JPH03230342A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPH03230342A
JPH03230342A JP2555290A JP2555290A JPH03230342A JP H03230342 A JPH03230342 A JP H03230342A JP 2555290 A JP2555290 A JP 2555290A JP 2555290 A JP2555290 A JP 2555290A JP H03230342 A JPH03230342 A JP H03230342A
Authority
JP
Japan
Prior art keywords
magneto
optical recording
recording medium
platinum
squareness ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2555290A
Other languages
Japanese (ja)
Inventor
Teruaki Fujinaga
輝明 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2555290A priority Critical patent/JPH03230342A/en
Publication of JPH03230342A publication Critical patent/JPH03230342A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magneto-optical recording medium having low Curie temp., large squareness ratio and large transverse Kerr effect by forming a magnetization film comprising iron, platinum and inevitable impurities for the magneto-optical recording medium and specifying the amt. of platinum incorporated into the layer to <=40 atomic %. CONSTITUTION:A magnetization film 2 is formed on a substrate 1 to constitute the magneto-optical recording medium. The substrate 1 consists of such a material having the coefft. of thermal expansion of <=120X10<-7>/ deg.C which is lower than that of the magnetization film 2. The magnetization film 2 consists of iron, platinum and inevitable impurities with the amt. of platinum specified to <=40 atomic %. Thereby, the obtd. magneto-optical recording medium has low Curie temp., large squareness ratio and large transverse Kerr effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気光学効果を利用して情報の記録。[Detailed description of the invention] [Industrial application field] The present invention records information using the magneto-optical effect.

消去及び再生を行う光磁気記録再生装置に用いる光磁気
記録媒体に関する。
The present invention relates to a magneto-optical recording medium used in a magneto-optical recording/reproducing device that performs erasing and reproduction.

〔従来技術〕[Prior art]

情報の高度化に伴い、情報フィアル装置の大容量化、高
密度化が要求され、書換え可能な磁気記録再生装置とし
て光磁気記録再生装置が注目されている。
As information becomes more sophisticated, information file devices are required to have larger capacities and higher densities, and magneto-optical recording and reproducing devices are attracting attention as rewritable magnetic recording and reproducing devices.

従来における光磁気記録再生装置は光磁気記録媒体とし
て垂直磁化膜を用いるので、磁化膜自体に磁化に伴う大
きな反磁界に打ち勝つ高い保(n力が必要とされ、また
記録再生装置自体も磁化膜の膜面に垂直な方向の磁界を
発生する強力な磁界発生源が必要とされる。更にカー効
果による反射光偏光面の回転量を光強度変化へ変換する
ために偏光ビームスブリック+ ’A波長板等の偏光光
学部品が必要であって光学系が複雑となり、装置の小型
化、軽量化が難しく、アクセス及びデータ転送速度の高
速化が困難である等の問題があった。
Conventional magneto-optical recording and reproducing devices use a perpendicularly magnetized film as the magneto-optical recording medium, so the magnetic film itself requires a high coercive force to overcome the large demagnetizing field associated with magnetization, and the recording and reproducing device itself also uses a perpendicularly magnetized film. A strong magnetic field generation source is required that generates a magnetic field in the direction perpendicular to the film surface.Furthermore, in order to convert the amount of rotation of the polarization plane of the reflected light due to the Kerr effect into a change in light intensity, a polarization beam substrate + 'A wavelength is required. Polarization optical components such as plates are required, which complicates the optical system, making it difficult to reduce the size and weight of the device, and making it difficult to increase access and data transfer speeds.

この対策として本発明者は光磁気記録媒体に面内磁化膜
を用い、磁化膜の面内方向に磁化の向き又は大きさによ
って情報を記録し、その光磁気記録媒体に磁化の向きと
略直交する向きに光を入射し、光磁気記録媒体の磁化の
向き又は大きさに応じて得られる反射光の光強度に基づ
き情報を記録。
As a countermeasure to this problem, the present inventor used an in-plane magnetized film in a magneto-optical recording medium, recorded information in the in-plane direction of the magnetized film according to the direction or magnitude of magnetization, and recorded information on the magneto-optical recording medium substantially perpendicular to the direction of magnetization. Information is recorded based on the light intensity of the reflected light obtained depending on the direction or magnitude of magnetization of the magneto-optical recording medium.

再生する光磁気記録再生方式について既に提案している
(特開昭63−44851号、特願昭63−19828
7号)。
We have already proposed a magneto-optical recording and reproducing method (Japanese Patent Application Laid-Open No. 63-44851, Patent Application No. 19828-1983).
No. 7).

この方式は光磁気記録媒体それ自体には高い保磁力を必
要とせず、磁化膜の材料選択の範囲が広く、高出力、高
信頌性の材料を用いることが出来・また高Ei1束効率
なリング型磁気へ、トを用いることで磁界発生源の構成
も容易となり、しかも記録情報を直接光強度変化として
提えるごとによって光学系を節単にでき、高い再生出力
が得られる特性を有している。
This method does not require a high coercive force in the magneto-optical recording medium itself, has a wide range of material selection for the magnetization film, can use materials with high output and high reliability, and has high Ei flux efficiency. The use of ring type magnetism makes it easy to configure the magnetic field generation source, and by presenting recorded information directly as a change in light intensity, the optical system can be simplified and high reproduction output can be obtained. There is.

〔発明が解決しようとする課題] ところで本発明者が提案したn71述の如き光磁気記録
再生方式用の光磁気記録媒体として備えるべきW末的な
機能の一つである、(H化の向きと略直交する向きに光
を入射したとき、磁化の向き又は大きさに応して反射光
の光強度が変化する、所謂横力−効果が観測される材ネ
4としてはFe、 Co、 Ni等があるが(Fiz、
 metal、 mctalloved、Vol 7.
181185頁1959)、いずれも夫々単体としては
キュリー温度(Tc)が高く (例えばFeは770”
c)、熱書込みが困難であり、又角型比(S)が低く(
例えばFeは0.25)再生出力が低いという問題があ
った。
[Problems to be Solved by the Invention] By the way, one of the final functions that should be provided as a magneto-optical recording medium for a magneto-optical recording and reproducing method as described in n71 proposed by the present inventor (in the direction of H). When light is incident in a direction substantially perpendicular to the direction, the intensity of the reflected light changes depending on the direction or magnitude of magnetization, which is the so-called lateral force effect, which is observed. Materials 4 include Fe, Co, and Ni. etc. (Fiz,
metal, mctalloved, Vol 7.
181, 185, 1959), and each has a high Curie temperature (Tc) as a single substance (for example, Fe has a high Curie temperature (Tc) of 770").
c), thermal writing is difficult, and the squareness ratio (S) is low (
For example, Fe has a problem of low reproduction output (0.25).

本発明はかかる事情に鑑みなされたものであり、その目
的とするところは、キュリー温度が低く、角型比が大き
く、しかも横カー効果の大きい光磁気配i、工媒体を堤
供するにある。
The present invention has been made in view of the above circumstances, and its purpose is to provide a magneto-optical material having a low Curie temperature, a large squareness ratio, and a large transverse Kerr effect.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る第1の光磁気記録媒、体は、鉄、白金及び
不可避的不純物からなり、前記白金の含有率を40原子
数%以下とした磁化膜を有することを特徴とする。
A first magneto-optical recording medium according to the present invention is characterized by having a magnetized film comprising iron, platinum and unavoidable impurities, and having a platinum content of 40 atomic % or less.

また本発明に係る第2の光磁気記録媒体は、鉄白金、常
温で固体であって鉄、白金以外の元素又はその化合物及
び不可避的な不純物がらなり、前記白金の含有率を40
原子数%以下とした磁化膜を有することを特徴とする。
Further, a second magneto-optical recording medium according to the present invention is made of iron-platinum, which is solid at room temperature, and contains elements other than iron and platinum, or compounds thereof, and unavoidable impurities, and the content of platinum is 40%.
It is characterized by having a magnetization film with a magnetization of less than a few atomic %.

また本発明に係る第3の光磁気記録媒体は、磁化膜の下
地物質の熱膨張係数を120 x 10−7/ ’c以
下としたことを特徴とする。
Further, a third magneto-optical recording medium according to the present invention is characterized in that the underlying material of the magnetized film has a thermal expansion coefficient of 120 x 10-7/'c or less.

〔作用] 本発明はこれによって、磁化膜用口材としては横カー効
果が大きい反面、キュリー温度Tcが高く、しかも角型
比Sか低い鉄(Re)に、白金(Pt)を加えることに
より、再生出力に直接関与する横力効果を仔在保すると
同時にキュリー温度Tcを低下せしめ得る。
[Function] According to the present invention, platinum (Pt) is added to iron (Re), which has a large horizontal Kerr effect but has a high Curie temperature Tc and a low squareness ratio S, as a mouth material for a magnetized film. , the Curie temperature Tc can be lowered while preserving the lateral force effect directly related to the reproduction output.

ptの原子数%を40以下とするのはこの範囲ではFe
単体の横カー効果よりも劣るがFc、 l”e、Pt及
びFeatの混合物、或いは中間相物質として横カー効
果を示すのに対し、原子数%が40を越えるとFe5P
tFeI’tの混合、中間相物質は横カー効果を示さな
くなることによる。
In this range, the number of atoms of pt is 40 or less, Fe
Although it is inferior to the horizontal Kerr effect of a single substance, it shows the horizontal Kerr effect as a mixture of Fc, l"e, Pt, and Feat, or as an intermediate phase material, whereas when the number of atoms exceeds 40, Fe5P
Due to the mixing of tFeI't, the mesophase material no longer exhibits the transverse Kerr effect.

またptの組成比を、原子数%で40以下、特に10〜
25%の■u囲とすると、Fe、 FC3Ptの混合、
中間相状態により磁気的に均質化し、加えてFe、 P
t以外の第3の元素又はその化合物を添加することに依
って結晶粒が微細化され、格子歪が生起されて磁気的均
質化が図れ、磁化の一斉反転を可能とし角型比が高まる
(S・0.7以上)。
In addition, the composition ratio of PT is 40 or less in atomic %, especially 10 to
Assuming a u surrounding of 25%, a mixture of Fe, FC3Pt,
It is magnetically homogenized by the mesophase state, and in addition, Fe, P
By adding a third element other than t or a compound thereof, crystal grains are refined, lattice strain is generated, magnetic homogenization is achieved, simultaneous reversal of magnetization is possible, and the squareness ratio is increased ( S・0.7 or higher).

更に本発明にあっては磁化膜の熱膨張係数よりも小さい
熱膨張係数を持つ下地物質を用いることによって、磁化
膜に引張残留応力を誘起せしめ、結晶粒の微細化及び磁
歪を生起させ、磁気的均質性が高められ角型比を一層向
上させる。
Furthermore, in the present invention, by using a base material having a thermal expansion coefficient smaller than that of the magnetized film, tensile residual stress is induced in the magnetized film, causing crystal grain refinement and magnetostriction. This improves the uniformity of the surface area and further improves the squareness ratio.

なお磁化膜におけるpt含有率の下限は特に限定するも
のではないが、ptの含有率が低いとキュリー温度Tc
が上昇する傾向を呈し、実用上望ましいとされるキュリ
ー温度500℃以下の条件を満たし得るようpt含有率
を10%以上とするのが望ましい。
Note that the lower limit of the pt content in the magnetized film is not particularly limited, but if the pt content is low, the Curie temperature Tc
It is desirable that the PT content is 10% or more so that the Curie temperature tends to increase and the Curie temperature is 500° C. or less, which is considered desirable in practice.

〔実施例〕〔Example〕

以下本発明を実施例を示す図面に基づき具体的に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on drawings showing embodiments.

第1図は光磁気記録媒体の断面構造図であり、図中1は
基板、2は磁化膜を示している。磁化膜2の下地層たる
基板1としては熱膨張係数が磁化膜2のそれよりも低い
120 X 10− ’ / ”C以下の材料、例えば
硼珪酸ガラス、ソーダガラス等が用いられる。その材質
については透光性を有し、上記した熱膨張係数の条件を
満たす材料であればよい。
FIG. 1 is a cross-sectional structural diagram of a magneto-optical recording medium, in which 1 indicates a substrate and 2 indicates a magnetized film. As the substrate 1 serving as the base layer of the magnetized film 2, a material having a coefficient of thermal expansion of 120 x 10-'/''C or less, which is lower than that of the magnetized film 2, such as borosilicate glass or soda glass, is used. Regarding the material The material may be any material as long as it has translucency and satisfies the conditions for the coefficient of thermal expansion described above.

熱膨張係数を120 x 10− ’ / ”c以下と
したのはこれを越えると磁化膜2の熱膨張係数と近似し
・磁化膜に対して付与すべき引張残留応力が小さく・角
型比が低下することに依る。
The reason why the coefficient of thermal expansion is set to 120 x 10-'/''c or less is that if it exceeds this value, it will approximate the coefficient of thermal expansion of the magnetized film 2, the tensile residual stress to be applied to the magnetized film will be small, and the squareness ratio will be low. Depends on the decline.

磁化膜2はFe、原子数%40以下のpt及び不可避的
不純物からなり、通常はスパッタリングにより基板1上
に所定厚さ(300〜3000人程度)積層形成される
。磁化膜2の構造は通常Feとptとの合金構造となる
が、必ずしも合金としての固溶状態になくてもよく、例
えば化合物或いは中間相の状態であってもよい。
The magnetized film 2 is made of Fe, PT with an atomic percentage of 40 or less, and unavoidable impurities, and is usually laminated to a predetermined thickness (approximately 300 to 3000 layers) on the substrate 1 by sputtering. The structure of the magnetized film 2 is usually an alloy structure of Fe and pt, but it does not necessarily have to be in a solid solution state as an alloy, and may be in a compound or intermediate phase state, for example.

またこの磁化膜2にはFe、原子数%40以下のptに
加えてこれ以外の第3の元素、主として金属、又はその
化合物、例えば酸化物、窒化物、炭化物等を加えてもよ
い。
In addition to Fe and 40 or less atomic % of pt, this magnetized film 2 may also contain a third element other than Fe, mainly a metal, or a compound thereof, such as an oxide, a nitride, a carbide, or the like.

添加手段はFe、 r’を用のターゲットと共に、これ
ら添加物のターゲットを用意し、同時的にスノぐ・7タ
リングする。これらの添加物は磁化膜の製造工程、使用
時の環境等の条件から常温で固体状態であることが望ま
しく、上記元素又はその化合物としては金属単体、例え
ばCr、 Ni、 W、 Ta、 V、 Zr又はその
化合物を用いるのがよい。元素の添加量と角型比との関
係は、例えばCrについてみると1〜7原子数%で0.
7以上の値が得られる。
The addition means prepares targets for Fe and r' as well as targets for these additives, and simultaneously snorts and tars them. It is desirable that these additives be in a solid state at room temperature due to the manufacturing process of the magnetized film, the environment during use, and other conditions, and the above elements or compounds thereof include simple metals such as Cr, Ni, W, Ta, V, It is preferable to use Zr or a compound thereof. The relationship between the addition amount of an element and the squareness ratio is, for example, for Cr, 1 to 7 atomic % and 0.
A value of 7 or more is obtained.

〔試験例1〕 PtMi成比が異なる複数の材料を作成し、pt原原子
数色横カー効果との関係を調べた。
[Test Example 1] A plurality of materials having different PtMi composition ratios were prepared, and the relationship between the number of pt original atoms and the transverse Kerr effect was investigated.

試料は、アルゴン(^r)ガス圧力を1〜30mTor
rに設定した真空室内に基板と直径254u+のFeタ
ーゲット上に一辺が10鰭のptチップを目標組成比に
合わせて必要な枚数だけ載置した複合ターゲットとを配
置し、常温下で投入電力1〜5KWにてスパッタリング
を行い、基板上に300〜3000人の成膜を施したも
のを用いた。
The sample was heated to an argon (^r) gas pressure of 1 to 30 mTorr.
In a vacuum chamber set at Sputtering was performed at ~5 KW, and 300 to 3000 films were formed on the substrate.

なお横カー効果については、磁化膜の磁化方向と直交す
る入射面に入射角45°でP偏光を入射し、飽和した磁
化の向きを反転させた時の反射光強度変化(ΔR/R)
を求め、これを横カー効果を示す値とした。結果は第2
図に示すとおりである。
Regarding the transverse Kerr effect, the reflected light intensity change (ΔR/R) when P-polarized light is incident at an incident angle of 45° on the incident plane perpendicular to the magnetization direction of the magnetized film and the direction of saturated magnetization is reversed.
was determined, and this was taken as the value indicating the horizontal car effect. The result is second
As shown in the figure.

第2図は横カー効果とptMi成との関係を示すグラフ
であり、横軸にpt原原子数色、また縦軸に反射光強度
変化をとって示しである。このグラフから明らかな如<
、pt原原子数色40以下で反射光強度変化、l!II
ち横カー効果が認められることが解る。
FIG. 2 is a graph showing the relationship between the horizontal Kerr effect and the ptMi formation, with the horizontal axis representing the number of pt original atoms and the vertical axis representing the change in reflected light intensity. It is clear from this graph that
, the reflected light intensity changes when the number of pt primitive atoms is 40 or less, l! II
It can be seen that a horizontal Kerr effect is observed.

なお真空室内の静ガス圧力1〜30mTorr 、磁化
膜厚300〜3000人、投入電力1〜5KWの範囲内
では、第2図に示すグラフは若干左、右に変化するもの
の実質的な変化はなく略同様の結果が得られた。
Note that within the range of static gas pressure in the vacuum chamber of 1 to 30 mTorr, magnetization film thickness of 300 to 3000 people, and input power of 1 to 5 KW, the graph shown in Figure 2 changes slightly to the left and right, but there is no substantial change. Almost the same results were obtained.

〔試験例2〕 試験例1において用いた試料と同じ試料を用いて、Fe
 −PtMi成とキュリー温度(Tc)との関係を調べ
た。
[Test Example 2] Using the same sample as that used in Test Example 1, Fe
-The relationship between PtMi composition and Curie temperature (Tc) was investigated.

結果は第3図に示すとおりである。第3図はキュリー温
度とI’tll成との関係を示すグラフであり、横軸に
ptの原子数%を、また縦軸にキュリー温度(Tc)を
とって示しである。なおキュリー温度Tcは振動型磁力
計(VSM)により測定した。このグラフから明らかな
如<、pt原原子数色40%〜lO%の範囲でキュリー
温度Tcを500℃以下に設定することが出来、これは
Fe単体のキュリー温度が770℃であるのと比較して
大幅に低下し得ていることが解る。
The results are shown in Figure 3. FIG. 3 is a graph showing the relationship between the Curie temperature and the I'tll composition, with the horizontal axis representing the number of atoms of pt and the vertical axis representing the Curie temperature (Tc). Note that the Curie temperature Tc was measured using a vibrating magnetometer (VSM). As is clear from this graph, the Curie temperature Tc can be set to 500°C or less within the range of 40% to 1O% of the number of pt atoms, which is compared to the Curie temperature of Fe alone, which is 770°C. It can be seen that this can be significantly reduced.

〔試験例3〕 ptの組成比と角型比との関係を調べた。[Test Example 3] The relationship between the composition ratio of pt and the squareness ratio was investigated.

試料は試験例1の場合と同様に真空室内の^rガス圧力
を5 mTorrとして基板上にスパッタリングにより
厚さ500人の磁化■りを形成し、角型比のptt成依
存性を測定した。なお角型比(S)の測定は振動型磁力
計(VSM)により測定した飽和磁化(Ms)と、残留
磁化(Mr)との比、即ちS=Mr/Msとして求めた
As in Test Example 1, a magnetization layer with a thickness of 500 mm was formed on the substrate by sputtering at a gas pressure of 5 mTorr in the vacuum chamber, and the dependence of the squareness ratio on the PTT formation was measured. The squareness ratio (S) was determined as the ratio of the saturation magnetization (Ms) measured by a vibrating magnetometer (VSM) to the residual magnetization (Mr), that is, S=Mr/Ms.

結果は第4図に示すとおりである。第4図は角型比とp
tm成との関係を示すグラフであり、横軸にPt (原
子数%)を、また縦軸に角型比をとって示しである。こ
のグラフから明らかな如<ptの原子数%が10〜25
%の範囲で光磁気記録媒体として必要とされる0、7以
上の角型比が得られることが解る。これはFeのみ(p
to%)の場合の角型比が0.25であるのと比較して
大幅に向上していることが解る。
The results are shown in Figure 4. Figure 4 shows the squareness ratio and p
This is a graph showing the relationship with tm composition, with Pt (atomic %) plotted on the horizontal axis and squareness ratio plotted on the vertical axis. As is clear from this graph, the number of atoms of <pt is 10 to 25%.
It can be seen that a squareness ratio of 0.7 or more, which is required for a magneto-optical recording medium, can be obtained within the range of 0.5%. This is only Fe (p
It can be seen that the squareness ratio is significantly improved compared to the case where the squareness ratio is 0.25.

〔試験例4] Fe、 Ptに第3の元素を添加して磁化IIりを構成
し、第3の元素の添加量と角型比との関係を調べた。
[Test Example 4] Magnetization II was formed by adding a third element to Fe and Pt, and the relationship between the amount of the third element added and the squareness ratio was investigated.

試験例1におけると同様に真空室内の計ガス圧力を5 
mTorrとし、Feターゲット−Lにl)を及び第3
の元素であるCrのターゲットを目梗組成比に合わせて
配置し、スパッタリングにより基板上に厚さ500人の
磁化膜を形成し、試料とした。なお角型比の値は試験例
3の場合と同様にして求めた。
As in Test Example 1, the gauge gas pressure in the vacuum chamber was
mTorr, Fe target-L to l) and third
A target of Cr, which is an element of Note that the value of the squareness ratio was determined in the same manner as in Test Example 3.

結果は第5図に示すとおりである。第5図は角型比とl
’e、 Pt以外の第3の元素の添加量との関係を示す
グラフであり、横軸に第3の元素であろC「組成比(原
子数%)を、また)7軸に角型比をとって示しである。
The results are shown in FIG. Figure 5 shows the squareness ratio and l
This is a graph showing the relationship between the addition amount of a third element other than Pt, where the horizontal axis shows the composition ratio (atomic percentage) of the third element, and the seven axis shows the squareness ratio. This is an indication.

このグラフから明らかな!a+ <添加しない場合に比
較して角型比がCr添加品の増大に伴って増大している
のが解る。
It's clear from this graph! It can be seen that the squareness ratio increases as the amount of Cr added increases compared to the case where a+ < is not added.

なおCrに代えて第3の元素としてNi、 W、 Ta
、 VZr、 Nh等を添加してもよく、これらの組成
比と角型比との関係は表1に示すとおりである。
Note that Ni, W, and Ta are used as the third element instead of Cr.
, VZr, Nh, etc. may be added, and the relationship between their composition ratio and squareness ratio is as shown in Table 1.

表 〔試験例5〕 基板の熱膨張係数と角型比との関係を調べた。table [Test Example 5] The relationship between the thermal expansion coefficient and squareness ratio of the substrate was investigated.

各種の熱膨張係数を持つ基板として硼り土酸ガラス及ヒ
ソーダガラスを用い、チャンバ内のArガス圧力5mT
orrでFe、 PCターゲy l・(Pt : 25
%ン を用いたスパックリングにより基牟反上に膜厚5
00人の磁化膜を形成して試料とした。角型比は試験例
3の場合と同様にして求めた。
Borous acid glass and hisodium glass were used as substrates with various coefficients of thermal expansion, and the Ar gas pressure in the chamber was 5 mT.
Fe in orr, PC target y l (Pt: 25
A film thickness of 5 % was created on the substrate by spuckling using
A magnetized film of 00 people was formed and used as a sample. The squareness ratio was determined in the same manner as in Test Example 3.

結果は第6図に示すとおりである。第6図は角型比と磁
化膜下地物質の熱膨張係数との関係を示すグラフであり
、横軸に基板の熱膨張係数を、また縦軸に角型比をとっ
て示しである。
The results are shown in FIG. FIG. 6 is a graph showing the relationship between the squareness ratio and the thermal expansion coefficient of the magnetized film base material, with the horizontal axis representing the thermal expansion coefficient of the substrate and the vertical axis representing the squareness ratio.

このグラフから明らかな如く熱膨張係数が120×to
−7,/’C以下で光磁気記録媒体として必要とされる
0、7以上の角型比が得られていることが解る。
As is clear from this graph, the coefficient of thermal expansion is 120×to
It can be seen that a squareness ratio of 0.7 or more, which is required for a magneto-optical recording medium, is obtained at -7,/'C or less.

[効果〕 以上の如く本発明に係る光磁気記録媒体にあっては、磁
化膜をFeと原子数%が40以下のptとを含む成分組
成によって構成したから、横カー効果が確保されると共
に、キュリー温度を大幅に低下し得、またFe、 Pt
以外の第3の元素又はその化合物をl、6加し、更に基
板の熱膨張係数を120 X 10−’/ ’C以下と
じたことにより角型比を大幅に向上させ得、面内光磁気
記録再生方式の特徴を生かし得る優れた効果を奏するも
のである。
[Effect] As described above, in the magneto-optical recording medium according to the present invention, since the magnetized film is composed of a component composition containing Fe and pt having an atomic percentage of 40 or less, the transverse Kerr effect is ensured and , can significantly lower the Curie temperature, and Fe, Pt
The squareness ratio can be greatly improved by adding a third element or a compound thereof other than 1,6 and further reducing the thermal expansion coefficient of the substrate to 120 x 10-'/'C or less, and the in-plane magneto-optical This provides an excellent effect by making full use of the characteristics of the recording/reproducing method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る光磁気記録媒体の断面構造図、第
2図は横カー効果とP t ’2Jl成との関係を示す
グラフ、第3図はキュリー温度とPt1M成との関係を
示すグラフ、第4図は角型比のpt組成との関係を示す
グラフ、第5図は角型比とFe、 Pt以外の第3の元
素の添加量との関係を示すグラフ、第6図は角型比と磁
化膜下地物質の熱膨張係数との関係を示すグラフである
。 1・・・基板  2・・・磁化膜
Fig. 1 is a cross-sectional structural diagram of the magneto-optical recording medium according to the present invention, Fig. 2 is a graph showing the relationship between the transverse Kerr effect and the Pt'2Jl composition, and Fig. 3 is a graph showing the relationship between the Curie temperature and the Pt1M composition. Figure 4 is a graph showing the relationship between the squareness ratio and the PT composition; Figure 5 is a graph showing the relationship between the squareness ratio and the amount of addition of a third element other than Fe and Pt; Figure 6 is a graph showing the relationship between the squareness ratio and the thermal expansion coefficient of the magnetized film base material. 1...Substrate 2...Magnetized film

Claims (1)

【特許請求の範囲】 1、鉄、白金及び不可避的不純物からなり、前記白金の
含有率を40原子数%以下とした磁化膜を有することを
特徴とする光磁気記録媒体。 2、鉄、白金、常温で固体であって鉄、白金以外の元素
又はその化合物及び不可避的な不純物からなり、前記白
金の含有率を40原子数%以下とした磁化膜を有するこ
とを特徴とする光磁気記録媒体。 3、前記磁化膜の下地物質の熱膨張係数を120×10
^−^7/℃以下としたことを特徴とする請求項1又は
2記載の光磁気記録媒体。
[Scope of Claims] 1. A magneto-optical recording medium comprising a magnetized film made of iron, platinum and unavoidable impurities, with the platinum content being 40 atomic % or less. 2. Featuring a magnetized film that is solid at room temperature and is made of iron, platinum, an element other than iron or platinum, or a compound thereof, and unavoidable impurities, and has a platinum content of 40 atomic percent or less. magneto-optical recording medium. 3. The thermal expansion coefficient of the underlying material of the magnetized film is 120×10
3. The magneto-optical recording medium according to claim 1, wherein the temperature is ^-^7/°C or less.
JP2555290A 1990-02-05 1990-02-05 Magneto-optical recording medium Pending JPH03230342A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2555290A JPH03230342A (en) 1990-02-05 1990-02-05 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2555290A JPH03230342A (en) 1990-02-05 1990-02-05 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPH03230342A true JPH03230342A (en) 1991-10-14

Family

ID=12169122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2555290A Pending JPH03230342A (en) 1990-02-05 1990-02-05 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPH03230342A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665541A2 (en) * 1994-01-31 1995-08-02 Matsushita Electric Industrial Co., Ltd. Information recording and reproducing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665541A2 (en) * 1994-01-31 1995-08-02 Matsushita Electric Industrial Co., Ltd. Information recording and reproducing device
EP0665541A3 (en) * 1994-01-31 1996-11-20 Matsushita Electric Ind Co Ltd Information recording and reproducing device.
US6101164A (en) * 1994-01-31 2000-08-08 Matsushita Electric Industrial Co., Ltd. High density recording by a conductive probe contact with phase change recording layer

Similar Documents

Publication Publication Date Title
US6893746B1 (en) Magnetic recording medium with high thermal stability, method for producing the same, and magnetic recording apparatus
JPS6129127B2 (en)
JPS609855A (en) Magnetic alloy
JPH0738357B2 (en) Method of manufacturing perpendicular magnetic recording medium
JPH03173958A (en) Magneto-optical disk
US5501913A (en) Garnet polycrystalline film for magneto-optical recording medium
US4497870A (en) Magneto-optical recording medium
JPH06120029A (en) Vertically magnetized film, multilayer film for vertically magnetized film and manufacturing method of the same
JPS63107008A (en) Thin-film having large kerr&#39;s angle of rotation and manufacture thereof
JPH03230342A (en) Magneto-optical recording medium
JP2680586B2 (en) Magneto-optical storage medium
JPS59159510A (en) Magnetooptical recording medium
JP3084580B2 (en) Garnet polycrystalline film for magneto-optical recording medium, magneto-optical recording medium, and magneto-optical recording disk
JPH03106003A (en) Soft magnetic amorphous alloy thin film
JPS62112252A (en) Photomagnetic recording medium
JPH03265105A (en) Soft magnetic laminate film
JPH0380445A (en) Magneto-optical recording medium
JPH01214002A (en) Magnetic thin film
JPS6367326B2 (en)
JP2797509B2 (en) Magnetic thin film material
JPH03132004A (en) Fe-ta-c magnetic film and magnetic head
JPH04367205A (en) Soft magnetic thin film
JPH06302432A (en) Garnet polycrystalline film for optical magnetic recording medium, optical magnetic recording medium and optical magnetic recording disk
JPS62141713A (en) Manufacture of tbco film
JPH0384755A (en) Magneto-optical recording medium