JPH03229411A - Method and apparatus for manufacture of thin film - Google Patents

Method and apparatus for manufacture of thin film

Info

Publication number
JPH03229411A
JPH03229411A JP2447690A JP2447690A JPH03229411A JP H03229411 A JPH03229411 A JP H03229411A JP 2447690 A JP2447690 A JP 2447690A JP 2447690 A JP2447690 A JP 2447690A JP H03229411 A JPH03229411 A JP H03229411A
Authority
JP
Japan
Prior art keywords
substrate
thin film
optical head
laser beam
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2447690A
Other languages
Japanese (ja)
Inventor
Masami Miyagi
宮城 雅美
Norihiro Funakoshi
宣博 舩越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2447690A priority Critical patent/JPH03229411A/en
Publication of JPH03229411A publication Critical patent/JPH03229411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate formation of a fine linear thin film by a method wherein reactive gas is decomposed by an energy which is produced when a laser beam condensed by an optical head is applied to a substrate and a stripe-shaped thin film is formed on the substrate. CONSTITUTION:After a reaction chamber 11 is evacuated by an evacuating pump 12, reactive raw gas 13 is introduced into the chamber 11. A laser beam emitted from a laser source 15 is transmitted through an AO modulator 16, reflected by a mirror 17, introduced into the reaction chamber 11 through a laser beam transmitting window 18, made to enter an optical head 19 and applied to a substrate 14. The optical head 19 has a focus servomechanism and is so controlled as to focus the laser beam on the surface of the substrate 14. Further, a tracking actuator is built in the optical head 19 and the focus position on the surface of the substrate 14 can be moved. If the raw gas 13 is introduced into the reaction chamber 11, the condensed laser beam is applied to the surface of the substrate 14 and the tracking actuator in the optical head 19 is operated, the raw gas 13 is decomposed by the energy of the laser beam and a linear thin film is built up on the substrate 14.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜の製造方法および製造装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film manufacturing method and manufacturing apparatus.

〔従来の技術〕[Conventional technology]

気相成長による化合物半導体等の薄膜の製造方法として
有機金属熱分解(MOCVD)法がある。
2. Description of the Related Art Metal organic pyrolysis (MOCVD) is a method for producing thin films of compound semiconductors and the like by vapor phase growth.

MOCVD法による薄膜製造装置の一例を第2図に示す
。まず、反応器内を排気したのち原料ガスを導入する。
FIG. 2 shows an example of a thin film manufacturing apparatus using the MOCVD method. First, after evacuating the inside of the reactor, raw material gas is introduced.

一方、上記反応器内に配置した基板を、高周波誘導加熱
によって加熱することにより、上記原料ガスを熱分解し
て上記基板上に薄膜を堆積する。したがって、MOCV
D法は原料ガスの混合により多元系材料の形成が容易で
あること、分子線エピタキシ(MBE)法等に較べ大面
積基板に均一に薄膜を形成できる等の特徴を有している
On the other hand, the substrate placed in the reactor is heated by high-frequency induction heating to thermally decompose the source gas and deposit a thin film on the substrate. Therefore, MOCV
The D method has the characteristics that it is easy to form a multi-component material by mixing raw material gases, and that a thin film can be formed uniformly on a large area substrate compared to the molecular beam epitaxy (MBE) method and the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来技術は、基板を高周波誘導加熱
によって加熱するため、基板の一部を局部的に加熱する
ことは不可能であり、したがって。
However, in the above conventional technology, since the substrate is heated by high-frequency induction heating, it is impossible to locally heat a part of the substrate.

サブミクロン以下の微細なバタン状に薄膜を形成するこ
とは困難であるという欠点を有していた。
The drawback is that it is difficult to form a thin film in the form of submicron or smaller batons.

本発明は、化合物半導体等の薄膜をサブミクロン以下の
微細な線状に形成できる。薄膜の製造方法および製造装
置を得ることを目的とする。
According to the present invention, a thin film of a compound semiconductor or the like can be formed into fine lines of submicron size or less. The purpose of this invention is to obtain a thin film manufacturing method and manufacturing apparatus.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、反応性ガス雰囲気中に、基板とフォーカス
サーボ機能およびトラッキングサーボアクチュエータを
有する光ヘッドを配置し、上記光ヘッドにより集束する
レーザ光を、上記基板に照射して発生するエネルギーに
よって反応性ガスを分解し、上記基板上にストライプ状
の薄膜を形成することにより達成される。
The above purpose is to place a substrate and an optical head having a focus servo function and a tracking servo actuator in a reactive gas atmosphere, and to irradiate the substrate with a laser beam focused by the optical head. This is achieved by decomposing the gas and forming a striped thin film on the substrate.

[作   用〕 第1図は本発明による薄膜製造装置の構成を示す図であ
る。なお、上記製造装置の排気系およびガス導入系につ
いては、従来のMOCVDtによる薄膜製造装置と同様
である。反応室11を排気ポンプ12で排気したのち、
反応性の原料ガス13を上記反応室11内に導入する。
[Function] FIG. 1 is a diagram showing the configuration of a thin film manufacturing apparatus according to the present invention. Note that the exhaust system and gas introduction system of the above manufacturing apparatus are the same as those of the conventional thin film manufacturing apparatus using MOCVDt. After evacuating the reaction chamber 11 with the exhaust pump 12,
A reactive raw material gas 13 is introduced into the reaction chamber 11 .

一方、レーザ光源15から出たレーザ光は、レーザ光の
変調を行うためのAO変調器16を通過し、ミラー17
で反射してレーザ光透過窓18を通り反応室11内に導
入される。反応室11内に入射したレーザ光は、反応室
内に設置された光ヘッド19に入射し、集光された基板
14を照射する。上記光ヘッド19はフォーカスサーボ
機能を有し、基板14の表面にレーザ光の焦点を結ぶよ
うにコントロールされる。また、上記光ヘッド19は、
トラッキングアクチュエータを内蔵し、基板14の表面
の焦点位置を移動することが可能である。反応室11に
原料ガス13を導入して基板14の表面に集束したレー
ザ光を照射するとともに、光ヘッド19内のトラッキン
グアクチュエータを動作させると、レーザ光のエネルギ
ーにより原料ガス13が分解し、基板14に線状の薄膜
が堆積する。
On the other hand, the laser light emitted from the laser light source 15 passes through an AO modulator 16 for modulating the laser light, and passes through a mirror 17.
The laser beam is reflected by the laser beam and is introduced into the reaction chamber 11 through the laser beam transmission window 18 . The laser light that has entered the reaction chamber 11 enters an optical head 19 installed within the reaction chamber, and irradiates the focused substrate 14 with the laser light. The optical head 19 has a focus servo function and is controlled to focus the laser beam on the surface of the substrate 14. Further, the optical head 19 is
A tracking actuator is built in, and the focal position on the surface of the substrate 14 can be moved. When the raw material gas 13 is introduced into the reaction chamber 11 and the surface of the substrate 14 is irradiated with a focused laser beam, and the tracking actuator in the optical head 19 is operated, the raw material gas 13 is decomposed by the energy of the laser beam, and the substrate 14 is A linear thin film is deposited on 14.

薄膜の線幅はレーザ光の波長により法定され、10nm
にすることが可能である。また、薄膜の膜厚はレーザ光
のパワーや堆積時間等の条件によってコントロールされ
るが1M子層オーダの堆積が可能である。
The line width of the thin film is determined by the wavelength of the laser beam, and is 10 nm.
It is possible to Further, although the thickness of the thin film is controlled by conditions such as the power of the laser beam and the deposition time, it is possible to deposit on the order of 1M sublayers.

なお、本発明において、反応室外のレーザ光源を使用せ
ずに、光ヘッド内の半導体レーザ光を使用し、上記レー
ザ光が一般に変調可能であるために、半導体レーザのパ
ワーを増大したエネルギーによって原料ガスを分解し、
薄膜を堆積することも可能である。
Note that in the present invention, a semiconductor laser light inside an optical head is used without using a laser light source outside the reaction chamber, and since the laser light can generally be modulated, the raw material is decomposes gas,
It is also possible to deposit thin films.

〔実施例〕〔Example〕

つぎに本発明の実施例、を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による薄膜の製造装置の、構成を示す図
である。第1図において、・11は真空容器からなる反
応室で、排気ポンプ12を接続するとともに、反応性の
原料ガス13が供給できるようになっている。15はレ
ーザ光源で、該レーザ光源15から出射したレーザ光は
AO変調器16て変調され、反射tfL17で反射した
のち、上記反応室11に数けたレーザ透過窓18から反
応室11内に導入される。導入されたレーザ光は、反応
室内に設置された光ヘッド19に入射し集光されて基板
14を照射する。上記のように構成された薄膜の製造装
置を用いてG a A s膜を作製する例を説明する。
FIG. 1 is a diagram showing the configuration of a thin film manufacturing apparatus according to the present invention. In FIG. 1, reference numeral 11 denotes a reaction chamber consisting of a vacuum container, to which an exhaust pump 12 is connected and a reactive raw material gas 13 can be supplied. 15 is a laser light source, and the laser light emitted from the laser light source 15 is modulated by an AO modulator 16, reflected by a reflection tfL 17, and then introduced into the reaction chamber 11 through a laser transmission window 18 located in the reaction chamber 11. Ru. The introduced laser light enters an optical head 19 installed in the reaction chamber, is focused, and irradiates the substrate 14. An example of manufacturing a GaAs film using the thin film manufacturing apparatus configured as described above will be described.

原料ガス13にはG a (CHa)aおよびAsH3
を用い、レーザ光源15としては波長457.9nmの
Arレーザを用いた。光ヘッド19にはNAo、9の対
物レンズを用いた。また、光ヘッド19は半導体レーザ
を用いたフォーカスサーボ機構、およびトラッキングア
クチュエータを内蔵するとともに、基板14面内でのト
ラッキングと垂直方向の光ヘッドの微動が可能になって
いる。反応室11内を排気ポンプ12で排気したのち、
原料ガス13を導入するとともに、集光したレーザ光を
G a A s基板上に照射することにより、GaAs
薄膜をエピタキシャル成長させた。
The raw material gas 13 contains Ga (CHa)a and AsH3
An Ar laser with a wavelength of 457.9 nm was used as the laser light source 15. For the optical head 19, an objective lens of NAo, 9 was used. Further, the optical head 19 incorporates a focus servo mechanism using a semiconductor laser and a tracking actuator, and is capable of tracking within the surface of the substrate 14 and fine movement of the optical head in the vertical direction. After evacuating the inside of the reaction chamber 11 with the exhaust pump 12,
By introducing the raw material gas 13 and irradiating the GaAs substrate with focused laser light, GaAs
Thin films were grown epitaxially.

そして、上記A○変調器16による光の変調、光ヘッド
19のトラッキングアクチュエータによる光スポットの
移動、およびトラッキング方向と面内で垂直方向の光ヘ
ッドの微動を用いることにより、薄膜をストライプ状に
形成した3このようにして得た薄膜に対し、走査顕微j
i(SEM)による観察を行ったところ、線’ti 1
0 n m、ピッチ20nm、膜厚5nmのストライプ
状薄膜であることが確認できた。また、電子線回折パタ
ンを観察した結果、上記薄膜がG a A s結晶であ
ることが確認できた。
Then, the thin film is formed into stripes by modulating the light by the A○ modulator 16, moving the light spot by the tracking actuator of the optical head 19, and finely moving the optical head in a direction perpendicular to the tracking direction and within the plane. 3 The thin film obtained in this way was subjected to scanning microscopy.
When observed using i (SEM), the line 'ti 1
It was confirmed that the film was a striped thin film with a pitch of 0 nm, a pitch of 20 nm, and a thickness of 5 nm. Further, as a result of observing the electron beam diffraction pattern, it was confirmed that the thin film was a GaAs crystal.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による薄膜の製造方法および製造装
置は、反応性ガス雰囲気中に、基板とフォーカスサーボ
機能およびトラッキングアクチュエータを有する光ヘッ
ドを配置し、上記光ヘッドにより集束するレーザ光が、
上記基板に照射して発生するエネルギーによって反応性
ガスを分解し、上記基板上にストライプ状の薄膜を形成
することにより、微細な線状薄膜の形成が可能である。
As described above, in the thin film manufacturing method and manufacturing apparatus according to the present invention, a substrate and an optical head having a focus servo function and a tracking actuator are placed in a reactive gas atmosphere, and a laser beam focused by the optical head is
A fine linear thin film can be formed by decomposing the reactive gas by the energy generated by irradiating the substrate and forming a striped thin film on the substrate.

本製造方法および製造装置は、特に超格子デバイスもし
くは量子デバイス等の原子層レベルの薄膜形成に有効で
ある。
The present manufacturing method and manufacturing apparatus are particularly effective for forming thin films at the atomic layer level such as superlattice devices or quantum devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による薄膜の製造装置を示す構成図、第
2図は従来の薄膜製造装置の構成図である。 11・・・反応室(真空容器)
FIG. 1 is a block diagram showing a thin film manufacturing apparatus according to the present invention, and FIG. 2 is a block diagram of a conventional thin film manufacturing apparatus. 11...Reaction chamber (vacuum container)

Claims (1)

【特許請求の範囲】 1、反応性ガス雰囲気中に、基板とフォーカスサーボ機
能およびトラッキングサーボアクチュエータを有する光
ヘッドを配置し、上記光ヘッドにより集束するレーザ光
が、上記基板に照射して発生するエネルギーによって反
応性ガスを分解し、上記基板上にストライプ状の薄膜を
形成する薄膜の製造方法。 2、上記光ヘッドにより集束するレーザ光は、上記光ヘ
ッド内の半導体レーザ光のパワーを増大させたものであ
ることを特徴とする特許請求の範囲第1項に記載した薄
膜の製造方法。 3、レーザ光源と、該レーザ光源からのレーザ光を変調
する変調素子と、上記レーザ光を導入する窓を有する真
空容器と、該真空容器内に設けたフォーカスサーボ機能
とトラッキングアクチュエータを有する光ヘッドとを備
えた薄膜の製造装置。
[Claims] 1. A substrate and an optical head having a focus servo function and a tracking servo actuator are arranged in a reactive gas atmosphere, and a laser beam focused by the optical head is generated by irradiating the substrate. A method for producing a thin film, in which a reactive gas is decomposed by energy and a striped thin film is formed on the substrate. 2. The method for manufacturing a thin film as set forth in claim 1, wherein the laser light focused by the optical head is a semiconductor laser light with increased power within the optical head. 3. A vacuum container having a laser light source, a modulation element for modulating the laser light from the laser light source, a window for introducing the laser light, and an optical head having a focus servo function and a tracking actuator provided in the vacuum container. Thin film manufacturing equipment equipped with
JP2447690A 1990-02-05 1990-02-05 Method and apparatus for manufacture of thin film Pending JPH03229411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2447690A JPH03229411A (en) 1990-02-05 1990-02-05 Method and apparatus for manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2447690A JPH03229411A (en) 1990-02-05 1990-02-05 Method and apparatus for manufacture of thin film

Publications (1)

Publication Number Publication Date
JPH03229411A true JPH03229411A (en) 1991-10-11

Family

ID=12139226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2447690A Pending JPH03229411A (en) 1990-02-05 1990-02-05 Method and apparatus for manufacture of thin film

Country Status (1)

Country Link
JP (1) JPH03229411A (en)

Similar Documents

Publication Publication Date Title
JPH02144910A (en) Internal light induction evaporating enhancement method of compound thin-film during or after epitaxial growth
US4664940A (en) Process for the formation of a flux of atoms and its use in an atomic beam epitaxy process
Aoyagi et al. Laser enhanced metalorganic chemical vapor deposition crystal growth in GaAs
US4843029A (en) Method of manufacturing a heteroepitaxial compound semiconductor device using photo smoothing between layer growth
US4668528A (en) Method and apparatus for photodeposition of films on surfaces
EP0336672B1 (en) Epitaxial deposition of thin films
JPH03229411A (en) Method and apparatus for manufacture of thin film
JP2009527439A (en) Characteristic modification method for thin film growth
USH1264H (en) Method of in situ stoiciometric and geometrical photo induced modifications to compound thin films during epitaxial growth and applications thereof
WO1990001794A1 (en) Method of forming a semiconductor thin film and apparatus therefor
JP2000021773A (en) MANUFACTURE OF Si FINE CRYSTAL STRUCTURE
GB2190541A (en) A method for the production of semiconductor devices
Sugiura et al. Laser-assisted chemical beam epitaxy for selective growth
JPH05221788A (en) Method and device for producing thin film
US5213654A (en) Vapor-phase epitaxial growth method for semiconductor crystal layers
US5273932A (en) Method for forming semiconductor thin films where an argon laser is used to suppress crystal growth
CN111349911A (en) Molecular beam epitaxial film growth device with laser direct writing function and method
JP2509760B2 (en) Manufacturing method of X-ray mirror
JP2723906B2 (en) Thin film crystal growth control method
JPH0324259A (en) Direct plotting device by laser
JPS62144320A (en) Manufacture of super-lattice semiconductor
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPH0322410A (en) Formation of semiconductor thin film
JPH0628256B2 (en) Semiconductor fine processing method and semiconductor fine embedded structure forming method
JPH0251497A (en) Formation of semiconductor thin film