JPH0975630A - Magnetic separator and magnetic separation method - Google Patents

Magnetic separator and magnetic separation method

Info

Publication number
JPH0975630A
JPH0975630A JP23979595A JP23979595A JPH0975630A JP H0975630 A JPH0975630 A JP H0975630A JP 23979595 A JP23979595 A JP 23979595A JP 23979595 A JP23979595 A JP 23979595A JP H0975630 A JPH0975630 A JP H0975630A
Authority
JP
Japan
Prior art keywords
magnetic
filter
magnetic filter
superconducting
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23979595A
Other languages
Japanese (ja)
Inventor
Norihide Saho
典英 佐保
Hisashi Isokami
尚志 磯上
Minoru Morita
穣 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23979595A priority Critical patent/JPH0975630A/en
Publication of JPH0975630A publication Critical patent/JPH0975630A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase water purifying treatment quantity by eliminating the non-purifying time of a treated fluid by backwashing. SOLUTION: A plurality of high grade magnetic filters 20a, 20b are housed in one magnetic separation container 15 and a treated fluid introducing port 30 is provided between the high grade magnetic filters 20a, 20b and a means performing attraction operation by one high grade magnetic filter 20a and the regeneration operation of the other high grade magnetic filter 20a at the same time is provided. The high grade magnetic filters 20a, 20b are provided side by side so that the end surfaces of both filters are opposed to each other and the center axes of them are present almost on the same axis and one fluid adjusting mechanism such as a valve 38 changing over the flow of the treated fluid is provided and the magnets of the respective filters are formed of superconductive magnets.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気分離で処理流体を
浄化するフィルタ構造に係り、特に高勾配磁気フィルタ
(磁気フィルタ)により磁気分離を連続的に行うのに好
適な磁気分離装置及び方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter structure for purifying a processing fluid by magnetic separation, and particularly to a magnetic separation apparatus and method suitable for continuously performing magnetic separation by a high gradient magnetic filter (magnetic filter). Regarding

【0002】[0002]

【従来の技術】従来の磁気分離装置においては、高勾配
磁気フィルタに外部より印加する磁場発生装置として
は、直流電源による電磁石を用いる。この構造は化学工
学、第45巻、第4号(1981年)第235頁より2
39頁に記載されている。高勾配磁気フィルタを鉄製の
ヨークで囲み、磁力線の通路にしてその漏洩の防止をか
ねている。その内側にコイルが、さらに中央部に高勾配
磁気フィルタが配置されており、フィルタ容器の中には
多数の孔が開いた磁極が高勾配磁気フィルタを挟んで上
下に配置されている。
2. Description of the Related Art In a conventional magnetic separation device, an electromagnet using a DC power supply is used as a magnetic field generator for externally applying a high gradient magnetic filter. This structure is from Chemical Engineering, Vol. 45, No. 4 (1981), p. 235, 2.
It is described on page 39. The high-gradient magnetic filter is surrounded by an iron yoke, which serves as a passage for magnetic lines of force to prevent leakage. A coil is arranged inside thereof, and a high-gradient magnetic filter is arranged in the central portion, and magnetic poles having a large number of holes are arranged vertically in the filter container with the high-gradient magnetic filter interposed therebetween.

【0003】高勾配磁気フィルタは磁性細線で形成さ
れ、金網状の磁性ステンレス細線を充填している。均一
な磁場内に、このように曲率半径の極めて小さな部分を
持つ磁性細線を配置することによって、磁性細線の表面
近傍で局部的な磁場の疎密ができて大きな磁気勾配が発
生する。
The high-gradient magnetic filter is formed of magnetic fine wires and is filled with wire mesh-shaped magnetic stainless fine wires. By arranging the magnetic thin wire having such an extremely small radius of curvature in a uniform magnetic field, the magnetic field can be locally distributed near the surface of the magnetic thin wire to generate a large magnetic gradient.

【0004】水処理する原水(処理流体)には、磁気分
離工程への前処理として、例えば四酸酸化鉄等の磁性粉
と凝集剤の硫酸バン土やポリ塩化アルミニュウムを加え
て撹絆することにより、原水中の固形浮遊物や藻類、菌
類及び微生物は、凝集剤によってフロックと結合し、コ
ロイド状の多数の磁性を持った磁性フロックとなる。こ
れらの磁性フロックは高勾配磁気フィルタを通過する際
に磁性細線の表面に吸着され原水中より分離される。
To the raw water (treatment fluid) to be treated with water, as a pretreatment for the magnetic separation step, for example, magnetic powder such as iron tetraoxide or the like and aggregating agent such as bansulfate or polyaluminum chloride are added and stirred. As a result, the solid suspended matter in the raw water, algae, fungi and microorganisms are bound to the flocs by the flocculant to form a large number of colloidal magnetic flocs having magnetism. These magnetic flocs are adsorbed on the surface of the magnetic wire when passing through the high gradient magnetic filter and separated from the raw water.

【0005】高勾配磁気フィルタの運転操作基本フロー
を図4に示し、運転操作を説明すると、貯水池1の原水
は導水管2より大きなゴミを取るためのフィルタ3を通
してポンプ4で原水貯槽5にいったん蓄えられ、この原
水6に、薬剤調整装置7より四酸酸化鉄の磁性粉と、ポ
リ塩化アルミニュウム等の凝集剤とを導管8を通して加
え、撹絆槽9でモータ10により回転する撹絆機11で
撹絆し、磁性フロックを含む前処理水12を製造する。
前処理水12は弁13を経て導水管14を通り磁気分離
容器(容器)15内に流入される。円環状の空心コイル
16に直流電源装置17より直流電源を流す。直流電流
に比例した磁場が、横型円筒状の磁気分離容器15内に
発生し、磁場は通水用の多孔磁極18によって均一化さ
れ、鉄製のヨーク19で囲まれ、ヨーク19が磁力線の
通路となってその漏洩が防止される。
The basic operation flow of the high gradient magnetic filter is shown in FIG. 4, and the operation operation will be described. The raw water in the reservoir 1 is temporarily pumped into the raw water storage tank 5 by the pump 4 through the filter 3 for removing dust larger than the water conduit 2. A magnetic powder of iron tetraoxide and a flocculant such as polyaluminum chloride are added to the raw water 6 from a chemical regulator 7 through a conduit 8 and a stirring machine 11 rotated by a motor 10 in a stirring tank 9 is stored. The pretreated water 12 containing magnetic flocs is produced by stirring with.
The pretreated water 12 passes through the valve 13 and the water conduit 14 to flow into the magnetic separation container (container) 15. DC power is supplied from the DC power supply 17 to the annular air-core coil 16. A magnetic field proportional to the direct current is generated in the horizontal cylindrical magnetic separation container 15, the magnetic field is made uniform by the porous magnetic poles 18 for water passage, and is surrounded by the iron yoke 19, and the yoke 19 serves as a passage for magnetic field lines. The leakage is prevented.

【0006】均一化された磁場によって、高勾配磁気フ
ィルタ20の磁性細線充填物が磁化されると、磁気分離
容器15内の磁場は、磁化された磁性細線充填物のため
に乱れを生じ、局部的に磁束の疎密ができ、高磁場勾配
となる部分が多数発生する。磁性フロックを含んだ前処
理水12を下方より上向流で送水すると、原水中の磁性
フロックは充填物の磁性細線表面に大きな磁力で捕捉さ
れ、浄化された原水は処理水として弁21及び導水管2
2を通り処理水槽23にいったん蓄えられ、導水管24
を通して貯水池1に戻される。
When the magnetic wire packing of the high gradient magnetic filter 20 is magnetized by the homogenized magnetic field, the magnetic field in the magnetic separation container 15 is disturbed due to the magnetized magnetic wire packing, and the magnetic field is locally disturbed. As a result, the magnetic flux is densely and densely generated, and a large number of parts having a high magnetic field gradient are generated. When pre-treated water 12 containing magnetic flocs is sent from below in an upward flow, the magnetic flocs in the raw water are captured by the magnetic fine wire surface of the packing with a large magnetic force, and the purified raw water is treated as treated water through the valve 21 and the guide. Water pipe 2
After passing through 2, the water is once stored in the treated water tank 23, and the water pipe 24
Returned to Reservoir 1.

【0007】磁性フロックの一定量が高勾配磁気フィル
タ20に捕捉された後、磁気分離の性能を回復させるた
め、高勾配磁気フィルタ20の逆洗が行われる。逆洗
は、先ず弁13を閉じて前処理水12の送水を止める。
次に、直流電源を切り、磁場をなくした後に高勾配磁気
フィルタ20の上部より弁21を開して処理水を所定の
量逆流させ弁25を開く。また、この時、空気タンク2
6より弁27及び導管28を通して空気を供給し、エヤ
ーバブリングを行いながら磁性細線表面に付着した磁性
フロックを洗浄除去し、洗浄水を逆洗処理水槽29に蓄
える。この洗浄水は別途に逆洗処理水槽29より運び出
され、埋め立て地等に廃棄されたり、焼却される。この
後、弁25及び弁27を閉じ、再び空心コイル16に直
流電源装置17より直流電源を流し、弁21を開いて磁
気分離を再開する。高勾配磁気フィルタの逆洗の間、原
水の浄化は行われない。逆洗が行われる周期は、原水中
の磁気分離浄化物の濃度、薬剤の注入量及び原水の処理
速度によって異なり、原水を高速で処理すればするほど
周期は短くなる。
After a certain amount of magnetic flocs are captured by the high gradient magnetic filter 20, the high gradient magnetic filter 20 is backwashed to restore the performance of magnetic separation. For backwashing, first, the valve 13 is closed to stop the water supply of the pretreated water 12.
Next, the DC power supply is turned off, the magnetic field is removed, and then the valve 21 is opened from the upper portion of the high gradient magnetic filter 20 to cause the treated water to flow backward by a predetermined amount and the valve 25 is opened. At this time, the air tank 2
Air is supplied from 6 through the valve 27 and the conduit 28 to wash and remove the magnetic flocs adhering to the surface of the magnetic fine wire while performing air bubbling, and store the wash water in the backwash treatment water tank 29. This cleaning water is separately carried out from the backwashing water tank 29 and is discarded or incinerated in a landfill or the like. After that, the valves 25 and 27 are closed, the direct current power is supplied from the direct current power supply 17 to the air-core coil 16 again, the valve 21 is opened, and the magnetic separation is restarted. No purification of raw water occurs during backwashing of the high gradient magnetic filter. The cycle of backwashing differs depending on the concentration of the magnetic separation / purified substance in the raw water, the injection amount of the drug, and the treatment rate of the raw water, and the faster the raw water is treated, the shorter the cycle becomes.

【0008】従来、この種の固液分離技術を応用した
海、河川又は貯水池等の連続水浄化装置として高勾配磁
気フィルタを用いた磁気分離の磁気フィルタを2個以上
設け、互いに操業時、再生時を切り替えて実施すればよ
い旨が特開昭59ー371号公報に開示されているが、
その具体的な構成、作用が記載されていない。しかしな
がら、近年、水処理装置の浄化処理量の大容量化に伴
い、磁気分離部の高性能化が必要となっている。磁気分
離効率の向上を図る1つの方法は、磁場強度を高め、磁
性フロックの捕捉力を強くすることである。また逆洗に
よる再生時間(未浄化時間)は必要であり、処理量が増
えるほど逆洗周期は短くなり、逆洗の間、原水の浄化が
行われないため、複数の高勾配磁気フィルタを使用し浄
化処理量を増大させた装置の実現が望まれている。
Conventionally, two or more magnetic filters for magnetic separation using a high gradient magnetic filter have been provided as a continuous water purification device for the sea, rivers or reservoirs to which this kind of solid-liquid separation technology is applied, and they are regenerated during operation. Japanese Patent Laid-Open No. 59-371 discloses that it is sufficient to switch the time.
The specific structure and operation are not described. However, in recent years, as the purification treatment amount of the water treatment device has increased, it has become necessary to improve the performance of the magnetic separation unit. One method for improving the magnetic separation efficiency is to increase the magnetic field strength and the magnetic floc trapping force. In addition, the regeneration time (non-purified time) by backwashing is required, and the backwashing cycle becomes shorter as the amount of treatment increases, and the raw water is not purified during backwashing, so multiple high gradient magnetic filters are used. However, it is desired to realize an apparatus having an increased purification treatment amount.

【0009】[0009]

【発明が解決しようとする課題】従来の磁気分離装置に
おいては、近年、水処理装置の浄化処理量の大容量化に
伴い、磁気分離部の高性能化が必要となっており、磁場
強度を高め、磁性フロックの捕捉力を強くすることであ
る。また処理量が増えるほど逆洗周期は短くなり、逆洗
の間に原水の浄化は行われないため、一つの磁気フィル
タでは浄化処理量を増やせない問題がある。
In the conventional magnetic separation apparatus, the performance of the magnetic separation unit has to be improved with the increase in the purification capacity of the water treatment apparatus in recent years. It is to increase the magnetic floc's capturing power. Further, as the treatment amount increases, the backwash cycle becomes shorter, and the raw water is not purified during the backwash, so that there is a problem that the purification treatment amount cannot be increased with one magnetic filter.

【0010】本発明の目的は、逆洗による処理流体の未
浄化時間をなくし、浄化処理量を増加することのできる
磁気分離装置及び方法を提供することにある。
An object of the present invention is to provide a magnetic separation apparatus and method capable of increasing the amount of purification treatment by eliminating the unpurified time of the treatment fluid by backwashing.

【0011】[0011]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る磁気分離装置は、磁場を発生する磁石
と、磁場内に配置され磁性体を充填した磁気フィルタと
を備え、磁気フィルタで処理流体中の磁性物質を吸着除
去する磁気分離装置において、磁石を超電導磁石で形成
するとともに、超電導磁石を超電導発生温度に保持する
冷凍手段を具備した構成とする。
To achieve the above object, a magnetic separation device according to the present invention comprises a magnet for generating a magnetic field and a magnetic filter arranged in the magnetic field and filled with a magnetic material. In a magnetic separation device for adsorbing and removing a magnetic substance in a processing fluid with a filter, a magnet is formed by a superconducting magnet and a refrigerating means for holding the superconducting magnet at a superconducting generation temperature is provided.

【0012】そして磁場を発生する少なくとも一つの磁
石と、磁場内に配置され磁性体を充填した少なくとも一
つの磁気フィルタとを備え、それぞれの磁気フィルタで
処理流体中の磁性物質を吸着除去する磁気分離装置にお
いて、複数の磁気フィルタを一つの容器内に収容すると
ともに、それぞれの磁気フィルタの間に処理流体の導入
口を設け、一方の磁気フィルタによる吸着運転と、他方
の磁気フィルタの再生運転とを同時に行う手段を具備し
た構成でもよい。
Further, at least one magnet for generating a magnetic field and at least one magnetic filter arranged in the magnetic field and filled with a magnetic substance are provided, and each magnetic filter adsorbs and removes a magnetic substance in a processing fluid. In the apparatus, while accommodating a plurality of magnetic filters in one container, an inlet for the processing fluid is provided between each magnetic filter, and the adsorption operation by one magnetic filter and the regeneration operation by the other magnetic filter are performed. It may be configured to include a means for performing at the same time.

【0013】またそれぞれの磁気フィルタは、一方の円
筒状の磁気フィルタと、他方の円筒状の磁気フィルタと
のそれぞれの端面が互いに対向されるとともに、それぞ
れの円筒状の中心軸がほぼ同一軸上になるように並設さ
れ、それぞれの磁気フィルタの側面に磁石が周設される
構成でもよい。
In each magnetic filter, the end faces of the one cylindrical magnetic filter and the other cylindrical magnetic filter are opposed to each other, and the respective central axes of the cylindrical filters are substantially on the same axis. The magnets may be arranged side by side so that magnets are provided around the side surfaces of the respective magnetic filters.

【0014】さらに少なくとも一つの磁石は、超電導磁
石で形成されるとともに、超電導発生温度に保持する冷
凍手段を具備している構成でもよい。
Further, at least one magnet may be formed of a superconducting magnet and may be provided with a refrigerating means for maintaining the superconducting generation temperature.

【0015】そしてそれぞれの磁気フィルタは、処理流
体の流通を切替る一つの流体調整機構を付設している構
成でもよい。
Each magnetic filter may be provided with one fluid adjusting mechanism for switching the flow of the processing fluid.

【0016】またそれぞれの磁石は、超電導磁石で形成
されるとともに、いずれか一方の超電導磁石を超電導発
生温度に保持する冷凍手段と、他方の超電導磁石に冷熱
を伝熱する機構とを具備している構成でもよい。
Further, each magnet is formed of a superconducting magnet, and is provided with a refrigerating means for holding one of the superconducting magnets at a superconducting generation temperature and a mechanism for transferring cold heat to the other superconducting magnet. You may have a structure.

【0017】さらにそれぞれの磁気フィルタは、一方の
円筒状の磁気フィルタと、他方の円筒状の磁気フィルタ
とのそれぞれの端面が互いに対向され、それぞれの円筒
状の中心軸がほぼ同一軸上になるように並設されるとと
もに、それぞれの磁気フィルタの側面を移動可能に一つ
の磁石が周設される構成でもよい。
Further, in the respective magnetic filters, the end faces of the one cylindrical magnetic filter and the other cylindrical magnetic filter are opposed to each other, and the central axes of the cylindrical filters are substantially on the same axis. As described above, one magnet may be provided so as to be movable along the side surface of each magnetic filter.

【0018】そして磁気分離方法においては、磁場を発
生する少なくとも一つの磁石と、磁場内に配置され磁性
体を充填した少なくとも一つの磁気フィルタとを備え、
それぞれの磁気フィルタで処理流体中の磁性物質を吸着
除去する磁気分離方法において、一つの容器内に収容さ
れた複数の磁気フィルタへ処理流体を一つの流体調整機
構で切替え、一方の磁気フィルタによる吸着運転中に他
方の磁気フィルタの再生運転を同時に行う構成とする。
In the magnetic separation method, at least one magnet for generating a magnetic field and at least one magnetic filter arranged in the magnetic field and filled with a magnetic material are provided.
In a magnetic separation method in which magnetic substances in the processing fluid are adsorbed and removed by each magnetic filter, the processing fluid is switched to a plurality of magnetic filters housed in one container by one fluid adjustment mechanism, and adsorption by one magnetic filter is performed. During operation, the other magnetic filter is regenerated at the same time.

【0019】また流体浄化システムにおいては、前記い
ずれか一つの磁気分離装置を備えてなる構成とする。
In addition, the fluid purification system is configured to include any one of the above magnetic separation devices.

【0020】[0020]

【作用】本発明によれば、2個の高勾配磁気フィルタを
設け、一方の高勾配磁気フィルタを逆洗中に他方の高勾
配磁気フィルタで前処理水を浄化し、さらにそれぞれの
高勾配磁気フィルタの流体調整機構を共用化したため、
連続的に処理流体が浄化される。また、それぞれの多孔
磁極を持つ2個の高勾配磁気フィルタを同軸上に、さら
に並列に同一容器内に配置しその中央部より前処理水を
供給するようし、その中央部に磁気分離への流体調整機
構を配置することにより、小型で省スペースの装置を提
供できる。また、それぞれ高勾配磁気フィルタが磁極を
持つので、一方の空心コイル(磁石)を励磁、消磁する
場合、他方の空心コイルの漏れ磁場による誘導電流の発
生が少なく、短時間に励磁又は消磁が行え、逆洗時間が
短くなる。
According to the present invention, two high gradient magnetic filters are provided, and while one high gradient magnetic filter is backwashed, the other high gradient magnetic filter purifies the pretreated water. Since the fluid adjustment mechanism of the filter is shared,
The processing fluid is continuously purified. In addition, two high gradient magnetic filters each having a porous magnetic pole are arranged coaxially and in parallel in the same container so that pretreatment water is supplied from the central portion thereof, and magnetic separation is performed at the central portion. By arranging the fluid adjustment mechanism, a small-sized and space-saving device can be provided. Also, since each high-gradient magnetic filter has magnetic poles, when one of the air-core coils (magnets) is excited or demagnetized, there is little induction current due to the leakage magnetic field of the other air-core coil, and excitation or demagnetization can be performed in a short time. , The backwash time becomes shorter.

【0021】[0021]

【実施例】本発明の一実施例を図1を参照しながら説明
する。図1に示すように、磁場を発生する少なくとも一
つの磁石(空心コイル)と、磁場内に配置され磁性体を
充填した少なくとも一つの磁気フィルタ(高勾配磁気フ
ィルタ)とを備え、それぞれの磁気フィルタで処理流体
(原水)6中の磁性物質を吸着除去する磁気分離装置で
あって、複数の高勾配磁気フィルタ20a,20bを一
つの容器(磁気分離容器)15内に収容するとともに、
それぞれの高勾配磁気フィルタ20a,20bの間に処
理流体の導入口30を設け、一方の例えば高勾配磁気フ
ィルタ20aで吸着運転を行い、他方の高勾配磁気フィ
ルタ20bの再生運転を同時に行う手段を具備した構成
とし、それぞれの高勾配磁気フィルタ20a,20b
は、一方の円筒状の高勾配磁気フィルタ20aと他方の
高勾配磁気フィルタ20bのそれぞれの端面が互いに対
向され、円筒状の中心軸がほぼ同一軸上になるように並
設されているともに、それぞれの高勾配磁気フィルタ2
0a,20bに複数の空心コイル(超電導空心コイル)
16a,16bが周設され、処理流体の流通を調整する
弁38等の一つの流体調整機構(同時に行う手段)を付
設し、それぞれの磁石は、超電導磁石で形成されている
ものとする。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, at least one magnet (air-core coil) that generates a magnetic field and at least one magnetic filter (high gradient magnetic filter) that is arranged in the magnetic field and filled with a magnetic material are provided, and each magnetic filter Is a magnetic separation device that adsorbs and removes magnetic substances in the treatment fluid (raw water) 6, and stores a plurality of high-gradient magnetic filters 20a, 20b in a single container (magnetic separation container) 15.
An inlet 30 for the processing fluid is provided between the high gradient magnetic filters 20a and 20b, and a means for performing adsorption operation by one of the high gradient magnetic filters 20a and regeneration operation of the other high gradient magnetic filter 20b at the same time is provided. The high gradient magnetic filters 20a and 20b are provided with the respective configurations.
The end faces of one cylindrical high-gradient magnetic filter 20a and the other high-gradient magnetic filter 20b are opposed to each other, and they are arranged side by side such that their cylindrical central axes are substantially on the same axis. Each high gradient magnetic filter 2
Multiple air core coils (0a, 20b) (superconducting air core coil)
It is assumed that 16a and 16b are circumferentially provided, and one fluid adjusting mechanism (means for performing at the same time) such as a valve 38 for adjusting the flow of the processing fluid is attached, and each magnet is formed of a superconducting magnet.

【0022】すなわち貯水池1の原水6は、導水管2よ
り大きなゴミを取るためのフィルタ3を通してポンプ4
で原水貯槽5にいったん蓄えられ、この原水6に、薬剤
調整装置7より四酸酸化鉄の磁性粉とポリ塩化アルミニ
ュウム等の凝集剤を導管8を通して加え、撹絆槽9でモ
ータ10により回転する撹絆機11で撹絆し、磁性フロ
ックを含む前処理水12を製造する。前処理水12は導
水管14を通り導水口30より磁気分離容器15内の、
例えば図面右側の高勾配磁気フィルタ20a及び空心コ
イル16a等よりなる磁気分離部に流通孔31aを通り
流入するように流体浄化システムが構成されている。
That is, the raw water 6 in the reservoir 1 is pumped through the filter 3 for removing larger dust than the water conduit 2.
Is temporarily stored in the raw water storage tank 5, and the raw water 6 is added with a magnetic powder of iron tetraoxide and a flocculant such as polyaluminium chloride through a conduit 8 from a chemical regulator 7 and is rotated by a motor 10 in a stirring tank 9. Stir with a stirrer 11 to produce pretreated water 12 containing magnetic flocs. The pretreated water 12 passes through the water conduit 14 and is introduced into the magnetic separation container 15 through the water inlet 30.
For example, the fluid purification system is configured so as to flow into the magnetic separation portion including the high gradient magnetic filter 20a and the air-core coil 16a on the right side of the drawing through the circulation hole 31a.

【0023】一方の超電導空心コイル16aに、直流電
源装置17より電線17aを通して直流電流を流し、直
流電流に比例した磁場5、000ガウスより50、00
0ガウスの磁場が横型円筒状の磁気分離容器15内に発
生し、磁場は、横型円筒状の高勾配磁気フィルタ20a
の両端面に設けた通水用の円盤状の多孔磁極18aによ
って均一化される。超電導空心コイル16aは回りを鉄
製のヨーク19aで囲まれ、ヨーク19aは磁力線の通路
として作用しヨーク19a外への磁場漏洩を防止する。
そして均一化された磁場によって、高勾配磁気フィルタ
20aの磁性細線充填物を磁化する。磁気分離容器15
内の高勾配磁気フィルタ20aの設置空間の磁場は、磁
化された磁性細線充填物のために乱れを生じ、局部的に
磁束の疎密ができ、高磁場勾配となる部分が多数発生す
る。
A DC current is supplied from the DC power supply 17 to the superconducting air-core coil 16a through the electric wire 17a, and a magnetic field proportional to the DC current of 5,000 Gauss is 50,000.
A magnetic field of 0 Gauss is generated in the horizontal cylindrical magnetic separation container 15, and the magnetic field is a horizontal cylindrical high gradient magnetic filter 20a.
It is made uniform by the disk-shaped porous magnetic poles 18a for water passage provided on both end faces of the. The superconducting air-core coil 16a is surrounded by a yoke 19a made of iron, and the yoke 19a acts as a passage of magnetic force lines to prevent magnetic field leakage to the outside of the yoke 19a.
The uniform magnetic field magnetizes the magnetic wire filler of the high gradient magnetic filter 20a. Magnetic separation container 15
The magnetic field in the installation space of the high-gradient magnetic filter 20a inside is disturbed due to the magnetized magnetic wire filling, and the magnetic flux is locally concentrated and dense, and a large number of portions having a high magnetic field gradient are generated.

【0024】磁性フロックを含んだ前処理水12を図面
右方向の高勾配磁気フィルタ20a及び超電導空心コイ
ル16a等よりなる磁気分離部に送水すると、原水6中
の磁性フロック(磁性を帯びたくず状の沈殿物)は充填
物の磁性細線表面に、大きな磁力で捕捉されるので原水
6が浄化される。浄化された原水は処理水として分離器
出口37a及び導水管22を通り処理水槽23にいった
ん蓄えられ、導水管24を通して貯水池1に戻される。
この時、弁21a、弁25a及び弁27aは閉じている。
When the pretreated water 12 containing the magnetic flocs is fed to the magnetic separation part composed of the high gradient magnetic filter 20a and the superconducting air-core coil 16a in the right direction of the drawing, the magnetic flocs in the raw water 6 (magnetized dust-like (Precipitate) is captured by the magnetic fine wire surface of the packing with a large magnetic force, so that the raw water 6 is purified. The purified raw water passes through the separator outlet 37a and the water conduit 22 and is once stored in the treated water tank 23 as treated water, and is returned to the reservoir 1 through the water conduit 24.
At this time, the valve 21a, the valve 25a and the valve 27a are closed.

【0025】ここで、冷凍手段を説明する。超電導空心
コイル16aは断熱真空容器32aの中に設置され、ヘリ
ウム等の作動流体を用いた冷凍機33aで超電導発生温
度以下に冷却される。冷凍機33aは圧縮機34より配
管35aを通して、高圧ヘリウムガス等を供給され、冷
凍機内で断熱膨張し寒冷(超電導発生温度以下の冷媒)
を発生する。超電導空心コイル16aはこの寒冷により
直接または間接的に冷却される。冷凍機内で膨張した後
の低圧ヘリウムガス等は配管36aを通して、圧縮機3
4に戻り再び圧縮される。
Here, the freezing means will be described. The superconducting air-core coil 16a is installed in the adiabatic vacuum container 32a, and is cooled to below the superconducting generation temperature by the refrigerator 33a using a working fluid such as helium. The refrigerator 33a is supplied with high-pressure helium gas or the like from the compressor 34 through the pipe 35a, and is adiabatically expanded in the refrigerator to be cold (refrigerant having a superconducting generation temperature or lower).
Occurs. The superconducting air-core coil 16a is directly or indirectly cooled by this cold. The low-pressure helium gas, etc., which has expanded in the refrigerator, is passed through the pipe 36a to the compressor 3
It returns to 4 and is compressed again.

【0026】磁性フロックの一定量が高勾配磁気フィル
タに捕捉された後、磁気分離の性能を回復させるため、
高勾配磁気フィルタを洗浄する逆洗が行われる。図面左
側の磁気分離部は逆洗過程を示している。逆洗は、先ず
アルミニュウム合金等の非磁性体で製作された弁38、
弁棒39を弁棒移動装置40で左側に移動させて切替
え、流通孔31bがOリング42を介して閉じられてい
る。流体調整機構は、弁38、弁棒39及び弁棒移動装
置40等で形成される。前処理水12の送水はこの操作
で弁38により止められている。この時、直流電源装置
17より電線17bを通じて配電されていた直流電流を
止め、磁場をなくしている。高勾配磁気フィルタ20b
に捕捉されていた磁性フロックは磁気フィルタ20bを
形成する磁性細線の表面より離脱し易くなっている。
In order to restore the performance of magnetic separation after a certain amount of magnetic flocs have been captured by the high gradient magnetic filter,
Backwashing is performed to wash the high gradient magnetic filter. The magnetic separator on the left side of the drawing shows the backwash process. First, the backwash is performed by a valve 38 made of a non-magnetic material such as an aluminum alloy.
The valve rod 39 is moved to the left by the valve rod moving device 40 to switch the valve rod 39, and the communication hole 31b is closed via the O-ring 42. The fluid adjusting mechanism is formed by the valve 38, the valve rod 39, the valve rod moving device 40, and the like. The water supply of the pretreated water 12 is stopped by the valve 38 by this operation. At this time, the DC current distributed from the DC power supply device 17 through the electric wire 17b is stopped to eliminate the magnetic field. High gradient magnetic filter 20b
The magnetic flocs trapped on the surface of the magnetic filter 20b are easily separated from the surface of the magnetic fine wire forming the magnetic filter 20b.

【0027】図面右側の高勾配磁気フィルタ20a等よ
りなる分離部で処理流体を浄化中に、図面左側の高勾配
磁気フィルタ20bを逆洗するものとし、高勾配磁気フ
ィルタ20bの図示左上部の分離器出口37bより、配管
41及び弁21bを通して処理水槽23の処理水を所定
の量逆流させ、捕捉した磁性フロックを洗浄液出口43
bより搬出し、弁25b及び配管25を通り洗浄水を逆洗
処理水槽29に蓄える。この洗浄時、空気タンク26よ
り弁27b及び導管28bを通して空気を磁気分離部の下
部より供給しエヤーバブリングを行い、よりよく磁性フ
ロックを洗浄除去する。
The high-gradient magnetic filter 20b on the left side of the drawing is backwashed while the processing fluid is being purified by the separation unit including the high-gradient magnetic filter 20a on the right side of the drawing, and the separation on the upper left side of the high-gradient magnetic filter 20b in the drawing is performed. A predetermined amount of the treated water in the treated water tank 23 is caused to flow backward from the device outlet 37b through the pipe 41 and the valve 21b, and the captured magnetic flocs are washed liquid outlet 43.
It is carried out from b, and the washing water is stored in the backwashing treatment water tank 29 through the valve 25b and the pipe 25. During this cleaning, air is supplied from the air tank 26 through the valve 27b and the conduit 28b from the lower part of the magnetic separation portion to perform air bubbling, thereby cleaning and removing the magnetic flocs better.

【0028】この洗浄水は、別途、逆洗処理水槽29よ
り運び出され、埋め立て地等に廃棄されたり、焼却され
る。逆洗後、弁25b及び弁27bを閉じ、弁21bを通
して浄化処理水を磁気分離部に満たした後に弁21bを
閉じる。
This wash water is separately carried out from the backwash water tank 29, and is discarded in a landfill or incinerated. After backwashing, the valves 25b and 27b are closed, the purified water is filled in the magnetic separation portion through the valve 21b, and then the valve 21b is closed.

【0029】逆洗後再び、超電導空心コイル16bに直
流電源装置17より電線17bを通して直流電流を流
し、直流電流に比例した磁場、例えば5、000ガウス
より50、000ガウスの磁場が横型円筒状の磁気分離
容器15b内に発生し、磁場は、横型円筒状の高勾配磁
気フィルタ20bの両端面に設けた通水用の円盤状の多
孔磁極18bによって均一化される。超電導空心コイル
16bは回りを鉄製のヨーク19bで囲まれ、ヨーク19
bは磁力線の通路として作用しヨーク19b外への磁場漏
洩を防止する。
After backwashing, a DC current is again applied to the superconducting air-core coil 16b from the DC power supply 17 through the electric wire 17b, and a magnetic field proportional to the DC current, for example, a magnetic field of 5,000 gauss to 50,000 gauss is formed in a horizontal cylindrical shape. The magnetic field generated in the magnetic separation container 15b is made uniform by the water-permeable disk-shaped porous magnetic poles 18b provided on both end surfaces of the horizontal cylindrical high-gradient magnetic filter 20b. The superconducting air-core coil 16b is surrounded by an iron yoke 19b.
The b acts as a passage for lines of magnetic force to prevent leakage of the magnetic field to the outside of the yoke 19b.

【0030】超電導空心コイル16bは断熱真空容器3
2bの中に設置され、ヘリウム等の作動流体を用いた冷
凍機33bで超電導発生温度以下に冷却される。冷凍機
33bは圧縮機34より配管35bを通して、高圧ヘリウ
ムガス等を供給され、冷凍機内で断熱膨張し寒冷を発生
する。超電導空心コイル16bはこの寒冷により直接又
は間接的に冷却される。冷凍機内で膨張した後の低圧ヘ
リウムガス等は配管36bを通して、圧縮機34に戻り
再び圧縮される。
The superconducting air-core coil 16b is an adiabatic vacuum container 3
It is installed in 2b and cooled to below the superconducting generation temperature by a refrigerator 33b using a working fluid such as helium. The refrigerator 33b is supplied with high-pressure helium gas or the like from the compressor 34 through the pipe 35b, and adiabatically expands in the refrigerator to generate cold. The superconducting air-core coil 16b is directly or indirectly cooled by this cold. The low-pressure helium gas or the like that has expanded in the refrigerator returns to the compressor 34 through the pipe 36b and is compressed again.

【0031】ついで図面左側の磁気分離部で浄化運転中
に図面右側の磁気分離部を逆洗するものとし、磁気フィ
ルタ20aに磁性フロックが一定量捕捉された後、フィ
ルタを逆洗するため、弁38及び弁棒39を弁棒移動装
置40で右側に移動させ、流通孔31aをOリング42
を介して閉じる。前処理水12の図面右側の磁気分離部
への送水はこの操作で止められ、前処理水12は既に逆
洗を終了し洗浄された左側の磁気分離部へ連続的に送水
され浄化運転は続行される。流通孔31aが閉じられた
後、直流電源装置17より電線17aを通じて配電され
ていた直流電流を止め、磁場をなくす。これにより、高
勾配磁気フィルタ20aに捕捉されていた磁性フロック
は磁気フィルタ20aを形成する細線表面より離脱し易
くなっている。
Next, the magnetic separation unit on the right side of the drawing is to be backwashed during the cleaning operation in the magnetic separation unit on the left side of the drawing. After a certain amount of magnetic flocs are captured by the magnetic filter 20a, the valve is washed back. 38 and the valve rod 39 are moved to the right by the valve rod moving device 40, and the flow hole 31a is moved to the O-ring 42.
Close through. The water supply to the magnetic separation unit on the right side of the drawing in the drawing is stopped by this operation, and the pretreatment water 12 is continuously supplied to the magnetic separation unit on the left side that has already been backwashed and washed, and the purification operation continues. To be done. After the flow hole 31a is closed, the DC current distributed from the DC power supply device 17 through the electric wire 17a is stopped to eliminate the magnetic field. As a result, the magnetic flocs captured by the high gradient magnetic filter 20a are easily separated from the surface of the thin wire forming the magnetic filter 20a.

【0032】高勾配磁気フィルタ20aの図示右上部の
分離器出口37aより、配管41及び弁21aを通して処
理水槽23の処理水を所定の量逆流させ、捕捉した磁性
フロックを洗浄液出口43aより搬出し、弁25a及び配
管25を通り洗浄水を逆洗処理水槽29に蓄える。この
洗浄時、空気タンク26より弁27a及び導管28aを通
して空気を磁気分離部の下部より供給してエヤーバブリ
ングを行い、よりよく磁性フロックを洗浄除去する。
From the separator outlet 37a in the upper right part of the high gradient magnetic filter 20a, a predetermined amount of the treated water in the treated water tank 23 is made to flow back through the pipe 41 and the valve 21a, and the captured magnetic flocs are carried out from the cleaning liquid outlet 43a. The wash water is stored in the backwash treated water tank 29 through the valve 25a and the pipe 25. During this cleaning, air is supplied from the air tank 26 through the valve 27a and the conduit 28a from the lower part of the magnetic separation section to perform air bubbling, thereby cleaning and removing the magnetic flocs better.

【0033】洗浄終了後、弁25a及び弁27aを閉じ洗
浄した磁気分離部内に処理水槽の水を満たし、弁21a
を閉じ、超電導空心コイル16aに再給電して、次の切
替えまで待機する。このように本実施例によれば、前処
理水は一方の磁気分離部の逆洗時においても連続的に他
方の磁気分離部で浄化されるため、浄化速度を大幅に大
きくすることができる。これは、超電導空心コイルを使
用し、磁気分離部の磁場強度を常電導磁石や永久磁石を
使用した場合よりも大幅に大きくして、磁性フロックの
捕捉力を高め、かつ処理水の通水速度を大きくして逆洗
周期が短くなるようにした効果が大きく、逆洗周期が短
くなるように前処理水を連続的に磁気分離処理できる。
さらに、磁気分離部の流体調整機構を共有化することに
より、連続的に原水を浄化できる。また、それぞれの多
孔磁極を持つ2個の磁気分離部を同軸上に並列に同一容
器内に配置しその中央部より前処理水を供給するようし
て、さらにはその中央部に磁気分離部への流体調整機構
を配置することにより、小型で省スペースの磁気分離部
を構成できる。
After the cleaning is completed, the valves 25a and 27a are closed and the cleaned magnetic separation unit is filled with water in the treated water tank, and the valve 21a is closed.
Is closed, power is supplied to the superconducting air-core coil 16a again, and the process waits until the next switching. As described above, according to this embodiment, the pretreated water is continuously purified by the other magnetic separation unit even when the one magnetic separation unit is backwashed, so that the purification rate can be significantly increased. This is because the superconducting air-core coil is used, and the magnetic field strength of the magnetic separation unit is made significantly larger than that when using a normal conducting magnet or a permanent magnet, to enhance the trapping force of the magnetic flocs, and the water flow rate of the treated water. The effect that the backwash cycle is shortened by increasing the value is large, and the pretreated water can be continuously magnetically separated so that the backwash cycle is shortened.
Furthermore, by sharing the fluid adjustment mechanism of the magnetic separation unit, the raw water can be continuously purified. Further, two magnetic separation parts each having a porous magnetic pole are arranged coaxially in parallel in the same container so that pretreatment water is supplied from the central part thereof, and further to the magnetic separation part at the central part. By arranging the fluid adjusting mechanism of (1), a small-sized and space-saving magnetic separating unit can be configured.

【0034】また、それぞれ磁気分離部が磁極を有する
ので、一方の磁気分離部の空心コイルを励磁又は消磁す
る場合、他方の空心コイルの漏れ磁場による誘導電流の
発生が少なく、短時間に励磁又は消磁が行え、逆洗時間
を短くできる。
Further, since each of the magnetic separation portions has a magnetic pole, when the air-core coil of one magnetic separation portion is excited or demagnetized, the induction current due to the leakage magnetic field of the other air-core coil is small, and the excitation or demagnetization is performed in a short time. Degaussing can be performed and backwash time can be shortened.

【0035】また、2個の空心コイルを超電導磁石で構
成することにより、常電導磁石や永久磁石で構成する場
合に比べ大幅に小型かつ軽量化でき、さらに常電導磁石
に比べ消費電力を大幅に低減できるため、電力の確保が
困難な船上又は車上や、廃熱が困難な地下施設に配置す
るとこができる利点がある。
Further, by constructing the two air-core coils by superconducting magnets, the size and weight can be greatly reduced as compared with the case where they are constituted by normal conducting magnets or permanent magnets, and the power consumption is much higher than that of the normal conducting magnets. Since it can be reduced, there is an advantage that it can be installed on a ship or vehicle where it is difficult to secure electric power, or in an underground facility where waste heat is difficult.

【0036】本発明の他の実施例を図2に示す。本実施
例が図1に示す実施例と異なる点は、空心コイルとし
て、一つの超電導空心コイル16aのみを移動可能に備
え、逆洗時に超電導空心コイル16aを消磁し、その後
に洗浄済みの高勾配磁気フィルタ側に超電導空心コイル
を移動し、励磁するようにしたところにある。さらに、
導水口30及び洗浄液出口43a,43bは、超電導空心
コイル16aの移動を阻害しないような位置に穿設すれ
ばよい。また、それぞれの高勾配磁気フィルタ20a、
20bの両端面には、それぞれ多孔磁極18a,18bを
配置しており、配管35a,36aはフレキシブル管で形
成されている。
FIG. 2 shows another embodiment of the present invention. The present embodiment is different from the embodiment shown in FIG. 1 in that only one superconducting air-core coil 16a is movably provided as an air-core coil, the superconducting air-core coil 16a is demagnetized during backwashing, and then the washed high-gradient coil is used. The superconducting air-core coil is moved to the magnetic filter side so as to be excited. further,
The water guide port 30 and the cleaning liquid outlets 43a and 43b may be formed at positions that do not hinder the movement of the superconducting air-core coil 16a. In addition, each high gradient magnetic filter 20a,
Porous magnetic poles 18a and 18b are arranged on both end faces of 20b, respectively, and the pipes 35a and 36a are formed of flexible pipes.

【0037】本実施例によれば、一つの超電導空心コイ
ルのみで連続浄化できるため、装置コストを低減できと
ともに、装置を小型化できる効果がある。
According to the present embodiment, since it is possible to continuously purify with only one superconducting air-core coil, it is possible to reduce the cost of the apparatus and to downsize the apparatus.

【0038】本発明の他の実施例を図3に示す。本実施
例が図1に示す実施例と異なる点は、超電導空心コイル
16a,16bを同一のボビン(巻付台)38上に巻き付
け、一台の冷凍機33aで伝導冷却体(冷熱を伝熱する
機構)39を冷却し、断熱真空容器32を共通化した点
にある。
Another embodiment of the present invention is shown in FIG. This embodiment is different from the embodiment shown in FIG. 1 in that superconducting air-core coils 16a and 16b are wound around the same bobbin (winding table) 38, and a single cooling unit 33a conducts a conductive cooling body (cooling heat is transferred). Mechanism 39) for cooling, and the adiabatic vacuum container 32 is commonly used.

【0039】本実施例によれば、断熱真空容器32を共
通化できるため、2個の超電導空心コイル16a,16b
を一台の冷凍機で冷却できるため、装置コストを低減で
きとともに、装置を小型化できる効果がある。
According to this embodiment, since the heat insulating vacuum container 32 can be shared, the two superconducting air-core coils 16a and 16b.
Since it can be cooled by a single refrigerator, the device cost can be reduced and the device can be downsized.

【0040】さらに、超電導空心コイルの超電導導体に
交流用の超電導導体を、例えば導体を形成するフィラメ
ント線径が小さく、かつよりピッチが小さく、フィラメ
ント間の母材にCuNiを使用することにより、励磁又は消
磁の際の電気的損失が小さく、かつ超電導空心コイルの
発熱が小さくなり、超電導状態の安定性が高まる効果が
生じる。
Further, an AC superconducting conductor is used as the superconducting conductor of the superconducting air-core coil, for example, the filament wire diameter forming the conductor is small and the pitch is small, and CuNi is used as the base material between the filaments to excite the coil. Alternatively, the electrical loss at the time of demagnetization is small, the heat generation of the superconducting air core coil is small, and the stability of the superconducting state is enhanced.

【0041】本発明の他の実施例として、磁気分離方法
は、磁場を発生する少なくとも一つの磁石と、磁場内に
配置され磁性体を充填した少なくとも一つの磁気フィル
タとを備え、それぞれの磁気フィルタで処理流体中の磁
性物質を吸着除去する磁気分離方法であって、一つの容
器内に収容されたそれぞれの磁気フィルタへ処理流体を
一つの流体調整機構で切替える工程と、一方の磁気フィ
ルタで吸着運転中に他方の磁気フィルタの再生運転を同
時に行う工程とよりなる構成とし、さらに流体浄化シス
テムは、前記いずれか一つの磁気分離装置を備えてなる
構成であり、いずれの構成も前記と同様な効果を得るこ
とができる。
As another embodiment of the present invention, the magnetic separation method includes at least one magnet for generating a magnetic field, and at least one magnetic filter arranged in the magnetic field and filled with a magnetic material. Is a magnetic separation method for adsorbing and removing the magnetic substance in the processing fluid by switching the processing fluid to each magnetic filter housed in one container with one fluid adjustment mechanism, and adsorbing with one magnetic filter. A configuration comprising a step of performing a regeneration operation of the other magnetic filter at the same time during operation, and the fluid purification system is a configuration including any one of the above magnetic separation devices, and any configuration is the same as above. The effect can be obtained.

【0042】また、以上説明した原水とは、河川、ダ
ム、湖沼、海水、貯め池、工業廃水、下水及び雨水等の
不純物を含んだ水であり、不純物とは有機物、無機物や
微生物等の物体、金属物、非金属物、土壌、放射性物質
及び金属イオン等のものである。特に重金属イオンを含
んだ原水に硫酸第1鉄のような2価の鉄イオンと、アル
カリとを加えて重金属イオンを水酸化第1鉄の沈殿と共
沈させた後、空気で酸化して沈殿をフェライト化する。
このフェライト化によって重金属は磁性分離ができる。
この場合、重金属イオンのみの分離が目的であれば、凝
集剤は不要となる。したがって、原水には、前処理とし
て硫酸第1鉄、アルカリ溶液及び空気を注入し撹拌槽で
処理した後、磁気分離部に前処理水を導くようにすれば
よい。
The raw water described above is water containing impurities such as rivers, dams, lakes, seawater, reservoirs, industrial wastewater, sewage and rainwater, and impurities are substances such as organic substances, inorganic substances and microorganisms. , Metal objects, non-metal objects, soil, radioactive materials and metal ions. In particular, divalent iron ions such as ferrous sulfate and alkali are added to raw water containing heavy metal ions to coprecipitate heavy metal ions with precipitation of ferrous hydroxide and then oxidize with air to precipitate. To ferrite.
This ferritization allows the heavy metal to be magnetically separated.
In this case, if the purpose is to separate only the heavy metal ions, the aggregating agent becomes unnecessary. Therefore, ferrous sulfate, an alkaline solution, and air are injected into the raw water as a pretreatment and treated in a stirring tank, and then the pretreated water may be introduced to the magnetic separation unit.

【0043】[0043]

【発明の効果】本発明によれば、複数の磁気フィルタを
一つの容器に収容し、処理流体を切替るため、一方の磁
気フィルタで逆洗時に他方の磁気フィルタで連続的に処
理流体が浄化され、また超電導磁石で磁場を発生するた
め、浄化速度を増大できるとともに、装置を小型かつ軽
量化することができる。
According to the present invention, since a plurality of magnetic filters are accommodated in one container and the treatment fluid is switched, the treatment fluid is continuously purified by the other magnetic filter while backwashing with one of the magnetic filters. Moreover, since the magnetic field is generated by the superconducting magnet, the purification speed can be increased, and the device can be made small and lightweight.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の運転操作基本フローを示す
構成図である。
FIG. 1 is a configuration diagram showing a basic flow of a driving operation according to an embodiment of the present invention.

【図2】本発明の他の実施例の運転操作基本フローを示
す構成図である。
FIG. 2 is a configuration diagram showing a basic operation flow of another embodiment of the present invention.

【図3】本発明の他の実施例の運転操作基本フローを示
す構成図である。
FIG. 3 is a configuration diagram showing a basic operation flow of another embodiment of the present invention.

【図4】従来の技術の運転操作基本フローを説明する図
である。
FIG. 4 is a diagram illustrating a basic flow of a driving operation according to a conventional technique.

【符号の説明】[Explanation of symbols]

15 磁気分離容器 20a,20b 高勾配磁気フィルタ 30 導水口 16a,16b 超電導空心コイル 38 弁 40 弁棒移動装置 33a,33b 冷凍機 15 magnetic separation container 20a, 20b high gradient magnetic filter 30 water inlet 16a, 16b superconducting air core coil 38 valve 40 valve rod moving device 33a, 33b refrigerator

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 磁場を発生する磁石と、該磁場内に配置
され磁性体を充填した磁気フィルタとを備え、該磁気フ
ィルタで処理流体中の磁性物質を吸着除去する磁気分離
装置において、前記磁石を超電導磁石で形成するととも
に、該超電導磁石を超電導発生温度に保持する冷凍手段
を具備したことを特徴とする磁気分離装置。
1. A magnetic separation device comprising a magnet for generating a magnetic field and a magnetic filter arranged in the magnetic field and filled with a magnetic material, wherein the magnetic filter adsorbs and removes a magnetic substance in a processing fluid. And a refrigerating means for holding the superconducting magnet at a superconducting generation temperature.
【請求項2】 磁場を発生する少なくとも一つの磁石
と、該磁場内に配置され磁性体を充填した少なくとも一
つの磁気フィルタとを備え、それぞれの磁気フィルタで
処理流体中の磁性物質を吸着除去する磁気分離装置にお
いて、複数の磁気フィルタを一つの容器内に収容すると
ともに、それぞれの磁気フィルタの間に前記処理流体の
導入口を設け、一方の磁気フィルタによる吸着運転と、
他方の磁気フィルタの再生運転とを同時に行う手段を具
備したことを特徴とする磁気分離装置。
2. At least one magnet for generating a magnetic field and at least one magnetic filter arranged in the magnetic field and filled with a magnetic material are provided, and the magnetic substance in the processing fluid is adsorbed and removed by each magnetic filter. In the magnetic separation device, while accommodating a plurality of magnetic filters in one container, the inlet of the processing fluid is provided between the respective magnetic filters, adsorption operation by one magnetic filter,
A magnetic separation device comprising means for simultaneously performing a regenerating operation of the other magnetic filter.
【請求項3】 それぞれの磁気フィルタは、一方の円筒
状の磁気フィルタと、他方の円筒状の磁気フィルタとの
それぞれの端面が互いに対向されるとともに、それぞれ
の円筒状の中心軸がほぼ同一軸上になるように並設さ
れ、それぞれの磁気フィルタの側面に磁石が周設される
ことを特徴とする請求項2記載の磁気分離装置。
3. In each magnetic filter, the end faces of one cylindrical magnetic filter and the other cylindrical magnetic filter are opposed to each other, and the central axes of the cylindrical filters are substantially the same axis. The magnetic separation device according to claim 2, wherein the magnets are arranged side by side so as to be on the upper side, and a magnet is provided around the side surface of each magnetic filter.
【請求項4】 少なくとも一つの磁石は、超電導磁石で
形成されるとともに、超電導発生温度に保持する冷凍手
段を具備していることを特徴とする請求項2又は3記載
の磁気分離装置。
4. The magnetic separation device according to claim 2, wherein at least one magnet is formed of a superconducting magnet and is provided with a refrigerating unit for maintaining the superconducting generation temperature.
【請求項5】 それぞれの磁気フィルタは、処理流体の
流通を切替る一つの流体調整機構を付設していることを
特徴とする請求項2〜4のいずれか1項記載の磁気分離
装置。
5. The magnetic separation device according to claim 2, wherein each magnetic filter is provided with one fluid adjusting mechanism for switching the flow of the processing fluid.
【請求項6】 それぞれの磁石は、超電導磁石で形成さ
れるとともに、いずれか一方の超電導磁石を超電導発生
温度に保持する冷凍手段と、他方の超電導磁石に冷熱を
伝熱する機構とを具備していることを特徴とする請求項
2、3又は5記載の磁気分離装置。
6. Each of the magnets is formed of a superconducting magnet, and is provided with a refrigerating unit for holding one of the superconducting magnets at a superconducting generation temperature and a mechanism for transferring cold heat to the other superconducting magnet. The magnetic separation device according to claim 2, 3 or 5, wherein:
【請求項7】 それぞれの磁気フィルタは、一方の円筒
状の磁気フィルタと、他方の円筒状の磁気フィルタとの
それぞれの端面が互いに対向され、それぞれの円筒状の
中心軸がほぼ同一軸上になるように並設されるととも
に、それぞれの磁気フィルタの側面を移動可能に一つの
磁石が周設されることを特徴とする請求項2〜5のいず
れか1項記載の磁気分離装置。
7. In each magnetic filter, the end faces of one cylindrical magnetic filter and the other cylindrical magnetic filter are opposed to each other, and the central axes of the cylindrical filters are substantially on the same axis. 6. The magnetic separation apparatus according to claim 2, wherein the magnets are arranged side by side so that one magnet is provided so as to be movable on the side surface of each magnetic filter.
【請求項8】 磁場を発生する少なくとも一つの磁石
と、該磁場内に配置され磁性体を充填した少なくとも一
つの磁気フィルタとを備え、それぞれの磁気フィルタで
処理流体中の磁性物質を吸着除去する磁気分離方法にお
いて、一つの容器内に収容された複数の磁気フィルタへ
処理流体を一つの流体調整機構で切替え、一方の磁気フ
ィルタによる吸着運転中に他方の磁気フィルタの再生運
転を同時に行うことを特徴とする磁気分離方法。
8. At least one magnet for generating a magnetic field and at least one magnetic filter arranged in the magnetic field and filled with a magnetic substance are provided, and each magnetic filter adsorbs and removes a magnetic substance in a processing fluid. In the magnetic separation method, the processing fluid is switched to a plurality of magnetic filters contained in one container by one fluid adjusting mechanism, and the regeneration operation of the other magnetic filter is simultaneously performed during the adsorption operation by one magnetic filter. Characteristic magnetic separation method.
【請求項9】 請求項1〜7のいずれか1項記載の磁気
分離装置を備えてなることを特徴とする流体浄化システ
ム。
9. A fluid purification system comprising the magnetic separation device according to any one of claims 1 to 7.
JP23979595A 1995-09-19 1995-09-19 Magnetic separator and magnetic separation method Pending JPH0975630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23979595A JPH0975630A (en) 1995-09-19 1995-09-19 Magnetic separator and magnetic separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23979595A JPH0975630A (en) 1995-09-19 1995-09-19 Magnetic separator and magnetic separation method

Publications (1)

Publication Number Publication Date
JPH0975630A true JPH0975630A (en) 1997-03-25

Family

ID=17049992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23979595A Pending JPH0975630A (en) 1995-09-19 1995-09-19 Magnetic separator and magnetic separation method

Country Status (1)

Country Link
JP (1) JPH0975630A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916049B2 (en) 2009-01-23 2014-12-23 Osaka University Method and apparatus for processing mixture
CN104525370A (en) * 2014-12-18 2015-04-22 佛山市赛科科技股份有限公司 Deironing device
CN109013054A (en) * 2018-08-24 2018-12-18 佛山市万达业机械股份有限公司 The continuous magnetic separator of electromagnetic conversion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916049B2 (en) 2009-01-23 2014-12-23 Osaka University Method and apparatus for processing mixture
CN104525370A (en) * 2014-12-18 2015-04-22 佛山市赛科科技股份有限公司 Deironing device
CN109013054A (en) * 2018-08-24 2018-12-18 佛山市万达业机械股份有限公司 The continuous magnetic separator of electromagnetic conversion

Similar Documents

Publication Publication Date Title
US6093318A (en) Magnetic purifying apparatus for purifying a fluid
EP1072315B1 (en) Separating system and separator for separating magnetic particles mixed in a fluid
JPWO2005014486A1 (en) Wastewater treatment system by superconducting magnetic separation
JPH08206420A (en) Magnetic separator
JPH0975630A (en) Magnetic separator and magnetic separation method
JP2002066375A (en) Magnetic separation device for material to be removed
JPH09117618A (en) Purifying device
JP5774290B2 (en) Treatment method of electroless nickel plating waste liquid
JP2005007358A (en) Magnetic separation device
JP3463254B2 (en) Magnetic separation device
JP3314350B2 (en) Purification device
JPH09117617A (en) Purifying device
JP3580117B2 (en) Magnetic separation device
JP3334067B2 (en) Magnetic separation device and water treatment device with magnetic separation device
JPH10192619A (en) Purifying device
JPH0975632A (en) Magnetic separator
JPH1033919A (en) Magnetic separator
JP2003326191A (en) Separation and cleaning apparatus using magnetic material
JPH0975628A (en) Water purifying apparatus
JPH11226320A (en) Magnetic separation apparatus
JPH11226319A (en) Magnetic separation apparatus
CN106517421A (en) Construction method for hydraulic suspension magnetic membrane used for water purification, and magnetic membrane filtration apparatus
Gillet et al. Technology of superconducting magnetic separation in mineral and environmental processing
JPH11226321A (en) Magnetic separation apparatus
JPS6253714A (en) Magnetic cleaning apparatus for fluid