JPH03229826A - Production of pressure vessel used in seawater - Google Patents

Production of pressure vessel used in seawater

Info

Publication number
JPH03229826A
JPH03229826A JP2516490A JP2516490A JPH03229826A JP H03229826 A JPH03229826 A JP H03229826A JP 2516490 A JP2516490 A JP 2516490A JP 2516490 A JP2516490 A JP 2516490A JP H03229826 A JPH03229826 A JP H03229826A
Authority
JP
Japan
Prior art keywords
seawater
vessel
pressure vessel
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2516490A
Other languages
Japanese (ja)
Other versions
JPH0653895B2 (en
Inventor
Kazuo Toyama
外山 和男
Noboru Yoda
登 誉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP2516490A priority Critical patent/JPH0653895B2/en
Publication of JPH03229826A publication Critical patent/JPH03229826A/en
Publication of JPH0653895B2 publication Critical patent/JPH0653895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the pressure vessel having sufficient strength and toughness and also superior corrosion resistance to seawater by forging a low alloy steel with the prescribed composition into a vessel shape so that the forging ratio of a barrel part becomes the prescribed value, heating this vessel-shaped product, holding it at the heating temp., and carrying out hardening and further tempering. CONSTITUTION:A steel having a composition which contains, by weight, 0.25-0.35% C, 0.1 0-0.40% Si, 0.50-1.20% Mn, <=0.020% P, <=0.020% S, 2.2-3.0% Ni, 0.80-1.40% Cr, 0.30-0.80% Mo, 0.01 5-0.20% V, 0.01 5-0.060% sol.Al, and 0.006-0.015% N and in which Ni+Cr is regulated to 3.50-4.0 is formed into a shape of a vessel forged so that the forging ratio of a barrel part becomes 4-15. This vessel-shaped product is heated up to 850-920 deg.C, by which carbides are allowed to enter sufficiently into solid solution in an austenitic structure. Successively, this vessel-shaped product is held at the above temp. for 30min per centimeter of plate thickness of the barrel part, hardened, and further tempered at 580-650 deg.C, by which the pressure vessel for use in seawater having excellent mechanical properties of the barrel part can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、例えば潜水夫用酸素ボンベ等の如き、空気
その他のガスの貯蔵容器等として好適な“海水中で使用
される圧力容器”の製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a "pressure vessel used in seawater" suitable as a storage container for air or other gas, such as an oxygen cylinder for a diver. This relates to a manufacturing method.

〈従来の技術〉 現在、各種圧力容器の設計・製作には非常に厳しい注意
が払われており、日本工業規格(J I S)や米国機
械学会規格(A S M E)等においても圧力容器に
係る多くの規格が設けられている。しかしながら、上記
各規格は何れも室温又は中・高温の大気中での使用を想
定したものであり、適用される材料も該想定条件に沿っ
た観点からの規定がなされるに留まっていた。もっとも
、容器の内容物が腐食性物質である場合には、それを考
慮してステンレス銅等の耐食材料が適用されることは言
うまでもない。
<Prior art> At present, very strict attention is paid to the design and manufacture of various pressure vessels, and pressure vessels are Many standards have been established. However, each of the above standards assumes use in the atmosphere at room temperature or medium/high temperature, and the applicable materials have only been specified from the viewpoint of the assumed conditions. However, if the content of the container is a corrosive substance, it goes without saying that a corrosion-resistant material such as stainless copper is used in consideration of this.

そして、近年、次第に圧力容器の使用圧力増大や軽量化
への要求が高まってきたことに呼応して容器材料の高強
度化が進められ、例えばJTSのG3204に「圧力容
器用調質型合金鋼鍛鋼品」として規定された高強度鋼や
ASMEのrBoiler&  Pressure  
Vessel  Code  5ection ■ J
  にSA −723として規定された高強度鋼が圧力
容器材料の代表的なものとなっている。
In recent years, in response to the gradual increase in the pressure vessels used and the demand for lighter weight, the strength of vessel materials has been increased. High-strength steel specified as "forged steel products" and ASME's rBoiler & Pressure
Vessel Code 5ection ■ J
High-strength steel specified as SA-723 is a typical material for pressure vessels.

なお、上記圧力容器用高強度鋼の特徴は基本的には何れ
も化学成分組成のみにあり、中炭素マルテンサイト組織
の強度を利用し、焼入性確保のため圧力容器の胴部肉厚
に応して合金元素を添加したものである。ただ、このと
き十分な靭性を得るためJISでは焼戻し温度が610
℃以上に、またASMEでは焼戻し温度が540℃以上
と規定され、更に熱処理時の保持時間はJIS及びAS
ME共に厚さl mmに対して1.2分以上と定められ
ている。
The characteristics of the above-mentioned high-strength steels for pressure vessels basically lie only in their chemical composition; they utilize the strength of the medium-carbon martensitic structure, and increase the thickness of the body of the pressure vessel to ensure hardenability. Accordingly, alloying elements are added. However, in order to obtain sufficient toughness at this time, JIS requires a tempering temperature of 610.
℃ or higher, and ASME specifies the tempering temperature to be 540℃ or higher, and the holding time during heat treatment is specified by JIS and AS.
Both ME and ME are defined as 1.2 minutes or more for a thickness of 1 mm.

一方、最近、潜水夫の酸素ボンへや潜水調査船のガス貯
蔵容器等、海水中で使用される圧力容器の需要が目立っ
て増える傾向にあり、大気中とは異なった環境に適用す
る圧力容器用材料に対する検討も盛んに行われるように
なってきたが、従来、比較的需要の多かった海水中低圧
下での圧力容器には次に示す鋼材が主流を占めていた。
On the other hand, recently there has been a noticeable increase in demand for pressure vessels used in seawater, such as oxygen tanks for divers and gas storage containers for research submersibles. In the past, the following steel materials were the mainstream for pressure vessels used in seawater under low pressure, which were in relatively high demand.

鋼材の化学組成 C: 0.25〜0.30%(以降、成分割合を示す%
は重量%とする)。
Chemical composition C of steel material: 0.25 to 0.30% (hereinafter, % indicating the component ratio
(% by weight).

Si : 0.10〜0.35%、 門n : 0.6
5%以下P:0.05%以下、    S:0.05%
以下Cr:2.5〜3.5%、    Mo : 0.
30〜0.70%Fe及び不可避不純物:残部。
Si: 0.10-0.35%, gate n: 0.6
5% or less P: 0.05% or less, S: 0.05%
Below Cr: 2.5-3.5%, Mo: 0.
30-0.70% Fe and unavoidable impurities: remainder.

鋼材の機械的性質 降伏強さ: 70kgf/urn!(686MPa)以
上。
Mechanical properties of steel yield strength: 70kgf/urn! (686MPa) or more.

引張強さ: 85kgf/m%(833MPa)以上。Tensile strength: 85 kgf/m% (833 MPa) or more.

伸び:15%以上、 絞り225%以上0℃シャルピー
衝撃値:60J/cfl1以上。
Elongation: 15% or more, reduction of area 225% or more, 0°C Charpy impact value: 60J/cfl1 or more.

しかし、このような海水中で使用される圧力容器にも適
用圧力増大や軽量化の指向は例外なく及んできており、
より一層強度の高い材料の開発がまたれていた。そのた
め、前記圧力容器用高強度鋼の適用を試みた場合、この
材料では所望強度を得ようとすると靭性が不足し、靭性
を満足させようとすると今度は強度不足を来たすとの不
都合があって上記用途に適するものではないとの結論が
出された。
However, the desire to increase the applied pressure and reduce weight has reached the pressure vessels used in seawater without exception.
The development of even stronger materials continued. Therefore, when attempting to apply the above-mentioned high-strength steel for pressure vessels, this material has the inconvenience of insufficient toughness when trying to obtain the desired strength, and insufficient strength when attempting to satisfy the toughness. It was concluded that it was not suitable for the above uses.

そこで、更に高強度の圧力容器鋼、例えば前記ASME
の5A−723の適用も検討されたが、前述した如く、
これらの材料は海水中での使用が考慮されていないため
高強度域(σm> 125kgf/mm”(1225M
Pa))では遅れ破壊を生しる危険性があって、やはり
海水中用途に適するものではなかった。
Therefore, even higher strength pressure vessel steel, such as the above-mentioned ASME
The application of 5A-723 was also considered, but as mentioned above,
Since these materials are not designed for use in seawater, they are in the high strength range (σm > 125kgf/mm” (1225M
Pa)), there was a risk of delayed failure, and it was not suitable for seawater applications.

このように、海水中で使用する実用的な圧力容器用材料
を考えた場合、従来の圧力容器用鋼は使用圧力を高める
ために強度を上げると靭性劣化や遅れ破壊と言った不利
を招くので不適当であり、結局、最近の要望に十分応え
得る“海水中で用いられる高圧力容器”の経済的な製造
方法は未知であると言わざるを得なかった。
In this way, when considering practical pressure vessel materials for use in seawater, conventional pressure vessel steels suffer from disadvantages such as toughness deterioration and delayed fracture when the strength is increased in order to increase the working pressure. It was unsuitable, and in the end, it had to be said that there was no known economical method for manufacturing a "high pressure vessel for use in seawater" that could fully meet recent demands.

そこで、本発明の目的は、最近の高圧化・軽量化要求に
対処できる十分な強度と靭性を有することは勿論、海水
に対する優れた耐食性及び耐遅れ破壊性をも示し、海水
中での使用に十分満足できる実用的な圧力容器の安定し
た製造手段を提供することに置かれた。
Therefore, the object of the present invention is to not only have sufficient strength and toughness to meet the recent demands for higher pressure and lighter weight, but also to exhibit excellent corrosion resistance and delayed fracture resistance against seawater, and to be suitable for use in seawater. The aim was to provide a stable means of manufacturing a fully satisfactory and practical pressure vessel.

〈課題を解決するための手段〉 本発明者等は、上記目的を達成すべくなされた数多くの
実験結果を踏まえ、“海水中で用いられる圧力容器”に
対する最近の要望に応えるには・まず該圧力容器の材料
として a)強度:現行の圧力容器を15%以上軽量化するのに
必要な強度2 b)靭性:現行圧力の1.4倍の圧力下でも脆性破壊し
ない靭性。
<Means for Solving the Problems> Based on the results of numerous experiments conducted to achieve the above objectives, the present inventors have determined that in order to meet the recent demands for "pressure vessels used in seawater": Materials for pressure vessels: a) Strength: Strength necessary to reduce the weight of current pressure vessels by 15% or more; b) Toughness: Toughness that does not cause brittle fracture even under pressure 1.4 times the current pressure.

C)耐遅れ破壊性:海水中で遅れ破壊を生じることがな
い。
C) Delayed fracture resistance: Delayed fracture does not occur in seawater.

d)耐食性:海水中での耐食性が現行材を下回らない。d) Corrosion resistance: Corrosion resistance in seawater is no lower than current materials.

との特性を備えた鋼材の開発が欠かせないとの結論に達
し、更に現行の圧力容器製造実態の調査から、「圧力容
器の製造には現行の生産設備がほぼそのまま利用できる
ことを前提とすることが実際上必要であり、経済的条件
を一層満足させるためには、容器素材として低合金鋼を
用い、これを熱間鍛造して継目無し容器の粗形を得た後
所定寸法に機械加工し、更に熱処理により必要性能を確
保すると言う工程を踏襲できる手段が望まれる」点を強
く認識せしめられるに至った。
They concluded that it is essential to develop steel materials with these characteristics, and furthermore, from a survey of the current state of pressure vessel manufacturing, they concluded that ``Pressure vessel manufacturing requires that current production equipment can be used almost as is.'' In order to further satisfy the economical conditions, it is necessary to use low-alloy steel as the container material, hot forge it to obtain a rough shape of the seamless container, and then machine it to the specified dimensions. However, we have come to strongly recognize that there is a need for a means that can follow a process that further ensures the required performance through heat treatment.

そして、これを実現するためには、各工程において前記
観点からの最適条件を見出し、これらを総合したときの
製品諸性能が必要特性を満たすか否かの調査が欠かせず
、特に、そのための基準とずべき必要機械的性質として
、これまで定量的に把握されていなかった脆性破壊を確
実に防ぐための“破壊靭性値”の考え方を導入すること
が重要である点を明らかにし、更に研究を続けた結果、
以下に示すような知見を得ることができた。
In order to achieve this, it is essential to find the optimal conditions from the above viewpoint in each process and investigate whether the product performance when combining these satisfies the required characteristics. We clarified the importance of introducing the concept of "fracture toughness value" to reliably prevent brittle fracture, which has not been quantitatively understood until now, as a necessary mechanical property that should be used as a standard, and further research. As a result of continuing,
We were able to obtain the following knowledge.

即ち、低合金鋼の化学成分組成、容器に成形する際の鍛
練比並びに熱処理条件(焼入れ・焼戻し条件)を工夫し
て適正に組み合わせると、海水中で使用される圧力容器
として好都合な鋼材組織が安定して達成され、 降伏強さ: 95kgf/mm2(930MPa)以上
In other words, by devising and appropriately combining the chemical composition of low-alloy steel, the forging ratio when forming it into a container, and the heat treatment conditions (quenching and tempering conditions), it is possible to create a steel structure that is suitable for pressure vessels used in seawater. Stably achieved, yield strength: 95 kgf/mm2 (930 MPa) or more.

引張強さ: 125kgf/ad(1225MPa)以
下。
Tensile strength: 125 kgf/ad (1225 MPa) or less.

伸び=25%以上。Elongation = 25% or more.

絞り=40%以上。Aperture = 40% or more.

0℃シャルピ衝撃値:60J/co?以上。0°C Charpy impact value: 60J/co? that's all.

0℃平面歪破壊靭性値: 355 kgf/m””(110MPa5)以上。0℃ plane strain fracture toughness value: 355 kgf/m"" (110 MPa5) or more.

を有する鋼材で構成された圧力容器の量産が可能となる
上、このような圧力容器は海水中用途としての今日の要
望を十分に満たすものであることを見出したのである。
It has been discovered that not only is it possible to mass-produce pressure vessels constructed of steel materials having a

本発明は、上記知見に基づいてなされたものであり、 r C: 0.25〜0.35%、  Si:0.10
〜0.40%Mn : 0.50〜1.20%、   
P:0.020%以下S : 0.020%以下、  
 Ni : 2.2〜3.0%叶: 0.80〜1.4
0%、  Mo : 0.30〜0.80%V  : 
 0.015〜0.20%、   sol、  Afl
 :  0.015〜0.060%N : 0.006
〜0.015% を含む(但し、Ni十cr−3,50〜4.0%}と共
に、残部が実質的にFeである鋼を、胴部の鍛練比が4
〜15となるように鍛造して容器形状とした後、850
〜920℃に加熱し該温度に胴部板厚1cm当り30分
以上保持してから焼入れ、を施し、更に580〜650
℃で焼戻すことによって、少なくとも胴部の機械的性質
が 降伏強さ: 95kgf/no+I以上。
The present invention has been made based on the above findings, r C: 0.25 to 0.35%, Si: 0.10
~0.40%Mn: 0.50~1.20%,
P: 0.020% or less S: 0.020% or less,
Ni: 2.2-3.0% Leaf: 0.80-1.4
0%, Mo: 0.30-0.80%V:
0.015-0.20%, sol, Afl
: 0.015~0.060%N: 0.006
~0.015% (however, Ni + cr-3,50~4.0%}), and the balance is substantially Fe, when the forging ratio of the body is 4.
After forging it to a container shape of ~15, it is 850
Heat to ~920℃, hold at that temperature for 30 minutes or more per 1cm of body plate thickness, and then quench, and further heat to 580~650℃.
By tempering at ℃, the mechanical properties of at least the body have a yield strength of 95 kgf/no+I or more.

引張強さ: 125kgf/mm2以下伸び:15%以
上。
Tensile strength: 125 kgf/mm2 or less Elongation: 15% or more.

絞り:25%以上。Aperture: 25% or more.

0℃シャルピ衝撃値:60J/cra以上。0°C Charpy impact value: 60 J/cra or more.

0℃平面歪破壊靭性値: 400kgf/鶴3″以上を
示し、かつ優れた耐食性及び耐遅れ破壊性も備えた海水
中で使用するのに好適な圧力容器を安定して製造し得る
ようにした点」 に特徴を有している。
It has become possible to stably manufacture a pressure vessel suitable for use in seawater that exhibits a 0°C plane strain fracture toughness value of 400 kgf/Tsuru 3'' or more, and also has excellent corrosion resistance and delayed fracture resistance. It has the characteristics of "point".

次に、本発明において、圧力容器の化学成分組成1機械
的性質及び製造条件を前記の如くに限定した理由をその
作用と共に説明する。
Next, in the present invention, the reason why the chemical composition 1 mechanical properties and manufacturing conditions of the pressure vessel are limited as described above will be explained together with their effects.

く作用〉 八)化学成分組成 (a)  C Cはマルテンサイト組織における主要強度支配元素であ
り、圧力容器としての所要強度を確保するには0.25
%以上の添加が必要である。一方、C含有量が0.35
%を超えると靭性を損なうようになることから、C含有
量は0.25〜0.35%と定めた。
8) Chemical component composition (a) C C is the main strength controlling element in the martensitic structure, and in order to ensure the required strength as a pressure vessel, 0.25
It is necessary to add more than %. On the other hand, C content is 0.35
%, the toughness is impaired, so the C content was set at 0.25 to 0.35%.

(b)  5i Siは鋼の脱酸と焼入性確保の観点から0.10%以上
の添加が必要であるが、同時にSiは粒界及び母相の靭
性を低下させるので含有量の上限を0.40%と定めた
(b) 5i It is necessary to add 0.10% or more of Si from the viewpoint of deoxidizing the steel and ensuring hardenability, but at the same time, Si reduces the toughness of grain boundaries and matrix, so the upper limit of the content should be set. It was set at 0.40%.

(C)  Mn Mnには鋼の脱酸、脱硫及び焼入性を向上させる作用が
あるが、その含有量が0.50%未満では前記作用によ
る所望の効果が得られず、一方、1.20%を超えて含
有させると非金属介在物が残留する恐れが生じることか
ら、Mn含有量は0.50〜1.20%と定めた。
(C) Mn Mn has the effect of improving the deoxidation, desulfurization, and hardenability of steel, but if its content is less than 0.50%, the desired effects due to the above effects cannot be obtained; If the Mn content exceeds 20%, nonmetallic inclusions may remain, so the Mn content is set at 0.50 to 1.20%.

(d)  P、及びS P及びSは何れも鋼の清浄度を下げる有害な不純物元素
であり、特に遅れ破壊の抵抗性を改善するためにもその
含有量を極力低く抑えることが望ましい。しかし、P及
びS含有量を余りに低く抑えることは経済的ではないの
で、この観点から何れの含有量も上限を0.020%と
定めた。
(d) P and S Both P and S are harmful impurity elements that reduce the cleanliness of steel, and it is desirable to keep their content as low as possible, especially in order to improve resistance to delayed fracture. However, it is not economical to keep the P and S contents too low, so from this point of view, the upper limit of both contents was set at 0.020%.

(e)   Ni Niは鋼の靭性を損なうことなく焼入性を改善する作用
を有しているが、その含有量が2.2%未満では所望の
焼入れ性を確保することができず、方、経済性と添加効
果の点より上限を定め、Ni含有量は2.2〜3.0%
と限定した。
(e) Ni Ni has the effect of improving the hardenability of steel without impairing its toughness, but if its content is less than 2.2%, the desired hardenability cannot be secured, and there is no solution. , the upper limit was set from the point of view of economy and addition effect, and the Ni content was 2.2 to 3.0%.
limited to.

(f)  Cr Crは、Niと同様の作用に加えて耐食性の改善作用を
も有しているが、その含有量が0.80%未満では前記
作用による効果が十分でなく、一方、経済性と添加効果
の点より上限を定め、Cr含有量については0.80〜
1.40%と限定した。
(f) Cr In addition to the same effect as Ni, Cr also has the effect of improving corrosion resistance, but if its content is less than 0.80%, the effect of the above effect is not sufficient, and on the other hand, the economic efficiency The upper limit is set based on the effect of addition, and the Cr content is 0.80~
It was limited to 1.40%.

なお、この場合にNi含有量とCr含有量の総和が3.
50%未満では所望の降伏強さが安定して確保できない
場合があり、一方、Ni含有量とCr含有量の総和が4
.0%を超えると破壊靭性値が低下し始めることから、
Ni +Cr=3.50〜4.0%と限定した。
In this case, the sum of Ni content and Cr content is 3.
If it is less than 50%, the desired yield strength may not be stably secured; on the other hand, if the sum of Ni content and Cr content is 4%
.. Since the fracture toughness value starts to decrease when it exceeds 0%,
Ni + Cr was limited to 3.50 to 4.0%.

(g)  M。(g) M.

Moには鋼の焼入性及び靭性を改善する作用があり、特
にPの有害性を抑えて耐遅れ破壊性を向上するのに有効
な元素である。しかし、その含有量が0.30%未満で
は前記作用による所望の効果が期待できず、一方、経済
性と添加効果の観点より上限を定め、Mo含有量は0.
30〜0.80%と限定した。
Mo has the effect of improving the hardenability and toughness of steel, and is an element that is particularly effective in suppressing the harmful effects of P and improving delayed fracture resistance. However, if the Mo content is less than 0.30%, the desired effect due to the above action cannot be expected.On the other hand, an upper limit was set from the viewpoint of economical efficiency and the effect of addition, and the Mo content was set to 0.30%.
It was limited to 30-0.80%.

(h)  V ■は鋼の降伏点を上昇させる作用を有するが、その含有
量が0.015%未満では前記作用による所望の効果が
得られず、一方、0.20%を超えて含有させると靭性
低下を招くことから、■含有量については0.015〜
0.20%と定めた。
(h) V (1) has the effect of increasing the yield point of steel, but if its content is less than 0.015%, the desired effect of said effect cannot be obtained; on the other hand, if it is contained in excess of 0.20%, Since this causes a decrease in toughness, the content should be from 0.015 to
It was set at 0.20%.

(il  sat、 AN A1は鋼の脱酸及び結晶粒微細化に効果を有し、耐遅れ
破壊性を改善する作用があるが、sof、AI!含有量
が0.015%未満では前記作用による効果が十分でな
く、一方、0.060%を超えて含有させると非金属介
在物が残留する恐れがあるため、sof、Af含有量は
0.015〜0.060%と定めた。
(Il sat, AN A1 has the effect of deoxidizing and grain refining of steel, and has the effect of improving delayed fracture resistance, but if the sof, AI! content is less than 0.015%, the effect of The sof and Af contents were determined to be 0.015 to 0.060% because the effect is not sufficient and, on the other hand, if the content exceeds 0.060%, nonmetallic inclusions may remain.

(J)   N NにはMと化合物を作って結晶粒を微細化する作用があ
るが、その含有量が0.006%未満であると前記作用
による所望の効果が得られず、一方、0、015%を超
えて含有させると粗大なAfNが残留するようになって
上記効果を減じることから、N含有量は0.005〜0
.015%と定めた。
(J) N N has the effect of forming a compound with M and refining crystal grains, but if its content is less than 0.006%, the desired effect of the above effect cannot be obtained; If the content exceeds 0.015%, coarse AfN will remain and reduce the above effect, so the N content should be 0.005 to 0.
.. It was set as 0.015%.

B)機械的性質 (al  降伏強さ〔σ、〕 圧力容器は、基本的には胴部での発生応力(σ)が材料
の降伏強さ(σy)より十分低くなるよう設計される。
B) Mechanical properties (al Yield strength [σ,] Pressure vessels are basically designed so that the stress (σ) generated in the body is sufficiently lower than the yield strength (σy) of the material.

また胴部板厚(1)は であり、同じ使用圧力及び大きさの容器であれば高い降
伏強さを有する材料を用いることにより板厚を小さくし
、軽量化することができる。そして、本発明においては
要求されている十分な軽量化効果の確保と言う観点から
、少なくとも容器胴部の降伏強さを95kgf/mnI
(930MPa)以上と定めた。
Further, the body plate thickness (1) is, and if the container has the same working pressure and size, the plate thickness can be reduced and the weight can be reduced by using a material having a high yield strength. In the present invention, from the viewpoint of ensuring the required sufficient weight reduction effect, the yield strength of at least the container body is set to 95 kgf/mnI.
(930MPa) or more.

(b)  引張強さ〔σ8〕 本発明の圧力容器において、これを構成する鋼材の引張
強さが125kgf/mm2(1225MPa)を超え
ると海水中使用時に遅れ破壊が発生する恐れがあること
から、該引張強さを125kgf/mm2以下と定めた
(b) Tensile strength [σ8] If the tensile strength of the steel material constituting the pressure vessel of the present invention exceeds 125 kgf/mm2 (1225 MPa), delayed fracture may occur when used in seawater. The tensile strength was determined to be 125 kgf/mm2 or less.

(C)  伸び、絞り、及びシャルピ衝撃値伸び、絞り
及びシャルピ衝撃値については現行材の実績値以上とす
れば圧力容器として十分に満足できる性能が確保できる
ことから、その値である「伸び:15%以上」、「絞り
:25%以上」「0℃シャルピ衝撃値: 60 J/c
m2以上」を基準値と定めた。
(C) Elongation, reduction of area, and Charpy impact value If the elongation, reduction of area, and Charpy impact value are equal to or higher than the actual values of current materials, sufficiently satisfactory performance as a pressure vessel can be ensured. % or more", "Aperture: 25% or more", "0℃ Charpy impact value: 60 J/c
m2 or more" was set as the standard value.

(dl  破壊靭性値 海水中で使用する圧力容器において脆性破壊が発生しな
い条件は、いかなる場合も k<k が成立することである。なお、kは で表わされ、応力或いは欠陥が大きくなるほど大きくな
る。Kが最大となるのはa(欠陥の大きさ)が板厚を貫
通する時であり、この場合においても、脆性破壊さえし
なければ内容物が漏洩して内圧が低下するので破局的な
破壊に至らない。そして、本発明では海水中で使用する
圧力容器の要望条件を6−43 kgf/mm2(42
0MPa)、 t= 201璽と把握したことからk”
X= 3” ”kgf/m””(110MPa5)とな
り、そのためr k +c= 400 kgf/m””
 (124M P a 5) Jを材料の必要破壊靭性
値の下限とした。
(dl Fracture toughness value) The condition under which brittle fracture does not occur in a pressure vessel used in seawater is that k < k holds true in any case. K becomes maximum when a (the size of the defect) penetrates the plate thickness, and even in this case, if there is no brittle fracture, the contents will leak and the internal pressure will drop, resulting in a catastrophic failure. In the present invention, the required conditions for pressure vessels used in seawater are 6-43 kgf/mm2 (42 kgf/mm2).
0MPa), t = 201 k”
X = 3""kgf/m"" (110MPa5), so r k +c = 400 kgf/m""
(124 MPa 5) J was taken as the lower limit of the required fracture toughness value of the material.

C)鍛練比 鋼塊から鍛造によって容器形状を成形する際、鍛練比を
大きくすると強度を上げることな(靭性を改善すること
ができる。即ち、第1図は低合金鋼の鍛練比と0℃シャ
ルピー衝撃値との関係を示すグラフであるが、この第1
図からも鍛練比の増大と共にシャルピー衝撃値も上昇す
ることが分かる。
C) Forging ratio When forming a container shape from a steel ingot by forging, increasing the forging ratio increases the strength (improves toughness). In other words, Figure 1 shows the forging ratio of low-alloy steel and 0°C This is a graph showing the relationship with the Charpy impact value.
The figure also shows that the Charpy impact value increases as the training ratio increases.

そして、前述した現行材における以上のシャルピ衝撃値
を安定して確保するためには、上記鍛練比を4以上にす
る必要があることから、鍛造の際の少なくとも胴部にお
ける鍛練比の下限を4と定めた。しかしながら、鍛練比
を大きくしていくと衝撃値を始めとした機械的性質の異
方性が顕著となり、甚だしい場合には鍛練比の増大につ
れて衝撃値が低下することがある。特に、本発明に係る
圧力容器は継目無し一体鍛造製のものであって容器各部
の鍛練比がそれぞれ異なるため、全ての部分、全ての方
向に亘って良好な衝撃値を確保しようとの観点から鍛練
比の上限を定め、結果として鍛練比の範囲を4〜15と
限定した。
In order to stably secure the above-mentioned Charpy impact value of the current material, it is necessary to set the above-mentioned forging ratio to 4 or more. It was determined that However, as the training ratio increases, the anisotropy of mechanical properties including the impact value becomes noticeable, and in extreme cases, the impact value may decrease as the training ratio increases. In particular, since the pressure vessel according to the present invention is seamlessly forged in one piece and the forging ratio of each part of the vessel is different, it is important to ensure good impact values in all parts and in all directions. The upper limit of the training ratio was set, and as a result, the range of the training ratio was limited to 4-15.

D)焼入れ時の加熱温度及び保持時間 焼入れ時の加熱温度が850℃未満であるとオスナナイ
ト組織中への炭化物の固溶が不十分になる恐れがあり、
一方、上記加熱温度が920℃を超えるとオーステナイ
ト結晶粒が大きくなって焼入れ後の組織も粗くなり、靭
性が低下することから、焼入れ時の加熱温度は850〜
920℃と定めた。
D) Heating temperature and holding time during quenching If the heating temperature during quenching is less than 850°C, solid solution of carbide into the osnanite structure may be insufficient.
On the other hand, if the heating temperature exceeds 920°C, the austenite crystal grains will become larger and the structure after quenching will become coarser, reducing toughness.
The temperature was set at 920°C.

また、加熱保持時間が胴部板厚1 cm当りにつき30
分を下回ると十分な焼入れがなされず、所望の強度及び
靭性を安定して確保できない恐れがあることから、加熱
保持時間は胴部板厚1cm当り30分以上と定めた。
In addition, the heating holding time is 30 times per 1 cm of body plate thickness.
If the heating time is less than 30 minutes, sufficient quenching may not be achieved and the desired strength and toughness may not be stably ensured.

E)焼戻し温度 焼戻し温度が580℃未満であると強度が必要以上に高
くなる上、靭性にも乏しくなり、一方、650℃を超え
る温度で焼戻した場合には必要とする強度が得られなく
なることから、焼戻し温度は580〜650℃と定めた
E) Tempering Temperature If the tempering temperature is less than 580°C, the strength will be higher than necessary and the toughness will also be poor; on the other hand, if the tempering temperature is higher than 650°C, the required strength will not be obtained. Therefore, the tempering temperature was determined to be 580 to 650°C.

続いて、本発明を実施例により更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、第1表に示す化学成分組成の2種類の鋼塊を溶製
し、次いで胴部鍛練比が4.5〜9となるように熱間横
型プレスで第2図で示す如き継目無し容器を製作した。
<Example> First, two types of steel ingots having the chemical composition shown in Table 1 were melted, and then hot horizontal press was performed so that the body forging ratio was 4.5 to 9 as shown in Fig. 2. We created a seamless container like this one.

次に、この継目無し容器を910℃に加熱して2時間保
持した後、油焼入れした。続いて、この継目無し容器に
は焼戻し処理が施されたが、焼戻し温度は何れも610
℃とした。
Next, this seamless container was heated to 910°C, held for 2 hours, and then oil quenched. Subsequently, this seamless container was subjected to tempering treatment, but the tempering temperature was 610°C.
℃.

そして、このようにして得られた各圧力容器について降
伏強さ、引張強さ、衝撃値、破壊靭性値並びに耐海水腐
食性を調査し、その結果を第2表に示した。ここで、引
張試験はJISZ2241に、破壊靭性試験はASTM
E399に、また耐海水腐食試験はASTM G 31
にそれぞれ従って実施した。
The yield strength, tensile strength, impact value, fracture toughness value, and seawater corrosion resistance of each pressure vessel thus obtained were investigated, and the results are shown in Table 2. Here, the tensile test is based on JIS Z2241, and the fracture toughness test is based on ASTM.
E399, and the seawater corrosion test is ASTM G 31.
Each was carried out according to the following.

第2表に示される結果からも明らかなように、本発明で
規定する条件通りに製作された圧力容器は十分満足すべ
き機械的性質を有するのに対して、製造条件が本発明の
規定から外れている従来品では十分な機械的性質を示さ
ないことが分かる。
As is clear from the results shown in Table 2, the pressure vessels manufactured according to the conditions stipulated by the present invention have sufficiently satisfactory mechanical properties, whereas the manufacturing conditions It can be seen that the conventional products that are outside the range do not exhibit sufficient mechanical properties.

また、耐食性についても、実際上問題となり、しかも腐
食量の大きい乾湿繰り返し腐食は、本発明に係る圧力容
器では腐食量が0.703 gであったのに対して、従
来の容器では0.919 gと大きかったことが確認で
きる。
In addition, corrosion resistance is also a practical problem, and dry and wet repeated corrosion, which causes a large amount of corrosion, is 0.703 g in the pressure vessel according to the present invention, while it is 0.919 g in the conventional container. It can be confirmed that it was as large as g.

更に、本発明に係る圧力容器につきklc直下のに+ 
=170MPa下で6000時間の遅れ破壊試験を実施
したが、この条件では遅れ破壊が発生せず、十分良好な
耐遅れ性能を有することも確認された。
Furthermore, regarding the pressure vessel according to the present invention, there is a +
A delayed fracture test was carried out for 6,000 hours under = 170 MPa, and it was confirmed that no delayed fracture occurred under this condition, and that it had sufficiently good delay resistance performance.

上述の試験結果からも、本発明に従った場合には、十分
に満足できる性能を備えた海水中使用圧力容器を安定し
て得られることが明らかである。
From the above test results, it is clear that according to the present invention, a pressure vessel for use in seawater with sufficiently satisfactory performance can be stably obtained.

なお、本発明に係る圧力容器の製造手段は海水中で使用
される圧力容器そのものの製造に止まらず、容器の付帯
設備(バルブ、配管類等)の製造にも適用することがで
き、更に大気中の類似機器に適用できることも勿論であ
る。
Note that the means for manufacturing a pressure vessel according to the present invention is not limited to manufacturing the pressure vessel itself used in seawater, but can also be applied to manufacturing incidental equipment for the vessel (valve, piping, etc.). Of course, it can also be applied to similar equipment inside.

く効果の総括〉 以上に説明した如く、本発明によれば、従来品に比べて
十分に使用圧力高めたり軽量化したりでき、しかも遅れ
破壊等を生しることもない、耐久性に優れた高性能の海
水中使用圧力容器をコスト安く安定提供することが可能
となるなど、産業上極めて有用な効果がもたらされる。
Summary of Effects> As explained above, the present invention provides a highly durable, high-performance product that can sufficiently increase operating pressure and reduce weight compared to conventional products, and does not cause delayed fracture. This brings about extremely useful effects industrially, such as making it possible to stably provide pressure vessels for use in seawater at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、低合金鋼の鍛練比とシャルピー衝撃値との関
係を示すグラフである。 第2図は、実施例で試作した圧力容器形状を示す概略説
明図である。
FIG. 1 is a graph showing the relationship between the forging ratio and Charpy impact value of low alloy steel. FIG. 2 is a schematic explanatory diagram showing the shape of a pressure vessel prototyped in an example.

Claims (1)

【特許請求の範囲】  重量割合にて C:0.25〜0.35%、Si:0.10〜0.40
%、Mn:0.50〜1.20%、P:0.020%以
下、S:0.020%以下、Ni:2.2〜3.0%、
Cr:0.80〜1.40%、Mo:0.30〜0.8
0%、V:0.015〜0.20%、sol.Al:0
.015〜0.060%、N:0.006〜0.015
% を含む{但し、Ni+Cr=3.50〜4.0%}と共
に、残部が実質的にFeである鋼を、胴部の鍛練比が4
〜15となるように鍛造して容器形状とした後、850
〜920℃に加熱し該温度に胴部板厚1cm当り30分
以上保持してから焼入れを施し、更に580〜650℃
で焼戻すことを特徴とする、胴部の機械的性質が 降伏強さ:95kgf/mm^2以上、 引張強さ:125kgf/mm^2以下、 伸び:15%以上、 絞り:25%以上、 0℃シャルピ衝撃値:60J/cm^2以上、0℃平面
歪破壊靭性値:400kgf/mm^3^/^2以上を
示す海水中で使用される圧力容器の製造方法。
[Claims] Weight percentage: C: 0.25-0.35%, Si: 0.10-0.40
%, Mn: 0.50-1.20%, P: 0.020% or less, S: 0.020% or less, Ni: 2.2-3.0%,
Cr: 0.80-1.40%, Mo: 0.30-0.8
0%, V: 0.015-0.20%, sol. Al: 0
.. 015-0.060%, N: 0.006-0.015
% {however, Ni + Cr = 3.50 to 4.0%}, and the balance is substantially Fe, when the forging ratio of the body is 4.
After forging it to a container shape of ~15, it is 850
It is heated to ~920℃, held at that temperature for 30 minutes or more per 1cm of body plate thickness, and then quenched, and further heated to 580~650℃.
The mechanical properties of the body are: yield strength: 95 kgf/mm^2 or more, tensile strength: 125 kgf/mm^2 or less, elongation: 15% or more, reduction of area: 25% or more, A method for manufacturing a pressure vessel used in seawater that exhibits a 0°C Charpy impact value of 60 J/cm^2 or more and a 0°C plane strain fracture toughness value of 400 kgf/mm^3^/^2 or more.
JP2516490A 1990-02-06 1990-02-06 Method for manufacturing pressure vessel used in seawater Expired - Lifetime JPH0653895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2516490A JPH0653895B2 (en) 1990-02-06 1990-02-06 Method for manufacturing pressure vessel used in seawater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2516490A JPH0653895B2 (en) 1990-02-06 1990-02-06 Method for manufacturing pressure vessel used in seawater

Publications (2)

Publication Number Publication Date
JPH03229826A true JPH03229826A (en) 1991-10-11
JPH0653895B2 JPH0653895B2 (en) 1994-07-20

Family

ID=12158372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2516490A Expired - Lifetime JPH0653895B2 (en) 1990-02-06 1990-02-06 Method for manufacturing pressure vessel used in seawater

Country Status (1)

Country Link
JP (1) JPH0653895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021169779A1 (en) * 2020-02-28 2021-09-02 宝山钢铁股份有限公司 Yield-ratio-controlled steel and manufacturing method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6601425B2 (en) * 2017-01-18 2019-11-06 トヨタ自動車株式会社 Gas tank liners and gas tanks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021169779A1 (en) * 2020-02-28 2021-09-02 宝山钢铁股份有限公司 Yield-ratio-controlled steel and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0653895B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
EP1954847B1 (en) High-strength steel for seamless, weldable steel pipes
EP2811045B1 (en) Base metal for high-toughness clad steel plate giving weld with excellent toughness, and process for producing said clad steel plate
EP3219820B1 (en) Nickel-base alloy-clad steel plate and method for producing the same
EP2180074B1 (en) High-strength low-alloy steel excellent in the resistance to high-pressure hydrogen environment embrittlement and process for manufacturing the steel
JPS629646B2 (en)
JP2010070845A (en) Weldable ultra-high strength steel having excellent low-temperature toughness and method for producing the same
CN108368591B (en) Pressure vessel steel sheet having excellent resistance to post-weld heat treatment and method for manufacturing same
KR101629129B1 (en) Base material for high-toughness clad steel plate and method for producing said clad steel plate
CN113913695B (en) Corrosion-resistant and fatigue-resistant pipeline steel for underwater oil and gas production and production method thereof
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JPS634047A (en) High-tensile steel for oil well excellent in sulfide cracking resistance
JPS5891123A (en) Production of seamless steel pipe for 80kg/mm2 class structure having excellent toughness of weld zone
JPS6164815A (en) Manufacture of high strength steel excellent in delay breakdown resistance
JPH07292445A (en) Duplex stainless clad steel, its production and welding method therefor
JPH03229826A (en) Production of pressure vessel used in seawater
JPH09118919A (en) Manufacture of steel product excellent in seawater corrosion resistance
JPS602653A (en) Production of precipitation hardening type nickel-base alloy
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH0387332A (en) High strength-low alloy-heat resistant steel
JPS613833A (en) Manufacture of high strength steel with superior weldability
JP2712702B2 (en) Steel for pressure vessels
CN114086083A (en) 1100 MPa-grade sulfur-resistant high-pressure gas cylinder steel, high-pressure gas cylinder and manufacturing method thereof
JPH03243745A (en) Steel for machine structural use excellent in delayed fracture resistance
JPH0468374B2 (en)
JPS62107023A (en) Working method for welded steel pipe

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term