JPH03229603A - Superconducting type magnetic separator - Google Patents

Superconducting type magnetic separator

Info

Publication number
JPH03229603A
JPH03229603A JP6360790A JP6360790A JPH03229603A JP H03229603 A JPH03229603 A JP H03229603A JP 6360790 A JP6360790 A JP 6360790A JP 6360790 A JP6360790 A JP 6360790A JP H03229603 A JPH03229603 A JP H03229603A
Authority
JP
Japan
Prior art keywords
magnetic
superconducting coil
filter
superconducting
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6360790A
Other languages
Japanese (ja)
Other versions
JP2560511B2 (en
Inventor
Kazuo Ueda
植田 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6360790A priority Critical patent/JP2560511B2/en
Publication of JPH03229603A publication Critical patent/JPH03229603A/en
Application granted granted Critical
Publication of JP2560511B2 publication Critical patent/JP2560511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To make a leakage magnetic field smeller without using iron in a magnetic circuit by the arrangement such that the absolute value of a magnetic dipole moment of an inner superconducting coil and that of an outer superconducting coil are made approximately equal and both the coils have reversed polarities. CONSTITUTION:An inner superconducting coil 15 and an outer superconducting coil 16 are placed in an inner vacuum insulated vessel 13 and an outer vacuum insulated vessel 14 respectively so that they are cooled by means of liquid helium. An inner filter 11 is placed in a vessel made up of the vessel 13 and end plates 17, while an outer filter 12 in a vessel made up of the vessel 14, the vessel 13 and end plates 18. These filters are constructed of fine magnetic stainless steel wires. The absolute value of the magnetic dipole moment of the coil 15 and that of the coil 16 are made approximately equal and the coils 15, 16 have reversed polarities. As a result, the magnetic fields of both coils act in the reverse directions, so that a leakage magnetic field is made smaller. And amounts of iron required of a magnetic circuit can be greatly reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は白陶土中の鉄化合物の除去、あるいは製鉄所廃
水中の磁性物質の除去などに用いられる磁気分離装置で
、特に、超電導磁石を利用した磁気分離装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a magnetic separation device used for removing iron compounds from white china clay or magnetic substances from wastewater from steel works, and is particularly applicable to superconducting magnets. Regarding the magnetic separation device used.

〔従来の技術〕[Conventional technology]

磁気分離装置は古くから鉄鉱石の選鉱に用いられてきた
が、1960年代の終わり頃に高勾配磁気分離(HGM
S:High Gradient Magnetic 
5eparetion)が開発され、白陶土などの磁器
原料の精製をはじめその他磁性粒子の選別等に工業的に
用いられるようになった。
Magnetic separation equipment has been used for iron ore beneficiation for a long time, but high gradient magnetic separation (HGM) was introduced in the late 1960s.
S: High Gradient Magnetic
5eparation) was developed and came to be used industrially for refining porcelain raw materials such as white china clay and for sorting other magnetic particles.

磁気分離装置の原理は、よく知られているように、磁化
率X1体積Vの磁性粒子が磁場Hの中に置かれた時に受
ける力により、磁性粒子を分離するもので、この方Fは
、 F −V x Hgrad H・−−−−−−−−−−
(1)であり、この力は磁場の強さH1磁場の勾配gr
ad Hとに比例する。磁場の勾配grad Hは磁石
をそのまま使用するだけでは大きな値が得られず、高勾
配磁気骨till (HGMS)では磁場中に置かれた
強磁性の細い線材のまわりにできる局所的な高い勾配磁
場を利用している。更に、分離能力を高めるため高磁場
の発生可能な超電導磁石を利用することが行われている
 (例えばAdvances in Cryogeni
c Engineering volule 33 p
age 53〜60; 1988年+P1enumPr
ess、New York) 第5図は従来の超電導磁石を用いた高勾配磁気分離装置
の断面図である。2は超電導コイルで、真空断熱容器に
収納され、液体ヘリウムで冷却される。このコイルは円
筒形のコイルで磁場Hを発生する。1は磁性ステンレス
鋼の細い線材、例えば、数十−の線材を綿状にして作ら
れたフィルタで磁場Hの中に配置され、この細い線材の
まわりに局所的な高い勾配磁場を発生する。超電導コイ
ル2で発生した磁束はフィルタ1−ポールピース3b→
リターンヨーク4→ポールピース3a→フイルタ1の磁
気回路を通る。ポールピース3a、 3b及びリターン
コーク4は鉄材で作られ、前記の磁束を通すに充分な断
面積を持っている。
As is well known, the principle of a magnetic separation device is to separate magnetic particles by the force they receive when magnetic particles with a magnetic susceptibility of X1 and a volume of V are placed in a magnetic field H, where F is F. -V x Hgrad H・------------
(1), and this force is the magnetic field strength H1, the magnetic field gradient gr
ad is proportional to H. A large value cannot be obtained for the magnetic field gradient grad H by simply using a magnet as is, but in high gradient magnetic bone till (HGMS), a local high gradient magnetic field is created around a thin ferromagnetic wire placed in a magnetic field. is used. Additionally, superconducting magnets capable of generating high magnetic fields are being used to improve separation capabilities (e.g., Advances in Cryogeni
c Engineering volume 33 p.
age 53-60; 1988+P1enumPr
ess, New York) FIG. 5 is a cross-sectional view of a conventional high gradient magnetic separation device using superconducting magnets. 2 is a superconducting coil that is housed in a vacuum insulation container and cooled with liquid helium. This coil is a cylindrical coil that generates a magnetic field H. Reference numeral 1 denotes a filter made of a thin magnetic stainless steel wire, for example, several tens of wires, arranged in a magnetic field H, and generates a local high gradient magnetic field around the thin wire. The magnetic flux generated in the superconducting coil 2 is transferred from the filter 1 to the pole piece 3b→
It passes through the magnetic circuit of return yoke 4 → pole piece 3a → filter 1. The pole pieces 3a, 3b and the return cork 4 are made of iron and have a cross-sectional area sufficient to pass the magnetic flux.

木 運転手順として、例えば、磁性粒子を含む力#υ オンのスラリーが被処理流体5として弁v1を経由して
磁気分離装置の下部から流入し、ポールピース3aの中
に設けられた流通孔6aを経由してフィルターの中に入
る。被処理流体5の中に含まれる磁性粒子はフィルター
を構成する磁性線材のまわりの局所的な高い勾配磁場に
よって捕捉される。磁性粒子が除去された被処理流体5
はフィルターを出て、ポールピース3bの中の流通孔6
bを経由して磁気分離装置から出て、弁v2から磁性粒
子の除かれた流体7として取り出される。前述の磁性粒
子の捕捉サイクルでは弁はvl:開、v2:開、v3:
閉。
As the operating procedure, for example, a slurry containing magnetic particles with a force #υ on flows as the fluid 5 to be treated from the lower part of the magnetic separation device via the valve v1, and flows into the flow hole 6a provided in the pole piece 3a. It enters the filter via . Magnetic particles contained in the fluid to be treated 5 are captured by a local high gradient magnetic field around the magnetic wire constituting the filter. Fluid 5 to be treated from which magnetic particles have been removed
exits the filter and enters the flow hole 6 in the pole piece 3b.
It exits the magnetic separator via b and is taken out from valve v2 as fluid 7 from which magnetic particles have been removed. In the magnetic particle capture cycle described above, the valves are vl: open, v2: open, v3:
Closed.

v4:閉である。長時間被処理流体を流通させるとフィ
ルターに磁性粒子が蓄積しその捕捉能力が落ちてくるの
で、洗浄サイクルに移る。まず、超電導コイル2が消磁
され、弁はvl:閉、v2:閉、v3:開、v4:開に
操作される。洗浄用流体8、例えば、水が弁v3を経由
して磁気分離装置に上から供給され、フィルタ1に捕捉
されていた磁性粒子を洗い流しながら磁気分離装置の下
部から弁を通して多量の磁性粒子を含む流体9として取
り出される。
v4: Closed. If the fluid to be treated is passed through the filter for a long period of time, magnetic particles will accumulate on the filter and the ability to capture them will decrease, so a cleaning cycle will be started. First, the superconducting coil 2 is demagnetized, and the valves are operated as vl: closed, v2: closed, v3: open, and v4: open. A cleaning fluid 8, for example water, is supplied from above to the magnetic separator via valve v3 and contains a large amount of magnetic particles through the valve from the bottom of the magnetic separator while washing away the magnetic particles that have been trapped in the filter 1. It is taken out as fluid 9.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述の磁気分離装置においては磁気回路として鉄製のポ
ールピース3a、 3b及びリターンヨーク4を設けて
いる。このため超電導コイル2の発生する磁束を有効に
使うことができ、また周囲への漏れ磁場もほとんどない
。しかしながら、この磁気回路の鉄の量は膨大となって
いる。例えば、フィルタ1の直径が2m程度の一般的な
磁気分離装置において鉄の重量は150〜200トンに
もなる。これにより鉄の材料コストの他、重量物の組立
1輸送、及び設置場所の基礎工事等コストの高いものに
なっている。鉄の量を減らそうとすると周囲への漏れ磁
場が大きくなる。極端に言って鉄を全く用いないで超電
導コイルのみで磁気分離装置を構成することもできるが
、この場合、周囲への漏れ磁場の影響を避けるため広大
な設置面積を要する。
In the magnetic separation device described above, iron pole pieces 3a, 3b and a return yoke 4 are provided as magnetic circuits. Therefore, the magnetic flux generated by the superconducting coil 2 can be used effectively, and there is almost no magnetic field leaking to the surroundings. However, the amount of iron in this magnetic circuit is enormous. For example, in a typical magnetic separation device in which the filter 1 has a diameter of about 2 m, the weight of iron is 150 to 200 tons. As a result, in addition to the cost of iron materials, the cost of assembling and transporting heavy objects and the foundation work at the installation site are high. If you try to reduce the amount of iron, the leakage magnetic field to the surrounding area will increase. In the extreme, it is possible to construct a magnetic separation device using only superconducting coils without using iron at all, but in this case, a vast installation area is required to avoid the influence of leakage magnetic fields to the surroundings.

一方、漏れ磁場の小さいコイル形式が特開昭51断装置
の超電導磁石にも用いられ、アクティブシールド方式と
呼ばれている。このコイル形式は円筒形の主コイルとこ
れと同軸で外側に置かれた円筒形のシールドコイルとか
らなり、これら両コイルの磁気双極子モーメントの絶対
値が等しく極性を逆にしたものである。このコイル形式
を用いた超電導磁石は漏れ磁場は小さいが、シールドコ
イルの作る磁場が主コイルが作る磁場を部分的に打ち消
すため、主コイルのアンペアターンを増す必要があり、
シールドコイルにもコストがかかる。
On the other hand, a coil type with a small leakage magnetic field is also used in the superconducting magnet of the Japanese Patent Application Laid-Open No. 1983-1973 disconnection device, and is called an active shield type. This coil type consists of a cylindrical main coil and a cylindrical shield coil placed coaxially with and outside the main coil, with magnetic dipole moments of both coils having equal absolute values and opposite polarities. Superconducting magnets using this coil type have a small leakage magnetic field, but the magnetic field created by the shield coil partially cancels the magnetic field created by the main coil, so it is necessary to increase the ampere turns of the main coil.
Shielded coils are also costly.

超電導磁石は現在、非常に高価であり、このままこのコ
イル形式の超電導磁石を磁気分離装置に適用したのでは
大幅なコスト増となる。
Superconducting magnets are currently very expensive, and if this coil-type superconducting magnet were applied to a magnetic separation device as is, the cost would increase significantly.

本発明の課題は、前述の問題点を解決して、磁気回路と
して鉄材を用いることなく、かつ、漏れ磁場が小さく、
しかも超電導コイルのコストが適度な超電溝形磁気分離
装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems without using iron materials as a magnetic circuit, and with a small leakage magnetic field.
Moreover, it is an object of the present invention to provide a superconducting groove type magnetic separation device whose superconducting coil cost is moderate.

〔課題を解決するための手段〕[Means to solve the problem]

前述の課題を解決するために、本発明の超電導磁石とこ
の磁石の発生する磁場の中におかれた強磁性体の線材か
らなるフィルタを備え、磁性粒子を含む被処理流体が、
このフィルタを通過する際、線材のまわりに生じる局所
的な高勾配磁場により、前記磁性粒子をフィルタに吸引
して前記被処理流体より除去する超電導形磁気分離装置
においては、超電導磁石は円筒形の内側超電導コイルと
これと同軸で逆極性の円筒形の外側超電導コイルとから
なり、フィルタはこの内側超電導コイルの内部に配置さ
れる内側フィルタとこの外側超電導コイルと内側超電導
コイルの中間部に配置される外側フィルタとからなり、
前記超電導磁石は内側超電導コイルの磁気双極子モーメ
ントと外側超電導コイルの双極子モーメントの絶対値が
ほぼ等しくかつ逆極性とし、被処理流体を内側フィルタ
と外側フィルタとの相方に流通させるようにする。
In order to solve the above-mentioned problems, a superconducting magnet of the present invention and a filter made of a ferromagnetic wire placed in the magnetic field generated by the magnet are provided, and a fluid to be treated containing magnetic particles is
In a superconducting magnetic separation device in which the magnetic particles are attracted to the filter and removed from the fluid to be treated by a local high gradient magnetic field generated around the wire when passing through the filter, the superconducting magnet is cylindrical. It consists of an inner superconducting coil and a cylindrical outer superconducting coil coaxial with the inner superconducting coil and having opposite polarity. and an outer filter,
In the superconducting magnet, the magnetic dipole moment of the inner superconducting coil and the dipole moment of the outer superconducting coil are approximately equal in absolute value and have opposite polarities, so that the fluid to be treated flows through the inner filter and the outer filter.

〔作用〕[Effect]

本発明では円筒形の内側超電導コイルとこれと同軸で逆
磁極の磁場を発生する円筒形の外側超電導コイルとを備
え、それぞれの磁気双極子モーメントをほぼ等しく、か
つ、逆極性にしたので周囲に対する磁場はこの両コイル
の磁場が打消しあって漏れ磁場は非常に低くなる。勿論
磁気回路に鉄材を用いる必要なく、磁気回路の膨大な鉄
の量は削減できる。また、内側超電導コイルの内部と、
外側超電導コイルと内側超1を導コイルとの中部に、磁
性粒子捕捉用のフィルタを設け、この相方に被処理流体
を流通せしめるようにしたので超電導コイルの発生する
磁場を有効に活用でき、分離装置の能力に対する超電導
コイルのコストは適度に抑えられる。
The present invention includes a cylindrical inner superconducting coil and a cylindrical outer superconducting coil that is coaxial with the cylindrical superconducting coil and generates a magnetic field with opposite magnetic poles.The magnetic dipole moments of the coils are made almost equal and have opposite polarities, so that The magnetic fields of both coils cancel each other out, resulting in a very low leakage magnetic field. Of course, there is no need to use iron material in the magnetic circuit, and the enormous amount of iron in the magnetic circuit can be reduced. In addition, the inside of the inner superconducting coil,
A filter for capturing magnetic particles is provided in the middle between the outer superconducting coil and the inner superconducting coil, and the fluid to be treated is allowed to flow through this partner, so the magnetic field generated by the superconducting coil can be effectively utilized, allowing separation. The cost of superconducting coils relative to the capabilities of the device can be kept reasonably low.

〔実施例〕〔Example〕

第1図は本発明の超電導形磁気分離装置の一実施例の断
面図を示す。15は円筒形の内側超電導コイルであり、
16はこれと同軸で逆極性の磁場を発生する円筒形の外
側超電導コイルで、超電導磁石はこの両コイルから構成
されている。この両コイルはそれぞれ内側真空断熱容器
13と外側真空断熱容器14に収められ、液体ヘリウム
で冷却される。
FIG. 1 shows a sectional view of an embodiment of a superconducting magnetic separation device of the present invention. 15 is a cylindrical inner superconducting coil;
16 is a cylindrical outer superconducting coil that is coaxial with this and generates a magnetic field of opposite polarity, and a superconducting magnet is composed of these two coils. Both coils are housed in an inner vacuum insulation container 13 and an outer vacuum insulation container 14, respectively, and are cooled with liquid helium.

円柱形の内側フィルタ11が内側超電導コイル15の内
部に、円筒形の外側フィルタ12が、外側超電導コイル
16と内側超電導コイル15との中間部に配置される。
A cylindrical inner filter 11 is arranged inside the inner superconducting coil 15 , and a cylindrical outer filter 12 is arranged at an intermediate portion between the outer superconducting coil 16 and the inner superconducting coil 15 .

そして、内側フィルタ11は内側真空断熱容器13と端
板17からなる容器内に、外側フィルタ12は外側真空
断熱容器14及び内側真空断熱容器13と端板18から
なる容器内に収められる。これらのフィルタは、すでに
述べたように、磁性ステンレス鋼の細い線材、例えば、
数十−の線材を綿状にして作られる。端板17及び18
にはその上線と下編に被処理流体5及び洗浄用流体8用
の配管が取り付けられる。
The inner filter 11 is housed in a container made up of an inner vacuum insulated container 13 and an end plate 17, and the outer filter 12 is housed in a container made up of an outer vacuum insulated container 14, an inner vacuum insulated container 13, and an end plate 18. These filters, as already mentioned, are made of thin wires of magnetic stainless steel, e.g.
It is made from dozens of wire rods shaped like cotton. End plates 17 and 18
Pipes for the fluid to be treated 5 and the cleaning fluid 8 are attached to the upper and lower parts of the pipe.

内側超電導コイル15の磁気双極子モーメントNl・A
〔但しNIはアンペアターン、Aはコイル径をDとして
A−(π/4)・D”)と外側超電導コイル16の磁気
双極子モーメン)NiAとは絶対値がほぼ等しく極性が
逆になうている。このようにすれば、周囲への漏れ磁場
は距離の5乗で急速に減衰する。第3図はこの超電導磁
石の磁場分布を示し、縦軸は磁場H1横軸は超電導コイ
ルの中心からの距ll1rであり、11.15.12.
16はそれぞれ内側フィルタ11.内側超電導コイル1
5.外側フィルタ12.外側超電導コイル16の位置関
係を示している。内側フィルタ11と外側フィルタ16
には高磁場、例えば、実、%123で示す2T (テス
ラ)が印加されており、しかも外側超電導コイル16よ
り外の磁場は前述の原理により非常に小さい、内側超電
導コイルのアンペアターンNlは外側超電導コイルのア
ンペアターンNlの約2倍である。内側超電導コイルは
それ単独でflW線21で示す約4Tの磁場を発生し、
外側超電導コイルはそれ単独で破線22で示す約2Tの
磁場を発生する。これにより前述のように内側フィルタ
にかかる磁場は約2Tで、外側フィルタにかかる磁場も
約2丁になる。従って内側及び外側の両フィルタともほ
ぼ等しい磁性粒子の捕捉能力を持っている。被処理流体
5はこの両フィルタへ並列に流通させる。
Magnetic dipole moment Nl・A of the inner superconducting coil 15
[However, NI is an ampere turn, A is a coil diameter of D, and A-(π/4)・D”) and the magnetic dipole moment of the outer superconducting coil 16) are almost equal in absolute value to NiA and opposite in polarity. In this way, the leakage magnetic field to the surroundings will rapidly attenuate as the fifth power of the distance. Figure 3 shows the magnetic field distribution of this superconducting magnet, with the vertical axis representing the magnetic field H and the horizontal axis representing the center of the superconducting coil. The distance ll1r from 11.15.12.
16 are inner filters 11 . Inner superconducting coil 1
5. Outer filter 12. The positional relationship of the outer superconducting coils 16 is shown. Inner filter 11 and outer filter 16
A high magnetic field, for example, 2T (tesla) shown in %123, is applied to This is approximately twice the ampere turns Nl of the superconducting coil. The inner superconducting coil alone generates a magnetic field of about 4 T as indicated by the flW line 21,
The outer superconducting coil alone generates a magnetic field of approximately 2 T, indicated by dashed line 22. As a result, as mentioned above, the magnetic field applied to the inner filter is about 2 T, and the magnetic field applied to the outer filter is also about 2 T. Therefore, both the inner and outer filters have approximately equal magnetic particle trapping capabilities. The fluid to be treated 5 is passed through both filters in parallel.

運転手順は、すでに述べた第5図の装置と同様である。The operating procedure is similar to the apparatus shown in FIG. 5 already described.

第2図は本発明の超電導形磁気分離装置の異なる実施例
の断面図を示す。本実施例では第1図に示した実施例に
比べて内側超電導コイル15の径はより小さく、アンペ
アターンはより多くなっている。同時に、内側超電導コ
イル15の磁気双極子モーメン)NI・Aと外側超電導
コイルの磁気双極子モーメントN1−Aはほぼ等しく、
かつ、逆極性に定めである。第4図はこの超電導磁石の
磁場分布を示し、図中のH,r、 11.15.12.
16は第3図のそれと同じである。内側超電導コイルは
、例えば、それ単独でill[m21で示す約6Tの磁
場を発生し、外側超電導コイルはそれ単独で破線22で
示す約2Tの磁場を発生する。これにより、実線22で
示すように内側フィルタにかかる磁場は約4丁で、外側
フィルタにかかる磁場は約2丁となる。内側及び外側超
電導コイルの磁気双極子モーメント旧・Aはほぼ等しく
逆極性であるので、外側超電導コイルより外の漏れ磁場
は非常に小さく抑えられていることは第1図の実施例と
同じである。
FIG. 2 shows a cross-sectional view of a different embodiment of the superconducting magnetic separation device of the present invention. In this embodiment, the inner superconducting coil 15 has a smaller diameter and more ampere turns than the embodiment shown in FIG. At the same time, the magnetic dipole moment (NI・A) of the inner superconducting coil 15 and the magnetic dipole moment N1-A of the outer superconducting coil are almost equal,
And, the polarity is determined to be reversed. Figure 4 shows the magnetic field distribution of this superconducting magnet, and H, r, 11.15.12.
16 is the same as that in FIG. The inner superconducting coil, for example, alone generates a magnetic field of approximately 6 T, indicated by ill[m21, and the outer superconducting coil alone generates a magnetic field of approximately 2 T, indicated by dashed line 22. As a result, as shown by the solid line 22, the magnetic field applied to the inner filter is about 4, and the magnetic field applied to the outer filter is about 2. Since the magnetic dipole moments A of the inner and outer superconducting coils are almost equal and have opposite polarities, the leakage magnetic field outside the outer superconducting coil is suppressed to a very low level, which is the same as in the embodiment shown in Fig. 1. .

被処理流体5は第2図に示すように、まず、磁場の低い
外側フィルタ12に流通させ、次に連絡配管31を経て
内側フィルタ11に流通させる0M場の低い外側フィル
タでは磁化率Xの比較的大きい粒子が捕捉され、次に磁
場の高い内側フィルタでは磁化率の比較的小さい粒子が
捕捉される。洗浄時には、内側フィルタの洗浄廃水9a
と外側フィルタの洗浄廃水9bを別々に排出管32と3
3から取り出すことにより、被処理流体中の磁性粒子を
2種類の物質に分別して回収できる。
As shown in FIG. 2, the fluid 5 to be treated is first passed through the outer filter 12 with a low magnetic field, and then passed through the connecting pipe 31 and passed through the inner filter 11. Comparison of magnetic susceptibility Large particles are captured, followed by particles with a relatively low magnetic susceptibility in the inner filter with a high magnetic field. When cleaning, the cleaning waste water 9a of the inner filter
and the cleaning waste water 9b of the outer filter are discharged separately from the discharge pipes 32 and 3.
3, the magnetic particles in the fluid to be treated can be separated into two types of substances and recovered.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、内側超電導コイルとこれと同軸で逆極
性の外側超電導コイルを備え、両コイルの磁気双極子モ
ーメントの絶対値を等しく極性を逆にすることにより、
大量の鉄材の磁気回路を用いることなく周囲への漏れ磁
場は非常に低くし得たことは勿論であるが、磁性粒子を
捕捉するフィルタを内側超電導コイルの内部のみでなく
、外側超電導コイルと内側超電導コイルとの中間部にも
設けるようにしたので、第5図に示す従来の超電厚形磁
気分離装置に比して、同程度の外径でフィルタの容積は
約3倍に増加し、その分処理能力も増大した。また、処
理能力の増大により、処理能力溝たりの超電導コイルの
コストが適度に抑えられるようになった。
According to the present invention, an inner superconducting coil and an outer superconducting coil coaxial with the same and having opposite polarities are provided, and by making the absolute values of the magnetic dipole moments of both coils equal and having opposite polarities,
Of course, we were able to reduce the leakage magnetic field to the surroundings very low without using a large amount of magnetic circuit made of iron material, but we also installed a filter that captures magnetic particles not only inside the inner superconducting coil, but also between the outer superconducting coil and the inner superconducting coil. Since it is also provided in the middle between the superconducting coil and the superconducting coil, the volume of the filter increases by about three times with the same outer diameter compared to the conventional superconducting thick type magnetic separator shown in Fig. 5. The processing capacity has also increased accordingly. In addition, due to the increase in processing capacity, the cost of superconducting coils per processing capacity can now be moderately reduced.

更にまた、内側フィルタと外側フィルタの磁場の大きさ
を異なるようにして、被処理流体を、まず、低磁場のフ
ィルタに流通させ、次に高磁場のフィルタに流通させる
ようにして、捕捉する磁性粒子を2種類の物質に分別し
て回収できるようにしたので、回収磁性粒子のより有効
な利用ができる。
Furthermore, the magnitude of the magnetic fields of the inner filter and the outer filter may be made different so that the fluid to be treated first passes through the filter with a low magnetic field and then passes through the filter with a high magnetic field, thereby increasing the magnetic field to be captured. Since the particles can be separated and recovered into two types of substances, the recovered magnetic particles can be used more effectively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の超電厚形磁気分離装置の断
面図、第2図は本発明の異なる実施例の超電厚形磁気分
離装置の断面図、第3図は第1図の超1を厚形磁気分離
装置の超電導磁石の磁場分布を示す説明図、第4図は第
2図の超電厚形磁気分離装置の超電導磁石の磁場分布を
示す説明図、第5図は従来の一例の超電厚形磁気分離装
置の断面図である。 5:被処理流体、11;内側フィルタ、12:外側フィ
ルタ、15:内側超電導コイル(超電導磁石)、16:
外側超電導コイル (超電導磁石) NIつ、′ 第1図 第2図 2’z 第3図 第4図 第5図
FIG. 1 is a cross-sectional view of a superelectric thick type magnetic separator according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a superelectric thick type magnetic separator according to a different embodiment of the present invention, and FIG. Super 1 in the figure is an explanatory diagram showing the magnetic field distribution of the superconducting magnet of the thick magnetic separator, Figure 4 is an explanatory diagram showing the magnetic field distribution of the superconducting magnet of the superelectric thick magnetic separator of Figure 2, and Figure 5 1 is a sectional view of a conventional example of a superelectric thick type magnetic separation device. 5: Fluid to be treated, 11: Inner filter, 12: Outer filter, 15: Inner superconducting coil (superconducting magnet), 16:
Outer superconducting coil (superconducting magnet) Figure 1 Figure 2 2'z Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1)超電導磁石とこの磁石の発生する磁場の中におかれ
た強磁性体の線材からなるフィルタを備え、磁性粒子を
含む被処理流体が、このフィルタを通過する際、線材の
まわりに生じる局所的な高勾配磁場により、前記磁性粒
子をフィルタに吸引して前記被処理流体より除去する超
電導形磁気分離装置において 超電導磁石は円筒形の内側超電導コイルとこれと同軸で
逆極性の円筒形の外側超電導コイルとからなり、フィル
タはこの内側超電導コイルの内部に配置される内側フィ
ルタとこの外側超電導コイルと内側超電導コイルの中間
部に配置される外側フィルタとからなり、前記超電導磁
石は内側超電導コイルの磁気双極子モーメントと外側超
電導コイルの双極子モーメントの絶対値がほぼ等しくか
つ逆極性とし、被処理流体を内側フィルタと外側フィル
タとの相方に流通させることを特徴とする超電導形磁気
分離装置。
[Claims] 1) A superconducting magnet and a filter made of a ferromagnetic wire placed in a magnetic field generated by the magnet, and when a fluid to be treated containing magnetic particles passes through the filter, In a superconducting magnetic separation device in which the magnetic particles are attracted to a filter and removed from the fluid to be treated using a localized high gradient magnetic field generated around the wire, a superconducting magnet is connected to a cylindrical inner superconducting coil coaxially and oppositely to the magnetic particles. The filter consists of a polar cylindrical outer superconducting coil, an inner filter disposed inside the inner superconducting coil, and an outer filter disposed between the outer superconducting coil and the inner superconducting coil. A superconductor characterized in that the magnetic dipole moment of the inner superconducting coil and the dipole moment of the outer superconducting coil have almost equal absolute values and opposite polarities, and the fluid to be treated flows through the inner filter and the outer filter. shaped magnetic separation device.
JP6360790A 1989-11-22 1990-03-14 Superconducting magnetic separator Expired - Lifetime JP2560511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6360790A JP2560511B2 (en) 1989-11-22 1990-03-14 Superconducting magnetic separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-304097 1989-11-22
JP30409789 1989-11-22
JP6360790A JP2560511B2 (en) 1989-11-22 1990-03-14 Superconducting magnetic separator

Publications (2)

Publication Number Publication Date
JPH03229603A true JPH03229603A (en) 1991-10-11
JP2560511B2 JP2560511B2 (en) 1996-12-04

Family

ID=26404744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6360790A Expired - Lifetime JP2560511B2 (en) 1989-11-22 1990-03-14 Superconducting magnetic separator

Country Status (1)

Country Link
JP (1) JP2560511B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2346822A (en) * 1999-02-18 2000-08-23 Aquafine Corp Continuous filament matrix for magnetic separator
KR100723236B1 (en) * 2006-02-13 2007-05-29 두산중공업 주식회사 Superconductive coil assembly having improved cooling efficiency
JP2010232432A (en) * 2009-03-27 2010-10-14 Kobe Steel Ltd Magnetic field generator and method for using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2346822A (en) * 1999-02-18 2000-08-23 Aquafine Corp Continuous filament matrix for magnetic separator
US6180005B1 (en) 1999-02-18 2001-01-30 Aquafine Corporation Continuous filament matrix for magnetic separator
US6224777B1 (en) 1999-02-18 2001-05-01 Aquafine Corporation Continuous filament matrix for magnetic separator
GB2346822B (en) * 1999-02-18 2002-06-26 Aquafine Corp Continuous filament matrix for magnetic separator
KR100723236B1 (en) * 2006-02-13 2007-05-29 두산중공업 주식회사 Superconductive coil assembly having improved cooling efficiency
JP2010232432A (en) * 2009-03-27 2010-10-14 Kobe Steel Ltd Magnetic field generator and method for using the same

Also Published As

Publication number Publication date
JP2560511B2 (en) 1996-12-04

Similar Documents

Publication Publication Date Title
US4054513A (en) Magnetic separation, method and apparatus
US3676337A (en) Process for magnetic separation
US4769130A (en) High-gradient magnetic separator
US3567026A (en) Magnetic device
US4217213A (en) Device for the separation of minute magnetizable particles, method and apparatus
Yokoyama et al. Solid-liquid magnetic separation using bulk superconducting magnets
US4668383A (en) Magnetic separator
JPS60175515A (en) Particle collection and receiving method and filter apparatus
FI71674B (en) MAGNETISERBAR AVSKILJNINGSANORDNING FOER RENING AV VAETSKOR
JPH03229603A (en) Superconducting type magnetic separator
Yokoyama et al. High gradient magnetic separation using superconducting bulk magnets
Ha et al. Purification of wastewater from paper factory by superconducting magnetic separation
CN207521150U (en) A kind of intelligence Superconducting magnetic separator
He et al. Enrichment of valuable elements from vanadium slag using superconducting HGMS technology
JP4288555B2 (en) Separation and purification device using magnetic material
Liakopoulos et al. A bio-magnetic bead separator on glass chips using semi-encapsulated spiral electromagnets
Oka et al. Waste water purification by magnetic separation technique using HTS bulk magnet system
US4496457A (en) Rotor-type magnetic particle separator
JP2007098297A (en) Water purification system for drinking water
Ohara Progress in magnetic separation technology for processing large quantities of dilute suspensions
Watson et al. A superconducting high-gradient magnetic separator with a current-carrying matrix
JPH09327635A (en) Magnetic separating apparatus
JP7077490B2 (en) Water treatment equipment
HA et al. Research of superconducting magnetic separation in Korea
JP3511094B2 (en) Magnetic separation method and magnetic separation device