the relationship between C, M, C, filling rate and liquid retention rate of the liquid retaining layer. Figure 4 shows the relationship between the swelling degree of C0 and the electrolyte concentration. A diagram showing the relationship between the filling rate of C, M, and O and the drip index, Figure 5 is a diagram showing the positional relationship between the electrode plate and the separator, and Figure 6 is a diagram showing the current distribution in the electrode plate. FIG. 7 is a diagram showing charge/discharge cycle characteristics. 1... Nickel FM 2... Zinc electrode 6... Holder i11 4... Separator 5... Battery case

Claims (1)

【特許請求の範囲】[Claims] 酸化亜鉛又は金属亜鉛を主成分とする亜鉛極と、ニッケ
ル極と、これら両極間に介在するセパレータと保液層か
ら成る極群と、該極群に吸収保持され且つ遊離な液が存
在しない程度に制限されたアルカリ電解液とを有するア
ルカリ亜鉛蓄電池において、前記保液層の残存空間に対
してカルボキシメチルセルロースが15〜70%の割合
で充填されていることを特徴とするアルカリ亜鉛蓄電池
An electrode group consisting of a zinc electrode whose main component is zinc oxide or metallic zinc, a nickel electrode, a separator and a liquid retaining layer interposed between these two electrodes, and an extent to which there is no free liquid absorbed and retained in the electrode group. What is claimed is: 1. An alkaline zinc storage battery having an alkaline electrolyte limited to 10%, wherein the remaining space of the liquid retaining layer is filled with carboxymethyl cellulose at a ratio of 15 to 70%.
JP2026552A 1990-02-05 1990-02-05 Alkali-zinc storage battery Pending JPH03230480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2026552A JPH03230480A (en) 1990-02-05 1990-02-05 Alkali-zinc storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2026552A JPH03230480A (en) 1990-02-05 1990-02-05 Alkali-zinc storage battery

Publications (1)

Publication Number Publication Date
JPH03230480A true JPH03230480A (en) 1991-10-14

Family

ID=12196688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2026552A Pending JPH03230480A (en) 1990-02-05 1990-02-05 Alkali-zinc storage battery

Country Status (1)

Country Link
JP (1) JPH03230480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434566A1 (en) 2001-03-15 2012-03-28 Massey University Rechargeable zinc electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2434566A1 (en) 2001-03-15 2012-03-28 Massey University Rechargeable zinc electrode

Similar Documents

Publication Publication Date Title
JP2001143745A (en) Nickel hydrogen storage battery
JP3287367B2 (en) Sealed nickel zinc battery
JP3387158B2 (en) Zinc plate
JPH03230480A (en) Alkali-zinc storage battery
JPH0787102B2 (en) Sealed nickel-zinc battery
JPH04206468A (en) Sealed alkali-zinc storage battery
JP3200822B2 (en) Nickel-metal hydride storage battery
JP4007745B2 (en) Alkaline storage battery
JP3418721B2 (en) Sealed nickel / metal hydride storage battery
JP3332139B2 (en) Sealed alkaline storage battery
JP2926732B2 (en) Alkaline secondary battery
JP2884570B2 (en) Sealed alkaline secondary battery
JPH0737609A (en) Alkaline storage battery
JPH06215796A (en) Cylindrical nickel-hydrogen storage battery
JPH07134979A (en) Battery
JPH04366553A (en) Sealed nickel-zinc battery
JPH04284369A (en) Nickel-metal hydride storage battery
JPH01100872A (en) Sealed type nickel-zinc cell
JP3316687B2 (en) Nickel-metal hydride storage battery
JPH0722028A (en) Sealed alkaline zinc storage battery
JPS63261670A (en) Alkaline zinc storage battery
JPH0562706A (en) Metal oxide-hydrogen storage battery and manufacture thereof
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JPH06310116A (en) Zinc alkaline secondary battery
JPS60225373A (en) Alkaline zinc storage battery