JP2560511B2 - Superconducting magnetic separator - Google Patents

Superconducting magnetic separator

Info

Publication number
JP2560511B2
JP2560511B2 JP6360790A JP6360790A JP2560511B2 JP 2560511 B2 JP2560511 B2 JP 2560511B2 JP 6360790 A JP6360790 A JP 6360790A JP 6360790 A JP6360790 A JP 6360790A JP 2560511 B2 JP2560511 B2 JP 2560511B2
Authority
JP
Japan
Prior art keywords
magnetic
superconducting
filter
superconducting coil
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6360790A
Other languages
Japanese (ja)
Other versions
JPH03229603A (en
Inventor
和雄 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6360790A priority Critical patent/JP2560511B2/en
Publication of JPH03229603A publication Critical patent/JPH03229603A/en
Application granted granted Critical
Publication of JP2560511B2 publication Critical patent/JP2560511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は白陶土中の鉄化合物の除去、あるいは製鉄所
廃水中の磁性物質の除去などに用いられる磁気分離装置
で、特に、超電導磁石を利用した磁気分離装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is a magnetic separation device used for removing iron compounds in white porcelain clay, or for removing magnetic substances in iron mill wastewater, and in particular, a superconducting magnet is used. The present invention relates to a magnetic separation device.

〔従来の技術〕[Conventional technology]

磁気分離装置は古くから鉄鉱石の選鉱に用いられてき
たが、1960年代の終わり頃に高勾配磁気分離(HGMS:Hig
h Gradient Megnetic Separetion)が開発され、白陶土
などの磁気原料の精製をはじめその他磁性粒子の選別等
に工業的に用いられるようになった。
Magnetic separators have long been used for iron ore beneficiation, but in the late 1960s high gradient magnetic separation (HGMS: Hig
h Gradient Megnetic Separetion) has been developed and has come to be used industrially for the purification of magnetic raw materials such as white clay and for the selection of other magnetic particles.

磁気分離装置の原理は、よく知られているように、磁
化率x,体積Vの磁性粒子が磁場Hの中に置かれた時に受
ける力により、磁性粒子を分離するもので、この力F
は、 F=VxHgrad H ……(1) であり、この力は磁場の強さH,磁場の勾配grand Hとに
比例する。磁場の勾配grad Hは磁石をそのまま使用する
だけで大きな値が得られず、高勾配磁気分離(HGMS)で
は磁場中に置かれた強磁性の細い線材のまわりにできる
局所的な高い勾配磁場を利用している。更に、分離能力
を高めるため高磁場の発生可能な超電導磁石を利用する
ことが行われている(例えばAdvances in Cryogenic En
gineering volume 33 page 53〜60;1988年,Plenum Pres
s,New York)。
As is well known, the principle of the magnetic separation device is to separate magnetic particles by the force that magnetic particles having magnetic susceptibility x and volume V are placed when placed in a magnetic field H.
Is F = VxHgrad H (1), and this force is proportional to the magnetic field strength H and the magnetic field gradient grand H. A large value cannot be obtained for the magnetic field gradient grad H just by using the magnet as it is. In high gradient magnetic separation (HGMS), a local high gradient magnetic field generated around a thin ferromagnetic wire placed in the magnetic field is generated. We are using. Furthermore, in order to enhance the separation ability, it has been used to use a superconducting magnet capable of generating a high magnetic field (for example, Advances in Cryogenic En
gineering volume 33 page 53-60; 1988, Plenum Pres
s, New York).

第5図は従来の超電導磁石を用いた高勾配磁気分離装
置の断面図である。2は超電導コイルで、真空断熱容器
に収納され、液体ヘリウムで冷却される。このコイルは
円筒形のコイルで磁場Hを発生する。1は磁性ステンレ
ス鋼の細い線材、例えば、数十μmの線材を綿状にして
作られたフィルタで磁場Hの中に配置され、この細い線
材のまわりに局所的な高い勾配磁場を発生する。超電導
コイル2で発生した磁束はフィルタ1→ポールピース3b
→リターンヨーク4→ポールピース3a→フィルタ1の磁
気回路を通る。ポールピース3a,3b及びリターンヨーク
4を鉄材で作られ、前記の磁束を通すに充分な断面積を
持っている。
FIG. 5 is a cross-sectional view of a conventional high gradient magnetic separation device using a superconducting magnet. A superconducting coil 2 is housed in a vacuum heat insulating container and cooled by liquid helium. This coil is a cylindrical coil and generates a magnetic field H. Reference numeral 1 denotes a thin wire made of magnetic stainless steel, for example, a filter made of a wire having a diameter of several tens of μm and arranged in a magnetic field H to generate a locally high gradient magnetic field around the thin wire. The magnetic flux generated in superconducting coil 2 is filter 1 → pole piece 3b
→ Return yoke 4 → Pole piece 3a → Pass through the magnetic circuit of filter 1. The pole pieces 3a, 3b and the return yoke 4 are made of an iron material and have a sufficient cross-sectional area for passing the magnetic flux.

運転手順として、例えば、磁性粒子を含むオカリンの
スラリーが被処理流体5として弁V1を経由して磁気分離
装置の下部から流入し、ポールピース3aの中に設けられ
た流通孔6aを経由してフィルタ1の中に入る。被処理流
体5の中に含まれる磁性粒子はフィルタ1を構成する磁
性線材のまわりの局所的な高い勾配磁場によって捕捉さ
れる。磁性粒子が除去された被処理流体5はフィルタ1
を出て、ボールピース3bの中の流通孔6bを経由して磁気
分離装置から出て、弁V2から磁性粒子の除かれた流体7
として取り出される。前述の磁性粒子の捕捉サイクルで
は弁はV1:開,V2:開,V3:閉,V4:閉である。長時間被処理
流体を流通させるとフィルタ1に磁性粒子が蓄積しその
捕捉能力が落ちてくるので、洗浄サイクルに移る。ま
ず、超電導コイル2が消磁され、弁はV1:閉,V2:閉,V3:
開,V4:開に操作される。洗浄用流体8、例えば、水が弁
V3が経由して磁気分離装置に上から供給され、フィルタ
1に捕捉されていた磁性粒子を洗い流しながら磁気分離
装置の下部から弁を通して多量の磁性粒子を含む流体9
として取り出される。
As an operating procedure, for example, a slurry of ocarin containing magnetic particles flows in as a fluid to be treated 5 from a lower part of the magnetic separation device via a valve V1 and via a flow hole 6a provided in a pole piece 3a. Go into Filter 1. The magnetic particles contained in the fluid to be treated 5 are trapped by the locally high gradient magnetic field around the magnetic wire rod that constitutes the filter 1. The fluid to be processed 5 from which magnetic particles have been removed is the filter 1
Of the fluid 7 from which the magnetic particles have been removed from the valve V2 through the flow hole 6b in the ball piece 3b and the magnetic separation device.
Is taken out as. In the above-mentioned magnetic particle capturing cycle, the valves are V1: open, V2: open, V3: closed, and V4: closed. When the fluid to be processed is circulated for a long time, magnetic particles are accumulated in the filter 1 and its trapping ability is deteriorated, and therefore the cleaning cycle is started. First, the superconducting coil 2 is demagnetized, and the valves are V1: closed, V2: closed, V3:
Open, V4: Operated to open. Cleaning fluid 8, for example water, is a valve
V3 is supplied from above to the magnetic separation device from above, and the fluid containing a large amount of magnetic particles is passed through the valve from the lower part of the magnetic separation device while washing away the magnetic particles trapped in the filter 1.
Is taken out as.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

前述の磁気分離装置において磁気回路として鉄製のポ
ールピース3a,3b及びリターンヨーク4を設けている。
このため超電導コイル2の発生する磁束を有効に使うこ
とができ、また周囲への漏れ磁場もほとんどない。しか
しながら、この磁気回路の鉄の量は膨大となっている。
例えば、フィルタ1の直径が2m程度の一般的な磁気分離
装置において鉄の重量は150〜200トンにもなる。これに
より鉄の材料コストの他、重量物の組立,輸送,及び設
置場所の基礎工事等コストの高いものになっている。鉄
の量を減らそうとすると周囲への漏れ磁場が大きくな
る。極端に言って鉄を全く用いないで超電導コイルのみ
で磁気分離装置を構成することもできるが、この場合、
周囲への漏れ磁場の影響を避けるため広大な設置面積を
要する。
In the above-mentioned magnetic separation device, iron pole pieces 3a and 3b and a return yoke 4 are provided as a magnetic circuit.
Therefore, the magnetic flux generated by the superconducting coil 2 can be effectively used, and there is almost no leakage magnetic field to the surroundings. However, the amount of iron in this magnetic circuit is enormous.
For example, in a general magnetic separation device in which the diameter of the filter 1 is about 2 m, the weight of iron becomes 150 to 200 tons. As a result, in addition to the iron material cost, the cost of assembling and transporting heavy objects, and foundation work at the installation site is high. When the amount of iron is reduced, the leakage magnetic field to the surroundings becomes large. Extremely speaking, it is possible to construct a magnetic separation device with only superconducting coils without using iron at all, but in this case,
A large installation area is required to avoid the influence of the stray magnetic field on the surroundings.

一方、漏れ磁場の小さいコイル形式が特開昭51−0062
40号公報により知られており、磁気共鳴画像診断装置の
超電導磁石にも用いられ、アクティブシールド方式と呼
ばれている。このコイル形式は円筒形の主コイルとこれ
と同軸で外側に置かれた円筒形のシールドコイルとから
なり、これら両コイルの磁気双極子モーメントの絶対値
が等しく極性を逆にしたものである。このコイル形式を
用いた超電導磁石は漏れ磁場は小さいが、シールドコイ
ルの作る磁場が主コイルが作る磁場を部分的に打ち消す
ため、主コイルのアンペアターンを増す必要があり、シ
ールドコイルにもコストがかかる。超電導磁石は現在、
非常に高価であり、このままこのコイル形式の超電導磁
石を磁気分離装置に適用したのでは大幅なコスト増とな
る。
On the other hand, a coil type having a small leakage magnetic field is disclosed in Japanese Patent Laid-Open No. 51-0062.
It is known from Japanese Patent Publication No. 40, and is also used in a superconducting magnet of a magnetic resonance imaging apparatus and is called an active shield system. This coil type is composed of a cylindrical main coil and a cylindrical shield coil placed coaxially with the main coil, and the absolute values of the magnetic dipole moments of these coils are equal and their polarities are reversed. The superconducting magnet using this coil type has a small leakage magnetic field, but the magnetic field created by the shield coil partially cancels the magnetic field created by the main coil, so it is necessary to increase the ampere-turns of the main coil, and the shield coil is also costly. It takes. Superconducting magnets are currently
It is very expensive, and if this coil type superconducting magnet is applied to the magnetic separation device as it is, the cost will increase significantly.

本発明の課題は、前述の問題点を解決して、磁気回路
として鉄材を用いることなく、かつ、漏れ磁場が小さく
し、しかも超電導コイルのコストが適度な超電導形磁気
分離装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems and to provide a superconducting magnetic separation device which does not use an iron material as a magnetic circuit, has a small leakage magnetic field, and has a moderate cost of the superconducting coil. is there.

〔課題を解決するための手段〕[Means for solving the problem]

前述の課題を解決するために、本発明の超電導磁石と
この磁石の発生する磁場の中におかれた強磁性体の線材
からなるフィルタを備え、磁性粒子を含む被処理流体
が、このフィルタを通過する際、線材のまわりに生じる
局所的な高勾配磁場により、前記磁性粒子をフィルタに
吸引して前記被処理流体より除去する超導電形磁気分離
装置においては、超電導磁石は円筒形の内側超電導コイ
ルとこれと同軸で逆極性の円筒形の外側超導電コイルと
からなり、フィルタはこの内側超電導コイルの内部に配
置される内側フィルタとこの外側超電導コイルと内側超
電導コイルの中間部に配置される外側フィルタとからな
り、前記超電導磁石は内側超電導コイルの磁気双極子モ
ーメントと外側超電導コイルの双極子モーメントの絶対
値がほぼ等しくかつ逆極性とし、被処理流体を内側フィ
ルタと外側フィルタとの相方に流通させるようにする。
In order to solve the above-mentioned problems, a superconducting magnet of the present invention and a filter composed of a ferromagnetic wire placed in a magnetic field generated by this magnet are provided, and a fluid to be treated containing magnetic particles is provided with this filter. In a superconducting type magnetic separation device in which the magnetic particles are attracted to a filter and removed from the fluid to be treated by a local high gradient magnetic field generated around the wire when passing, the superconducting magnet has a cylindrical inner superconducting The filter is composed of a coil and an outer superconducting coil which is coaxial with the coil and has a reverse polarity, and the filter is placed inside the inner superconducting coil and in an intermediate part between the outer superconducting coil and the inner superconducting coil. The superconducting magnet comprises an outer filter, and the superconducting magnet has a magnetic dipole moment of the inner superconducting coil and an absolute value of a dipole moment of the outer superconducting coil which are substantially equal and opposite to each other. And gender, so as to distribute the fluid to be treated in the antagonist of the inner filter and the outer filter.

〔作用〕[Action]

本発明では円筒形の内側超電導コイルとこれと同軸で
逆磁極の磁場を発生する円筒形の外側超電導コイルとを
備え、それぞれの磁気双極子モーメントをほぼ等しく、
かつ、逆極性にしたので周囲に対する磁場はこの両コイ
ルの磁場が打消しあって漏れ磁場は非常に低くなる。勿
論磁気回路に鉄材を用いる必要なく、磁気回路の膨大な
鉄の量は削減できる。また、内側超電導コイルの内部
と、外側超電導コイルと内側超電導コイルとの中部に、
磁性粒子捕捉用のフィルタを設け、この相方に被処理流
体を流通せしめるようにしたので超電導コイルの発生す
る磁場を有効に活用でき、分離装置の能力に対する超電
導コイルのコストは適度に抑えられる。
In the present invention, a cylindrical inner superconducting coil and a cylindrical outer superconducting coil that generates a magnetic field of a reverse magnetic pole coaxial with this are provided, and their magnetic dipole moments are substantially equal,
Also, since the polarities are opposite, the magnetic fields for the surroundings cancel each other out, and the leakage magnetic field becomes extremely low. Of course, it is not necessary to use iron material in the magnetic circuit, and the huge amount of iron in the magnetic circuit can be reduced. In addition, in the inside of the inner superconducting coil and in the middle of the outer superconducting coil and the inner superconducting coil,
Since a filter for trapping magnetic particles is provided and a fluid to be processed is circulated in the opposite direction, the magnetic field generated by the superconducting coil can be effectively utilized, and the cost of the superconducting coil with respect to the ability of the separation device can be appropriately suppressed.

〔実施例〕〔Example〕

第1図は本発明の超電導形磁気分離装置の一実施例の
断面図を示す。15は円筒形の内側超電導コイルであり、
16はこれと同軸で逆極性の磁場を発生する円筒形の外側
超電導コイルで、超電導磁石はこの両コイルから構成さ
れている。この両コイルはそれぞれ内側真空断熱容器13
と外側真空断熱容器14に収められ、液体ヘリウムで冷却
される。円柱形の内側フィルタ11が内側超電導コイル15
の内部に、円筒形の外側フィルタ12が、外側超電導コイ
ル16と内側超電導コイル15との中間部に配置される。そ
して、内側フィルタ11は内側真空断熱容器13と端板17か
らなる容器内に、外側フィルタ12は外側真空断熱容器14
及び内側真空断熱容器13と端板18からなる容器内に収め
られる。これらのフィルタは、すでに述べたように、磁
性ステンレス鋼の細い線材、例えば、数十μmの線材を
綿状にして作られる。端板17及び18にはその上綿と下綿
に被処理流体5及び洗浄用流体8用の配管が取り付けら
れる。
FIG. 1 is a sectional view of an embodiment of the superconducting magnetic separator of the present invention. 15 is a cylindrical inner superconducting coil,
Reference numeral 16 denotes a cylindrical outer superconducting coil that is coaxial with this and generates a magnetic field of opposite polarity. The superconducting magnet is composed of both coils. Both of these coils are inside vacuum insulation container 13
And it is housed in the outer vacuum insulation container 14 and cooled with liquid helium. The cylindrical inner filter 11 is the inner superconducting coil 15
Inside, the cylindrical outer filter 12 is disposed in the intermediate portion between the outer superconducting coil 16 and the inner superconducting coil 15. Then, the inner filter 11 is inside a container composed of the inner vacuum heat insulating container 13 and the end plate 17, and the outer filter 12 is outside vacuum heat insulating container 14.
And the inner vacuum heat insulating container 13 and the end plate 18 are contained. As described above, these filters are made of a thin wire made of magnetic stainless steel, for example, a wire having a diameter of several tens of μm and made like cotton. Pipes for the treated fluid 5 and the cleaning fluid 8 are attached to the upper and lower cottons of the end plates 17 and 18, respectively.

内側超電導コイル15の磁気双極子モーメントNI・A
〔但しNIはアンペアターン、Aはコイル径をDとしてA
=(π/4)・D2〕と外側超電導コイル16の磁気双極子モ
ーメントNI・Aとは絶対値がほぼ等しく極性が逆になっ
ている。このようにすれば、周囲への漏れ磁場は距離の
5乗で急速に減衰する。第3図はこの超電導磁石の磁場
分布を示し、縦軸は磁場H、横軸は超電導コイルの中心
からの距離rであり、11,15,12,16はそれぞれ内側フィ
ルタ11,内側超電導コイル15,外側フィルタ12,外側超電
導コイル16の位置関係を示している。内側フィルタ11と
外側フィルタ16には高磁場、例えば、実線23で示す2T
(テスラ)が印加されており、しかも外側超電導コイル
16より外の磁場は前述の原理により非常に小さい。内側
超電導コイルのアンペアターンNIは外側超電導コイルの
アンペアターンNIの約2倍である。内側超電導コイルは
それ単独で鎖線21で示す約4Tの磁場を発生し、外側超電
導コイルはそれ単独で破線22で示す約2Tの磁場を発生す
る。これにより前述のように内側フィルタにかかる磁場
は約2Tで、外側フィルタにかかる磁場も約2Tになる。従
って内側及び外側の両フィルタともほぼ等しい磁性粒子
の捕捉能力を持っている。被処理流体5はこの両フィル
タへ並列に流通させる。
Inner superconducting coil 15 magnetic dipole moment NI ・ A
[However, NI is ampere-turn, A is coil diameter D and A
= (Π / 4) · D 2 ] and the magnetic dipole moment NI · A of the outer superconducting coil 16 have almost the same absolute value and opposite polarities. In this way, the leakage magnetic field to the surroundings is rapidly attenuated by the fifth power of the distance. FIG. 3 shows the magnetic field distribution of this superconducting magnet, the vertical axis is the magnetic field H, the horizontal axis is the distance r from the center of the superconducting coil, and 11, 15, 12, and 16 are the inner filter 11 and the inner superconducting coil 15, respectively. The positional relationship between the outer filter 12 and the outer superconducting coil 16 is shown. A high magnetic field is applied to the inner filter 11 and the outer filter 16, for example, 2T shown by the solid line 23.
(Tesla) is applied and the outer superconducting coil
Magnetic fields outside 16 are very small due to the above-mentioned principle. The ampere-turn NI of the inner superconducting coil is about twice that of the outer superconducting coil. The inner superconducting coil alone generates a magnetic field of about 4T indicated by a chain line 21, and the outer superconducting coil alone generates a magnetic field of about 2T indicated by a broken line 22. As a result, the magnetic field applied to the inner filter is about 2T and the magnetic field applied to the outer filter is about 2T as described above. Therefore, both the inner and outer filters have almost the same ability to trap magnetic particles. The fluid 5 to be processed is circulated in parallel to both filters.

運転手順は、すでに述べた第5図の装置と同様であ
る。
The operating procedure is similar to that of the device shown in FIG.

第2図は本発明の超電導形磁気分離装置の異なる実施
例の断面図を示す。本実施例では第1図に示した実施例
に比べて内側超電導コイル15の径はより小さく、アンペ
アターンはより多くなっている。同時に、内側超電導コ
イル15の磁気双極子モーメントNI・Aと外側超電導コイ
ルの磁気双極子モーメントNI・Aはほぼ等しく、かつ、
逆極性に定めてある。第4図はこの超電導磁石の磁場分
布を示し、図中のH,r,11,15,12,16は第3図のそれと同
じである。内側超電導コイルは、例えば、それ単独で鎖
線21で示す約6Tの磁場を発生し、外側超電導コイルはそ
れ単独で破線22で示す約2Tの磁場を発生する。これによ
り、実線22で示すように内側フィルタにかかる磁場は約
4Tで、外側フィルタにかかる磁場は約2Tとなる。内側及
び外側超電導コイルの磁気双極子モーメントMI・Aはほ
ぼ等しく逆極性であるので、外側超電導コイルより外の
漏れ磁場は非常に小さく抑えられていることは第1図の
実施例と同じである。
FIG. 2 shows a sectional view of a different embodiment of the superconducting magnetic separator of the present invention. In this embodiment, the inner superconducting coil 15 has a smaller diameter and more ampere turns than the embodiment shown in FIG. At the same time, the magnetic dipole moment NI · A of the inner superconducting coil 15 and the magnetic dipole moment NI · A of the outer superconducting coil are almost equal, and
It is set to the opposite polarity. FIG. 4 shows the magnetic field distribution of this superconducting magnet, and H, r, 11, 15, 12, and 16 in the figure are the same as those in FIG. The inner superconducting coil alone, for example, generates a magnetic field of about 6T indicated by a chain line 21, and the outer superconducting coil alone generates a magnetic field of about 2T indicated by a broken line 22. As a result, the magnetic field applied to the inner filter as shown by the solid line 22 is about
At 4T, the magnetic field on the outer filter is about 2T. Since the magnetic dipole moments MI · A of the inner and outer superconducting coils are almost equal and have opposite polarities, the leakage magnetic field outside the outer superconducting coils is very small, as in the embodiment of FIG. .

被処理流体5は第2図に示すように、まず、磁場の低
い外側フィルタ12に流通させ、次に連絡配管31を経て内
側フィルタ11に流通させる。磁場の低い外側フィルタで
は磁化率xの比較的大きい粒子が捕捉され、次に磁場の
高い内側フィルタでは磁化率の比較的小さい粒子が捕捉
される。洗浄時には、内側フィルタの洗浄廃水9aと外側
フィルタの洗浄廃水9bを別々に排出管32と33から取り出
すことにより、被処理流体中の磁性粒子を2種類の物質
に分別して回収できる。
As shown in FIG. 2, the fluid to be treated 5 is first passed through the outer filter 12 having a low magnetic field, and then passed through the connecting pipe 31 to the inner filter 11. The outer filter with a low magnetic field traps particles with a relatively high magnetic susceptibility x, and the inner filter with a high magnetic field traps particles with a relatively low magnetic susceptibility. At the time of cleaning, the cleaning wastewater 9a for the inner filter and the cleaning wastewater 9b for the outer filter are separately taken out from the discharge pipes 32 and 33, so that the magnetic particles in the fluid to be treated can be separated and collected into two kinds of substances.

〔発明の効果〕〔The invention's effect〕

本発明によれば、内側超電導コイルとこれと同軸で逆
極性の外側超電導コイルを備え、両コイルの磁気双極子
モーメントの絶対値を等しく極性を逆にすることによ
り、大量の鉄材の磁気回路を用いることなく周囲への漏
れ磁場は非常に低くし得たことは勿論であるが、磁性粒
子を捕捉するフィルタを内側超電導コイルの内部のみで
なく、外側超電導コイルと内側超電導コイルとの中間部
にも設けるようにしたので、第5図に示す従来の超電導
形磁気分離装置に比して、同程度の外径でフィルタの容
積は約3倍に増加し、その分処理能力も増大した。ま
た、処理能力の増大により、処理能力当たりの超電導コ
イルのコストが適度に抑えられるようになった。
According to the present invention, an inner superconducting coil and an outer superconducting coil coaxial with the inner superconducting coil and having opposite polarities are provided, and the magnetic dipole moments of both coils are made equal in absolute value and the polarities thereof are reversed. Needless to say, the leakage magnetic field to the surroundings could be made extremely low without using it, but the filter for trapping the magnetic particles is not only inside the inner superconducting coil but also in the middle part between the outer superconducting coil and the inner superconducting coil. As compared with the conventional superconducting type magnetic separation device shown in FIG. 5, the volume of the filter is approximately tripled and the processing capacity is increased by the same outer diameter. Further, due to the increase in the processing capacity, the cost of the superconducting coil per processing capacity can be appropriately suppressed.

更にまた、内側フィルタと外側フィルタの磁場の大き
さを異なるようにして、被処理流体を、まず、低磁場の
フィルタに流通させ、次に高磁場のフィルタに流通させ
るようにして、捕捉する磁性粒子を2種類の物質に分別
して回収できるようにしたので、回収磁性粒子のより有
効な利用ができる。
Furthermore, by making the magnetic fields of the inner filter and the outer filter different in magnitude, the fluid to be processed is first passed through a filter with a low magnetic field and then through a filter with a high magnetic field to capture the magnetic field. Since the particles can be separated and collected into two kinds of substances, the collected magnetic particles can be used more effectively.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の超電導形磁気分離装置の断
面図、第2図は本発明の異なる実施例の超電導形磁気分
離装置の断面図、第3図は第1図の超電導形磁気分離装
置の超電導磁石の磁場分布を示す説明図、第4図は第2
図の超電導形磁気分離装置の超電導磁石の磁場分布を示
す説明図、第5図は従来の一例の超電導形磁気分離装置
の断面図である。 5:被処理流体、11:内側フィルタ、12:外側フィルタ、1
5:内側超電導コイル(超電導磁石)、16:外側超電導コ
イル(超電導磁石)。
1 is a sectional view of a superconducting magnetic separator according to one embodiment of the present invention, FIG. 2 is a sectional view of a superconducting magnetic separator according to another embodiment of the present invention, and FIG. 3 is a superconducting type of FIG. Explanatory drawing showing magnetic field distribution of superconducting magnet of magnetic separation device, FIG.
FIG. 5 is an explanatory view showing a magnetic field distribution of a superconducting magnet of the superconducting magnetic separator shown in FIG. 5, and FIG. 5 is a sectional view of a conventional superconducting magnetic separator. 5: Fluid to be treated, 11: Inner filter, 12: Outer filter, 1
5: Inner superconducting coil (superconducting magnet), 16: Outer superconducting coil (superconducting magnet).

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導磁石とこの磁石の発生する磁場の中
におかれた強磁性体の線材からなるフィルタを備え、磁
性粒子を含む被処理流体が、このフィルタを通過する
際、線材のまわりに生じる局所的な高勾配磁場により、
前記磁性粒子をフィルタに吸引して前記被処理流体より
除去する超導電形磁気分離装置において 超電導磁石は円筒形の内側超電導コイルとこれと同軸で
逆極性の円筒形の外側超導電コイルとからなり、フィル
タはこの内側超電導コイルの内部に配置される内側フィ
ルタとこの外側超電導コイルと内側超電導コイルの中間
部に配置される外側フィルタとからなり、前記超電導磁
石は内側超電導コイルの磁気双極子モーメントと外側超
電導コイルの双極子モーメントの絶対値がほぼ等しくか
つ逆極性とし、被処理流体を内側フィルタと外側フィル
タとの相方に流通させることを特徴とする超電導形磁気
分離装置。
1. A filter comprising a superconducting magnet and a ferromagnetic wire placed in a magnetic field generated by the magnet, and when a fluid to be treated containing magnetic particles passes through the filter, the circumference of the wire is increased. The local high gradient magnetic field generated in
In a superconducting type magnetic separation device that removes the magnetic particles from a fluid to be treated by sucking them into a filter, the superconducting magnet comprises a cylindrical inner superconducting coil and a cylindrical outer superconducting coil coaxial with the inner superconducting coil. , The filter is composed of an inner filter arranged inside the inner superconducting coil and an outer filter arranged between the outer superconducting coil and the inner superconducting coil, and the superconducting magnet is a magnetic dipole moment of the inner superconducting coil. A superconducting magnetic separation device, characterized in that the outer superconducting coils have substantially equal absolute dipole moments and opposite polarities, and a fluid to be processed is circulated between the inner filter and the outer filter.
JP6360790A 1989-11-22 1990-03-14 Superconducting magnetic separator Expired - Lifetime JP2560511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6360790A JP2560511B2 (en) 1989-11-22 1990-03-14 Superconducting magnetic separator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-304097 1989-11-22
JP30409789 1989-11-22
JP6360790A JP2560511B2 (en) 1989-11-22 1990-03-14 Superconducting magnetic separator

Publications (2)

Publication Number Publication Date
JPH03229603A JPH03229603A (en) 1991-10-11
JP2560511B2 true JP2560511B2 (en) 1996-12-04

Family

ID=26404744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6360790A Expired - Lifetime JP2560511B2 (en) 1989-11-22 1990-03-14 Superconducting magnetic separator

Country Status (1)

Country Link
JP (1) JP2560511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180005B1 (en) 1999-02-18 2001-01-30 Aquafine Corporation Continuous filament matrix for magnetic separator
KR100723236B1 (en) * 2006-02-13 2007-05-29 두산중공업 주식회사 Superconductive coil assembly having improved cooling efficiency
JP2010232432A (en) * 2009-03-27 2010-10-14 Kobe Steel Ltd Magnetic field generator and method for using the same

Also Published As

Publication number Publication date
JPH03229603A (en) 1991-10-11

Similar Documents

Publication Publication Date Title
US4772383A (en) High-gradient magnetic separator
US4054513A (en) Magnetic separation, method and apparatus
CA2330107A1 (en) A magnetic filtration system
GB1578396A (en) Magnetic separator
US4110222A (en) Apparatus for separating magnetizable particles from a fluid
US4668383A (en) Magnetic separator
JPS60175515A (en) Particle collection and receiving method and filter apparatus
US4544482A (en) Apparatus for extracting magnetizable particles from a fluid medium
JP2560511B2 (en) Superconducting magnetic separator
FI71674B (en) MAGNETISERBAR AVSKILJNINGSANORDNING FOER RENING AV VAETSKOR
Yokoyama et al. High gradient magnetic separation using superconducting bulk magnets
JP4964144B2 (en) Method for forming a high gradient magnetic field and material separation apparatus based on this method
US4460464A (en) Electromagnetic filter
CN207521150U (en) A kind of intelligence Superconducting magnetic separator
KR850001771B1 (en) Magnetic filter
Oka et al. Waste water purification by magnetic separation technique using HTS bulk magnet system
GB2228431A (en) Electromagnetic filter with a high field gradient
JP4009699B2 (en) Purification device using magnetic material
Watson et al. A superconducting high-gradient magnetic separator with a current-carrying matrix
JP3314350B2 (en) Purification device
JPH09327635A (en) Magnetic separating apparatus
JPH07275619A (en) Magnetic filter
Ohara Progress in magnetic separation technology for processing large quantities of dilute suspensions
JPH0358163B2 (en)
JPS5823371Y2 (en) magnetic filter