JP4288555B2 - Separation and purification device using magnetic material - Google Patents

Separation and purification device using magnetic material Download PDF

Info

Publication number
JP4288555B2
JP4288555B2 JP2002133856A JP2002133856A JP4288555B2 JP 4288555 B2 JP4288555 B2 JP 4288555B2 JP 2002133856 A JP2002133856 A JP 2002133856A JP 2002133856 A JP2002133856 A JP 2002133856A JP 4288555 B2 JP4288555 B2 JP 4288555B2
Authority
JP
Japan
Prior art keywords
tank
water
treated
separation
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002133856A
Other languages
Japanese (ja)
Other versions
JP2003326191A (en
Inventor
徹 雄 岡
田 秀 彦 岡
山 和 哉 横
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2002133856A priority Critical patent/JP4288555B2/en
Publication of JP2003326191A publication Critical patent/JP2003326191A/en
Application granted granted Critical
Publication of JP4288555B2 publication Critical patent/JP4288555B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として、磁性体微粒子を含む凝集剤で、被処理水中の汚濁物あるいは溶質を、磁性を持った浮遊固形物とし、被処理水の流れの中で、磁力により、前記浮遊固形物を被処理水から分離する分離浄化装置に関するものである。
【0002】
【従来の技術】
一般に、浄水(上水、下水、産業廃水)の処理、特に、被処理水中から富栄養化した汚泥(主として、燐含有物)を分離する際に、高勾配磁場を利用して生成された、例えば、マグネタイトなどのフェライト(粉状あるいは粒状の強磁性体:以下、磁性体微粒子と称す)を含む凝集剤で、被処理水中の汚濁物或いは溶質を、予め、磁性を持った浮遊固形物(フロック)としている。
【0003】
そして、この状態の被処理水を、超伝導ソレノイドコイルを外側に巻回した非磁性材料からなる導管内に導き、前記超伝導ソレノイドコイルの付勢により導管内に磁場を発生し、この磁場の中に置かれたフィルターを介して、被処理水を濾過すると共に、その後、フィルターから、これに付着した浮遊固形物を除去・回収する分離浄化装置が提唱されている。
【0004】
この分離浄化装置は、被処理水の流れに平行な方向の磁場を発生させ、フィルターによる浮遊固形物の分離効率がよい点で優れているが、反面その欠点は超伝導ソレノイドコイルを用いた場合、装置が高価となること、特に、それが低温超伝導ソレノイドであると、励磁・消磁に長時間(通常、各30分)を要するので、浮遊固形物の分離作業において、フィルター洗浄に、かなり長い中断を余儀なくされ、経済的な効率が下がる点である。
【0005】
そこで、先に、磁力による浮遊固形物の捕捉を行う際、バルク磁石により、被処理水の流れに対して平行な磁場を発生させることで、比較的簡易で低コストの装置でありながら、フィルターによる高い分離効率を発揮でき、しかも、作業を中断することなくフィルター交換が可能な、磁性体を用いた浄化装置が提唱されている。
【0006】
【発明が解決しようとする課題】
本発明は、非磁性材料からなる槽内を介して、被処理水を流し、該槽内での流れの両端に異極を対向させた状態で、バルク磁石により、前記流れに沿った磁場を形成する場合において、浮遊固形物回収領域での高勾配の磁場を形成し、更には、被処理水の滞留時間を長くして、前記磁場による浮遊固形物の回収効率を向上した、磁性体を用いた浄化装置あるいは分離装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
このため、本発明による磁性体を用いた分離浄化装置は、磁性体微粒子を含む凝集剤で、被処理水中の汚濁物或いは、希少金属又は有用金属を含む溶質を、磁性を持った浮遊固形物とし、被処理水の流れの中で、磁力により、前記浮遊固形物を被処理水から分離する分離浄化装置において、
非磁性材料からなる扁平な槽を介して、被処理水を流し、該槽内で形成される短い流れの両端に異極を対向させた状態で、前記流れに沿った磁場を形成するように、前記槽に対して接近させた状態で高温超伝導体よりなるバルク磁石を配置し、前記槽内を流れる前記浮遊固形物を分離回収するため、前記磁場を横切って前記槽内の流れの途中に、磁性体よりなるフィルターを備えた浮遊固形物回収領域を設けてあることを特徴とする。
【0008】
このような構成では、前記バルク磁石による高勾配の磁場が得られ、しかも、磁場の方向が、被処理水の流れに沿っていて、フィルターを用いた前記浮遊固形物回収領域を通る被処理水の全量に対して、全ての浮遊固形物の捕捉機能を十分に発揮できるので、超伝導ソレノイドを用いる場合に比較して、簡易で低コストの装置を提供できる。その上、被処理水の処理作業をバルク磁石で行うので、フィルター交換の際でも、従来の、励消磁に時間のかかる低温超伝導ソレノイドを用いる場合のように、相当時間、運転を中断する必要がなく、稼働率を低下させることなく経済的に向上させるメリットが得られる。
【0009】
この場合、本発明の実施の形態として、前記浮遊固形物回収領域に装備したフィルターが所要のメッシュで編組された構成になっていることが好ましく、また、前記槽内の流れの断面積が、前記浮遊固形物回収領域での滞留時間が長くなるように、前記槽の、前記フィルターで区分された両端部に各々備えた前記被処理水の導入路及び導出路の断面積のいずれよりも大きく設定してあることが好ましく、これらは、回収効率を向上する上で効果がある。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して、具体的に説明する。なお、図1は、本発明に係る第1の実施形態を示す概略側面図、図2は、第2の実施形態を示す概略側面図、図3は、浮遊固形物回収作業を継続する過程でのフィルター交換を可能にした、浄化装置の概略平面図、図4は、同じく概略端面図である。
【0011】
本発明に係る浄化装置は、磁性体微粒子を含む凝集剤で、被処理水中の汚濁物を、磁性を持った浮遊固形物Sとし、被処理水Wの流れの中で、磁力により、浮遊固形物Sを被処理水Wから分離するものである。ここでは、非磁性材料(例えば、硬質合成樹脂)からなる扁平な槽1内の、被処理水の短い流れを挟んで、異極を対向させた状態で、前記流れに沿った磁場(磁力線Mで示す)を形成するように、槽1の短寸方向(扁平な間隔)に対してバルク磁石2、2’を配置している(図1および図2を参照)。なお、図1に示す実施形態では、被処理水を上部から槽1内に導入し、フィルター3のある浮遊固形物回収領域4を経由して、下部から導出しているが、図2に示す実施形態では、バルク磁石2、2’(例えば、円柱形)を囲むような円筒状の導入路1a、導出路1bを介して、被処理水を槽1に導入、導出する構成になっている。
【0012】
なお、バルク磁石2、2’とは、例えば、1〜3テスラに磁化された酸化物超電導体(高温超伝導バルク材としての、各種金属酸化物を焼き固めたセラミックス)のことである。そして、バルク磁石2、2’を槽1に接近させた状態(バルク磁石2相互間での磁場強度として1.7テスラ以上が得られる)で、槽1内を流れる前記浮遊固形物Sを、槽1内に設けられたフィルター3のある浮遊固形物回収領域4で捕捉するように構成している。この場合、浮遊固形物回収領域4での被処理水の滞留時間を十分確保するために、流れの断面積を大きくした構成にするのがよい。
【0013】
この実施の形態において、フィルター3は、例えば、フェライトなどの磁性体からなる細かいメッシュの編組部材で構成され、バルク磁石2、2’と共同して、浮遊固形物回収領域4で、被処理水の流れの方向に平行な高勾配の磁場を形成している。なお、槽1を挟んで対向するバルク磁石2(あるいは2’)は、真空容器2a(あるいは2’a)内に収容されている。
【0014】
このような構成では、扁平な槽1を採用することで、バルク磁石2、2’の相対間隔を短くでき、高勾配の磁場が得られる。また、槽1内の浮遊固形物回収領域での、流れの断面積が大きくしてあることで、浮遊固形物の回収効率が向上できる。また、超伝導ソレノイドコイルを用いる場合のように、導管1内の被処理水の流れに沿って、十分な磁場を発生でき、しかも、バルク磁石を用いることで、超伝導ソレノイドを用いる設備に比較して、その設備を大幅に簡素化でき、低コストで提供できるメリットが得られる。
【0015】
また、図3及び図4に示す第3の実施形態では、図2に示すように、フィルター3が、複数組が、交換用支持体5に着脱可能にセットされ、それぞれ、前記交換用支持体の操作で、その1組が選択的に浮遊固形物回収領域4に挿入される。交換用支持体5は、槽1外に支軸5aを備えた円盤状回転部材であり、その一部が、例えば、O−リング6を介して、浮遊固形物回収領域4に液密に挿入される構造になっている。
【0016】
なお、ここでは、前記真空ポンプの働きで、断熱性を高めるため、真空容器内を真空状態にすると共に、前記小型冷凍機の働きで、真空容器中において、バルク磁石を、ヘリウムガスなどの冷媒を用いて、超低温(好ましくは、絶対温度4〜77度)に維持する。
【0017】
また、図中、符号7、8は、槽1の、被処理水の導入側および導出側に、それぞれ、装備したゲートバルブである。
【0018】
このような構成では、ゲートバルブ7、8を開放した状態で、槽1に被処理水を流すと、前述のような、フィルター3による浮遊固形物の分離・回収を行うことができ、また、適時に、交換用支持体5を回転して、当該フィルター3を槽1外に導出すると共に、新たなフィルター3を浮遊固形物回収領域4に対応させることができる。
【0019】
従って、超伝導ソレノイドコイルを用いる場合のように、槽1内の被処理水の流れに沿って、十分な磁場を発生でき、しかも、バルク磁石を用いることで、超伝導ソレノイドを用いる設備に比較して、その設備を大幅に簡素化でき、低コストで提供できるメリットが得られる。しかも、運転を中断することなく、フィルター交換ができ、運転状態を実質的に継続することができ、稼働率を向上できる。
【0020】
なお、この実施の形態では、バルク磁石による磁場の発生、フィルターに捕捉した浮遊固形物の除去を簡潔に説明するために、単列の槽1での被処理水からの浮遊固形物の回収について、その構成および作用効果を示しているが、規模の大型化や補修などを配慮して、浮遊固形物の連続除去作業を維持するために、実際には、槽1を複列(少なくとも、2列)とし、そこに、それぞれ、浮遊固形物回収領域およびこれに対応するバルク磁石、支持部材による交換可能なフィルターなどを設けることが望ましい。
【0021】
また、槽1を複列とし、これらへの、被処理水の導入、導出を切り替えるバルブ及び配管を設備して、一方の槽で被処理水の処理を行い、他方の槽で、フィルターの洗浄を行うようなシステム構成にしてもよい。この場合、各列に対して、共通するバルク磁石の対を、適当な手段で移動するような構成にしてもよい。この場合も、被処理水の実質的な処理作業の継続性が得られる。
【0022】
本発明で分離される固形物は汚濁物のみならず、希少金属や有用な金属などのの分離抽出を行なうことができる。また形態が、酸化物、有機物、無機物或いはこれらの複合物質であっても十分に経済的な分離抽出を行なうことができる。従って、本発明の効果は単に分離浄化に留まるものではない。
【0023】
さらに、高温超電導バルク磁石に代えて、銅コイル、低温超電導線材あるいは高温超電導線材によるコイルを用いて磁場を発生させ、本発明の技術的思想の範囲で分離浄化装置を構成することもできる。同様に高温超電導バルク磁石に代えて希土類永久磁石又はフェライト永久磁石を用いる構成で本発明を実施することもできる。
【0024】
【発明の効果】
本発明は、以上詳述したように、磁性体微粒子を含む凝集剤で、被処理水中の汚濁物又は溶質を、磁性を持った浮遊固形物とし、被処理水の流れの中で、磁力により、前記浮遊固形物を被処理水から分離する分離浄化装置において、非磁性材料からなる扁平な槽を介して、被処理水を流し、該槽内で形成される短い流れの両端に異極を対向させた状態で、前記流れに沿った磁場を形成するように、前記槽に対して接近させた状態で高温超伝導体よりなるバルク磁石を配置し、前記槽内を流れる前記浮遊固形物を回収するため、前記磁場を横切って前記槽内の流れの途中に、フィルターを備えた浮遊固形物回収領域を設けていることを特徴とする。
【0025】
従って、バルク磁石の相互間を短くできるので、高い勾配の磁場が形成でき、フィルターを用いた前記浮遊固形物回収領域を通る被処理水の全量に対して、全ての浮遊固形物の捕捉機能を十分に発揮できる上、超伝導ソレノイドを用いた磁場発生装置に比較して、簡易な構成で、低コストの装置として提供できるメリットが得られる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施の形態を示す概略側面図である。
【図2】同じく、第2の実施の形態を示す概略側面図である。
【図3】同じく、第3の実施の形態を示す概略平面図である。
【図4】同じく、概略端面図である。
【符号の説明】
1 扁平な槽
1a 導入路
1b 導出路
2、2’ バルク磁石
3 フィルター
4 浮遊固形物回収領域
5 交換用支持体
6 O−リング
7、8 ゲートバルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention is mainly a flocculant containing magnetic fine particles, and the contaminants or solutes in the water to be treated are made to be floating solids having magnetism, and the floating solids are generated by magnetic force in the water to be treated. The present invention relates to a separation and purification device for separating water from treated water.
[0002]
[Prior art]
In general, in the treatment of purified water (water, sewage, industrial wastewater), particularly when separating eutrophic sludge (mainly phosphorus-containing material) from the treated water, it was generated using a high gradient magnetic field. For example, a flocculant containing ferrite (powder or granular ferromagnet: hereinafter referred to as magnetic fine particles) such as magnetite, and the suspended solid ( Flock).
[0003]
Then, the water to be treated in this state is led into a conduit made of a nonmagnetic material around which a superconducting solenoid coil is wound, and a magnetic field is generated in the conduit by energizing the superconducting solenoid coil. A separation and purification device has been proposed in which water to be treated is filtered through a filter placed therein, and thereafter, suspended solids attached to the filter are removed and collected from the filter.
[0004]
This separation and purification device is superior in that it generates a magnetic field in a direction parallel to the flow of water to be treated and has good separation efficiency of suspended solids by the filter, but the disadvantage is when a superconducting solenoid coil is used. , The equipment becomes expensive, especially if it is a low-temperature superconducting solenoid, it takes a long time (usually 30 minutes each) for excitation and demagnetization. Long interruptions are necessary and the economic efficiency is reduced.
[0005]
Therefore, when capturing suspended solids by magnetic force, a magnetic field parallel to the flow of water to be treated is generated by a bulk magnet, so that the filter is a relatively simple and low-cost device. A purification device using a magnetic material has been proposed that can exhibit a high separation efficiency by, and that can be replaced without interrupting the work.
[0006]
[Problems to be solved by the invention]
In the present invention, water to be treated is flowed through a tank made of a nonmagnetic material, and a magnetic field along the flow is applied by a bulk magnet in a state where opposite poles are opposed to both ends of the flow in the tank. In the case of forming the magnetic substance, a high gradient magnetic field is formed in the floating solid recovery region, and the residence time of the water to be treated is lengthened to improve the recovery efficiency of the floating solid by the magnetic field. It aims at providing the used purification apparatus or separation apparatus.
[0007]
[Means for Solving the Problems]
For this reason, the separation and purification apparatus using a magnetic material according to the present invention is a flocculant containing magnetic fine particles, and is used to remove contaminants in water to be treated, or solutes containing rare metals or useful metals , and magnetically suspended solids. In the separation and purification device for separating the floating solid from the water to be treated by magnetic force in the water to be treated,
Flowing the water to be treated through a flat tank made of a non-magnetic material, and forming a magnetic field along the flow with the opposite poles facing opposite ends of the short flow formed in the tank A bulk magnet made of a high-temperature superconductor in a state of being close to the tank, and separating and recovering the suspended solids flowing in the tank, so that the middle of the flow in the tank across the magnetic field Further, the present invention is characterized in that a suspended solids recovery area provided with a filter made of a magnetic material is provided.
[0008]
In such a configuration, a high gradient magnetic field is obtained by the bulk magnet, and the direction of the magnetic field is along the flow of the water to be treated, and the water to be treated that passes through the floating solid collection region using a filter. Since the trapping function of all the suspended solids can be sufficiently exerted with respect to the total amount of the above, a simple and low-cost apparatus can be provided as compared with the case where a superconducting solenoid is used. In addition, since the water to be treated is processed with a bulk magnet, it is necessary to interrupt the operation for a considerable time even when replacing the filter, as in the case of using a conventional low-temperature superconducting solenoid that takes time to excite and demagnetize. There is no advantage, and the merit of improving economically without lowering the operating rate can be obtained.
[0009]
In this case, as an embodiment of the present invention, it is preferable to filter chromatography equipped with the suspended solids recovery zone is in the configuration that are braided at a predetermined mesh, also, the cross-sectional area of the flow of the inner tub In order to increase the residence time in the floating solids collection area, it is more than any of the cross-sectional areas of the treated water introduction path and the discharge path respectively provided at both ends of the tank divided by the filter. It is preferable to set large , and these are effective in improving the recovery efficiency.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. 1 is a schematic side view showing a first embodiment according to the present invention, FIG. 2 is a schematic side view showing a second embodiment, and FIG. 3 is a process in which the suspended solid collection operation is continued. FIG. 4 is a schematic end view of the purification device that enables the replacement of the filter.
[0011]
The purification apparatus according to the present invention is a flocculant containing magnetic fine particles, and the contaminants in the water to be treated are made to be a floating solid substance S having magnetism. The object S is separated from the water W to be treated. Here, in a flat tank 1 made of a non-magnetic material (for example, hard synthetic resin), a magnetic field (line of magnetic force M) along the flow in a state where opposite polarities are opposed across a short flow of water to be treated. The bulk magnets 2, 2 ′ are arranged in the short dimension direction (flat interval) of the tank 1 (see FIGS. 1 and 2). In the embodiment shown in FIG. 1, the water to be treated is introduced into the tank 1 from the upper part and led out from the lower part via the floating solid collection region 4 with the filter 3. In the embodiment, the water to be treated is introduced into and led out from the tank 1 through the cylindrical introduction path 1a and the lead-out path 1b surrounding the bulk magnets 2 and 2 '(for example, a columnar shape). .
[0012]
The bulk magnets 2, 2 ′ are, for example, oxide superconductors magnetized to 1 to 3 Tesla (ceramics obtained by baking various metal oxides as a high-temperature superconducting bulk material). And in the state where the bulk magnets 2 and 2 ′ are brought close to the tank 1 (1.7 tesla or more is obtained as the magnetic field strength between the bulk magnets 2), the floating solid S flowing in the tank 1 is It is configured so as to be trapped in a floating solid collection region 4 having a filter 3 provided in the tank 1. In this case, in order to ensure sufficient residence time of the water to be treated in the floating solid collection region 4, it is preferable to have a configuration in which the cross-sectional area of the flow is increased.
[0013]
In this embodiment, the filter 3 is composed of, for example, a fine mesh braided member made of a magnetic material such as ferrite, and in combination with the bulk magnets 2 and 2 ′, in the floating solid collection region 4, water to be treated A high gradient magnetic field parallel to the direction of the flow is formed. In addition, the bulk magnet 2 (or 2 ′) opposed to the tank 1 is accommodated in the vacuum vessel 2a (or 2′a).
[0014]
In such a configuration, by adopting the flat tank 1, the relative interval between the bulk magnets 2 and 2 'can be shortened, and a high gradient magnetic field can be obtained. In addition, since the cross-sectional area of the flow in the floating solid recovery area in the tank 1 is increased, the recovery efficiency of the floating solid can be improved. Further, as in the case of using a superconducting solenoid coil, a sufficient magnetic field can be generated along the flow of the water to be treated in the conduit 1, and a bulk magnet is used to compare with a facility using a superconducting solenoid. As a result, the equipment can be greatly simplified and can be provided at low cost.
[0015]
Further, in the third embodiment shown in FIGS. 3 and 4, as shown in FIG. 2, a plurality of sets of filters 3 are detachably set on the replacement support body 5, and the replacement support bodies are respectively provided. By the above operation, the set is selectively inserted into the floating solid collection area 4. The replacement support 5 is a disk-shaped rotating member provided with a support shaft 5 a outside the tank 1, and a part of the replacement support 5 is liquid-tightly inserted into the floating solid collection region 4 via, for example, an O-ring 6. It has become a structure.
[0016]
Here, in order to improve heat insulation by the function of the vacuum pump, the inside of the vacuum container is evacuated and the bulk magnet is replaced with a refrigerant such as helium gas in the vacuum container by the function of the small refrigerator. Is maintained at an ultra-low temperature (preferably an absolute temperature of 4 to 77 degrees).
[0017]
In the figure, reference numerals 7 and 8 denote gate valves respectively provided on the introduction side and the outlet side of the water to be treated of the tank 1.
[0018]
In such a configuration, when the water to be treated is allowed to flow into the tank 1 with the gate valves 7 and 8 opened, the solids can be separated and collected by the filter 3 as described above. At an appropriate time, the support 5 for replacement can be rotated so that the filter 3 is led out of the tank 1, and a new filter 3 can be made to correspond to the floating solid collection region 4.
[0019]
Therefore, as in the case of using a superconducting solenoid coil, a sufficient magnetic field can be generated along the flow of the water to be treated in the tank 1, and a bulk magnet is used to compare with equipment using a superconducting solenoid. As a result, the equipment can be greatly simplified and can be provided at low cost. In addition, the filter can be replaced without interrupting the operation, the operation state can be substantially continued, and the operating rate can be improved.
[0020]
In this embodiment, in order to briefly explain the generation of the magnetic field by the bulk magnet and the removal of the suspended solids captured by the filter, the recovery of the suspended solids from the water to be treated in the single row tank 1 is described. In order to maintain the continuous removal work of floating solids in consideration of enlargement of the scale and repair, etc., the tanks 1 are actually arranged in a double row (at least 2). It is desirable to provide a suspended solids collection region, a corresponding bulk magnet, a replaceable filter using a support member, and the like.
[0021]
Moreover, the tank 1 is made into a double row, and the valve and piping which switch the introduction and derivation of to-be-processed water to these are installed, the water to be treated is treated in one tank, and the filter is washed in the other tank. The system configuration may be such that In this case, for each row, a common bulk magnet pair may be moved by an appropriate means. Also in this case, continuity of the substantial treatment work of the water to be treated can be obtained.
[0022]
The solids separated in the present invention can be subjected to separation and extraction of not only pollutants but also rare metals and useful metals. Moreover, even if the form is an oxide, an organic substance, an inorganic substance, or a composite material thereof, a sufficiently economical separation and extraction can be performed. Therefore, the effect of the present invention is not limited to separation and purification.
[0023]
Further, instead of the high-temperature superconducting bulk magnet, a magnetic field can be generated using a copper coil, a low-temperature superconducting wire, or a coil made of a high-temperature superconducting wire, and the separation and purification device can be configured within the scope of the technical idea of the present invention. Similarly, the present invention can be implemented with a configuration using a rare earth permanent magnet or a ferrite permanent magnet instead of the high temperature superconducting bulk magnet.
[0024]
【The invention's effect】
As described in detail above, the present invention is a flocculant containing magnetic fine particles, and the contaminants or solutes in the water to be treated are made to be floating solids having magnetism, and in the flow of water to be treated, In the separation and purification device for separating the floating solid from the water to be treated, the water to be treated is flowed through a flat tank made of a non-magnetic material, and different polarities are formed at both ends of a short flow formed in the tank. In order to form a magnetic field along the flow in a state of being opposed to each other, a bulk magnet made of a high-temperature superconductor is placed in a state of being close to the vessel, and the floating solid flowing in the vessel is In order to recover, a floating solids recovery region provided with a filter is provided in the middle of the flow in the tank across the magnetic field.
[0025]
Therefore, since the space between the bulk magnets can be shortened, a high-gradient magnetic field can be formed, and the trapping function of all the suspended solids can be achieved with respect to the total amount of water to be treated that passes through the suspended solids recovery area using a filter. In addition to being able to fully demonstrate, a merit that can be provided as a low-cost apparatus with a simple configuration as compared with a magnetic field generator using a superconducting solenoid is obtained.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing a first embodiment according to the present invention.
FIG. 2 is also a schematic side view showing a second embodiment.
FIG. 3 is a schematic plan view showing a third embodiment, similarly;
FIG. 4 is also a schematic end view.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flat tank 1a Introductory path 1b Outlet path 2, 2 'Bulk magnet 3 Filter 4 Floating solids collection area 5 Replacement support body 6 O-ring 7, 8 Gate valve

Claims (3)

磁性体微粒子を含む凝集剤で、被処理水中の汚濁物或いは、希少金属又は有用金属を含む溶質を、磁性を持った浮遊固形物とし、被処理水の流れの中で、磁力により、前記浮遊固形物を被処理水から分離する分離浄化装置において、
非磁性材料からなる扁平な槽を介して、被処理水を流し、該槽内で形成される短い流れの両端に異極を対向させた状態で、前記流れに沿った磁場を形成するように、前記槽に対して接近させた状態で高温超伝導体よりなるバルク磁石を配置し、前記槽内を流れる前記浮遊固形物を分離回収するため、前記磁場を横切って前記槽内の流れの途中に、磁性体よりなるフィルターを備えた浮遊固形物回収領域を設けてあることを特徴とする、磁性体を用いた分離浄化装置。
A flocculant containing fine particles of magnetic material. The suspended matter in the water to be treated or a solute containing a rare metal or useful metal is made into a floating solid with magnetism. In a separation and purification device that separates solid matter from treated water,
Flowing the water to be treated through a flat tank made of a non-magnetic material, and forming a magnetic field along the flow with the opposite poles facing opposite ends of the short flow formed in the tank A bulk magnet made of a high-temperature superconductor in a state of being close to the tank, and separating and recovering the suspended solids flowing in the tank, so that the middle of the flow in the tank across the magnetic field A separation and purification apparatus using a magnetic material, characterized in that a suspended solids recovery region provided with a filter made of a magnetic material is provided.
前記浮遊固形物回収領域に装備したフィルターが所要のメッシュで編組された構成になっていることを特徴とする、請求項1に記載の磁性体を用いた分離浄化装置。  2. The separation and purification apparatus using a magnetic material according to claim 1, wherein a filter equipped in the floating solid collection region is braided with a required mesh. 前記槽内の流れの断面積が、前記浮遊固形物回収領域での滞留時間が長くなるように、前記槽の、前記フィルターで区分された両端部に各々備えた前記被処理水の導入路及び導出路の断面積のいずれよりも大きく設定してあることを特徴とする、請求項1または2に記載の磁性体を用いた分離浄化装置。  The treatment water introduction path provided respectively at both ends of the tank divided by the filter so that the cross-sectional area of the flow in the tank is longer in the suspended solids recovery region, and 3. The separation and purification device using a magnetic material according to claim 1, wherein the separation and purification device is set to be larger than any of the cross-sectional areas of the lead-out path.
JP2002133856A 2002-05-09 2002-05-09 Separation and purification device using magnetic material Expired - Fee Related JP4288555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133856A JP4288555B2 (en) 2002-05-09 2002-05-09 Separation and purification device using magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133856A JP4288555B2 (en) 2002-05-09 2002-05-09 Separation and purification device using magnetic material

Publications (2)

Publication Number Publication Date
JP2003326191A JP2003326191A (en) 2003-11-18
JP4288555B2 true JP4288555B2 (en) 2009-07-01

Family

ID=29696685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133856A Expired - Fee Related JP4288555B2 (en) 2002-05-09 2002-05-09 Separation and purification device using magnetic material

Country Status (1)

Country Link
JP (1) JP4288555B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105521A1 (en) * 2007-02-28 2008-09-04 Nippon Poly-Glu Co., Ltd. Magnetic flocculating agent, method for production thereof, and method for purification of water using magnetic flocculating agent
JP5361926B2 (en) * 2011-03-11 2013-12-04 株式会社東芝 Magnetic separation device
KR101561296B1 (en) 2015-05-13 2015-10-16 최석주 Salt pond having apparatus for regaining iron particle
CN113750611A (en) * 2021-09-03 2021-12-07 六安尚创科技有限公司 Solid-liquid separation device for high-concentration wastewater detection

Also Published As

Publication number Publication date
JP2003326191A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
US3676337A (en) Process for magnetic separation
US5944986A (en) Liquid purification apparatus
EP0089200A1 (en) A high-gradient magnetic separator
JP4288555B2 (en) Separation and purification device using magnetic material
FI71674B (en) MAGNETISERBAR AVSKILJNINGSANORDNING FOER RENING AV VAETSKOR
JP3826199B2 (en) Magnetic separation device
JP4009699B2 (en) Purification device using magnetic material
JP4206691B2 (en) Purification device using magnetic material
JP3641657B2 (en) Purification device using magnetic material
JP3799390B2 (en) Purification device using magnetic material
JP4129548B2 (en) Continuous magnetic separator
JP2000312838A (en) Magnetic separator
JP2007098297A (en) Water purification system for drinking water
JP3314350B2 (en) Purification device
JP5846536B2 (en) Magnetic precipitation magnetic separation apparatus and magnetic separation method
JP2003080108A (en) Purifier using magnetic material
JP3580117B2 (en) Magnetic separation device
JPH10192619A (en) Purifying device
JP7077490B2 (en) Water treatment equipment
JPH0975630A (en) Magnetic separator and magnetic separation method
JPH11226319A (en) Magnetic separation apparatus
Ohara Progress in magnetic separation technology for processing large quantities of dilute suspensions
JPH1033919A (en) Magnetic separator
JP4304596B2 (en) Method and apparatus for separating and detoxifying carbon dioxide
RU2277017C1 (en) Magnetic separator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090318

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees