JPH03228811A - Production of calcium phosphate - Google Patents

Production of calcium phosphate

Info

Publication number
JPH03228811A
JPH03228811A JP2304633A JP30463390A JPH03228811A JP H03228811 A JPH03228811 A JP H03228811A JP 2304633 A JP2304633 A JP 2304633A JP 30463390 A JP30463390 A JP 30463390A JP H03228811 A JPH03228811 A JP H03228811A
Authority
JP
Japan
Prior art keywords
powder
calcium phosphate
hours
temperature
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2304633A
Other languages
Japanese (ja)
Other versions
JP3262233B2 (en
Inventor
Koji Hakamazuka
康治 袴塚
Hiroyuki Irie
洋之 入江
Motozo Kawamura
川村 資三
Motohiro Toriyama
鳥山 素弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Olympus Corp
Original Assignee
Agency of Industrial Science and Technology
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Olympus Optical Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP30463390A priority Critical patent/JP3262233B2/en
Publication of JPH03228811A publication Critical patent/JPH03228811A/en
Priority to US08/004,777 priority patent/US5322675A/en
Priority claimed from US08/004,777 external-priority patent/US5322675A/en
Application granted granted Critical
Publication of JP3262233B2 publication Critical patent/JP3262233B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain calcium phosphate powder showing excellent biological safeness by effecting the mechanochemical reaction of calcium carbonate and calcium hydrogen phosphate in a water slurry state, pulverizing the reaction product and then calcinating this powder. CONSTITUTION:The starting material is prepared by weighing the powder of calcium hydrogen phosphate or its dihydrate and the powder of high purity calcium carbonate, preferably having <=0.5mu particle size, so as to obtain a specified Ca/P ratio. This material is then changed into a water slurry of about 10wt.% concn. by adding water, preferably kept at >=30 deg.C, and is made to react mechanochemically in a ball mill, preferably for 24 hours. This slurry is then dried at 80 deg.C, preferably for 8 hours. The dried sample is pulverized and calcined, preferably at 720-1150 deg.C for 1-10 hours or longer to provide the objective calcium phosphate as a porous or dense body.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、骨補填剤、人工歯根、人工関節、骨ピン、
経皮端子、人工骨等の生体セラミックスの原料として使
用されるリン酸カルシウム粉末の製造方法に関し、特に
溶血性等の生じない生物学的に安全なリン酸カルシウム
粉末の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to bone filling agents, artificial tooth roots, artificial joints, bone pins,
The present invention relates to a method for producing calcium phosphate powder used as a raw material for bioceramics such as percutaneous terminals and artificial bones, and particularly relates to a method for producing biologically safe calcium phosphate powder that does not cause hemolysis or the like.

[従来の技術] 最近、骨補填材、人工歯根等に使用するバイオアクティ
ブなリン酸カルシウム材料の研究開発が盛んに行われて
いる。
[Prior Art] Recently, research and development of bioactive calcium phosphate materials used for bone grafting materials, artificial tooth roots, etc. has been actively conducted.

リン酸カルシウムの製造方法としては、高温固相反応を
利用した乾式合成法と、湿式合成法等が知られているが
、いずれの方法においても、高純度なものが得られにく
く、高純度のものを得るには、製造が困難でコストがか
かる等の問題を有していた。
Dry synthesis methods using high-temperature solid phase reactions and wet synthesis methods are known as methods for producing calcium phosphate, but with either method, it is difficult to obtain highly pure products. However, there have been problems in that manufacturing is difficult and expensive.

そこで、このような問題を解決し、高純度なリン酸カル
シウムを容易にかつ安価に製造できる方法として、メカ
ノケミカル反応を利用した、いわゆる湿式粉砕合成法に
よるβ−リン酸三カルシウム(以下β−TCPとする)
粉末の製造方法が特開昭62−87406号公報等に開
示されている。
Therefore, as a method to solve these problems and easily and inexpensively produce high-purity calcium phosphate, β-tricalcium phosphate (hereinafter referred to as β-TCP) was developed using a so-called wet pulverization synthesis method using a mechanochemical reaction. do)
A method for producing the powder is disclosed in JP-A-62-87406 and the like.

この公報中に示されている実施例の中でCa / P比
が1.5または1.67の2つのケースについて実験し
ており、比表面積の大きな粉末を得ることに関して述べ
ている。
In the examples shown in this publication, two cases in which the Ca/P ratio is 1.5 or 1.67 are tested, and it is described that powders with a large specific surface area can be obtained.

しかし、合成したβ−TCPおよびHAPの生物学的安
全性に関しての検討は充分にされていなかった。
However, the biological safety of synthesized β-TCP and HAP has not been sufficiently investigated.

すなわち、上記特開昭62−87406号公報には、単
に、Ca / Pの原子比を1.5に調整し仮焼温度を
750℃としているが、仮焼時間がX線の回折強度に依
存し、結晶性が変化することが示されており、さらに、
750℃以上の高温で焼成すると回折強度が増大し、1
150℃以上の温度では、β−TCPからα−TCPに
転移し、結晶性も変化することが示されている。
That is, in the above-mentioned JP-A-62-87406, the atomic ratio of Ca/P is simply adjusted to 1.5 and the calcination temperature is set to 750°C, but the calcination time depends on the diffraction intensity of X-rays. It has been shown that the crystallinity changes, and furthermore,
When fired at a high temperature of 750°C or higher, the diffraction intensity increases, and 1
It has been shown that at a temperature of 150° C. or higher, β-TCP transforms to α-TCP and the crystallinity also changes.

[発明が解決しようとする課題] このように、単純にメカノケミカル法でリン酸カルシウ
ム粉末を合成した場合、焼成温度、焼成時間によって、
完全に任意の結晶とならず、溶血する原因となるCa 
(OH) 2等の未反応物質を含んでおり、溶血性を示
すものと考えられる。
[Problems to be solved by the invention] As described above, when calcium phosphate powder is simply synthesized by a mechanochemical method, depending on the firing temperature and firing time,
Ca that does not completely form arbitrary crystals and causes hemolysis
It contains unreacted substances such as (OH) 2 and is thought to exhibit hemolytic properties.

また、「8整会誌 Vol、 59.18:(−191
,1985Jの長潮 満夫氏の報告によれば、リン酸カ
ルシウムセラミクスが溶血性のみならず抗原性を有する
ことが示されている。
In addition, “8 Ordinance Magazine Vol. 59.18: (-191
According to a report by Mitsuo Nagashio in , 1985J, calcium phosphate ceramics have been shown to have not only hemolytic properties but also antigenic properties.

さらに、「医・歯科用バイオマテリアルの安全性評価法
:■サイエンスフォーラム社発行」のP139〜144
に記載されている「コロニー形成法による細胞毒性試験
」の欄には、TCP、HA等のセラミックス材料が、そ
の製造方法や、焼成温度等の違いにより細胞毒性が見ら
れることが示されている。
Furthermore, P139-144 of “Safety evaluation method for medical and dental biomaterials: Published by Science Forum”
In the column "Cytotoxicity test using colony formation method" listed in , it is shown that ceramic materials such as TCP and HA are cytotoxic due to differences in their manufacturing method, firing temperature, etc. .

ところが、このように溶血性や抗原性を生じたり、細胞
毒性が生じるということは、生体材料としては生物学的
な安全性に欠けることになり、好ましくないものである
However, such hemolysis, antigenicity, and cytotoxicity are undesirable because they lack biological safety as biomaterials.

そこで、この発明は生物学的な安全性に優れたリン酸カ
ルシウム粉末の製造方法を提供することを目的とするも
のである。
Therefore, an object of the present invention is to provide a method for producing calcium phosphate powder with excellent biological safety.

[課題を解決するための手段] 上記の様な課題を解決するためにこの発明は、出発原料
としてリン酸水素カルシウムまたはその2水和物の粉末
と、0. 5μm以下の高純度炭酸カルシウム粉末とを
、所定のCa / P比になるように秤量し、例えば最
終生成物がリン酸三カルシウム(Ca3 (PO2)2
 )の場合にはCa / Pの原子比が1.5になるよ
うにそれぞれ、0.05mol とQ、1molずつ秤
量し、温度を30°C以上にした純水を加えて、10重
量%の水性スラリーにして、ボールミルを用いてメカノ
ケミカル的に24時間反応させ、その後、スラリーを8
0℃で8時間以上乾燥する。乾燥した試料を微粉化した
後、720〜1150°Cの温度で1〜10時間以上焼
成した粉末を緻密体、多孔体を焼結するための一次原料
とし、この焼成した粉末を用いて各種リン酸カルシウム
を合成するようにしたものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention uses a powder of calcium hydrogen phosphate or its dihydrate as a starting material, and a powder of calcium hydrogen phosphate or its dihydrate. High-purity calcium carbonate powder of 5 μm or less is weighed so as to have a predetermined Ca/P ratio, for example, the final product is tricalcium phosphate (Ca3 (PO2)2
), weigh 0.05 mol and 1 mol of Q so that the atomic ratio of Ca/P is 1.5, add pure water at a temperature of 30°C or higher, and add 10% by weight. The slurry was made into an aqueous slurry and reacted mechanochemically for 24 hours using a ball mill.
Dry at 0°C for at least 8 hours. After pulverizing the dried sample, the powder is fired at a temperature of 720 to 1150°C for 1 to 10 hours or more and is used as the primary raw material for sintering dense bodies and porous bodies. It is designed to synthesize.

[作用] このような手段を講じたことにより、以下のような作用
を呈する。すなわち、出発原料と混合する純水の温度を
30℃以上にして水性スラリーを作製し、このスラリー
を焼成するときの焼成温度および焼成時間を720〜1
150°Cの温度で1〜10時間(温度が低いほど時間
を長く)以上とすることにより、溶血性、抗原性および
細胞毒性を生じることなく、生物学的な安全性を確保す
ることのできるリン酸カルシウムが製造される。
[Effects] By taking such measures, the following effects are achieved. That is, an aqueous slurry is prepared by setting the temperature of pure water mixed with the starting material at 30°C or higher, and the firing temperature and firing time when firing this slurry are 720°C to 10°C.
Biological safety can be ensured without causing hemolysis, antigenicity, or cytotoxicity by heating at a temperature of 150°C for 1 to 10 hours (the lower the temperature, the longer the time). Calcium phosphate is produced.

[実施例] 以下、この発明の一実施例を説明する。[Example] An embodiment of this invention will be described below.

まず、高純度(99,99%)で粒径0.5μm以下の
CaCO3と高純度(99%以上)のCa11PO4・
2■]20をそれぞれ0. 05molおよびQ、  
1molづつ取り、30℃の純水200mlとともにジ
ルコニア製ボールとともに、ポットミルに入れる。この
ポットミルを12Orpmで24時間回転させて、摩砕
湿式反応をさせた後、スラリーをステンレス製のトレイ
に移して80°Cで8時間以上乾燥させる。さらに、乾
燥した試料を粉砕し、粉砕した試料を高純度アルミナ箱
に入れ、720〜1150℃の温度で1〜10時間(温
度が低いほど時間を長く)以上熱処理することで、焼成
、焼結を行ない、リン酸カルシウム化合物を合成する。
First, CaCO3 with high purity (99.99%) and a particle size of 0.5 μm or less and Ca11PO4 with high purity (99% or more).
2■] 20 to 0. 05mol and Q,
Take 1 mol of each and place in a pot mill along with 200 ml of 30°C pure water and a zirconia ball. After rotating this pot mill at 12 rpm for 24 hours to perform a wet grinding reaction, the slurry is transferred to a stainless steel tray and dried at 80° C. for 8 hours or more. Furthermore, the dried sample is crushed, and the crushed sample is placed in a high-purity alumina box and heat-treated at a temperature of 720 to 1150°C for 1 to 10 hours (the lower the temperature, the longer the time) to perform firing and sintering. to synthesize a calcium phosphate compound.

ここで、焼成する温度、および時間を変化させた実験例
について説明する。
Here, an experimental example in which the firing temperature and time were varied will be described.

表−1は、この実験による焼成条件と溶血性の有無およ
び細胞毒性の関係を示すものである。
Table 1 shows the relationship between the firing conditions, the presence or absence of hemolytic properties, and cytotoxicity according to this experiment.

なお、溶血性の判断は「医・歯科用バイオマテリアルの
安全性評価法 ■サイエンスフォーラム社発行」のP5
3〜56に記載されている「国際歯科連盟(FDI)基
準の溶血性試験」の方法に基づき、以下のようにして行
なった。リン酸カルシウム化合物の試料10gに生理食
塩水1.00 m1を加え、オートクレーブで121℃
で60分処理した後、採取した上澄み液(A)にヘパリ
ン血0.2mlを加え37℃で60分間放置した。その
液を300Orpmで10分間遠心分離を行なった後の
上澄み液(B)の吸光度を分光光度計により測定し、A
液とB液の吸光度を比較して判断した。
For the determination of hemolytic properties, please refer to page 5 of “Safety Evaluation Method for Medical and Dental Biomaterials ■Published by Science Forum”.
The test was carried out as follows based on the method of "hemolytic test based on International Dental Federation (FDI) standards" described in 3-56. Add 1.00 ml of physiological saline to 10 g of a sample of calcium phosphate compound, and heat at 121°C in an autoclave.
After treatment for 60 minutes, 0.2 ml of heparinized blood was added to the collected supernatant (A) and left at 37° C. for 60 minutes. The liquid was centrifuged at 300 rpm for 10 minutes, and the absorbance of the supernatant liquid (B) was measured using a spectrophotometer.
The judgment was made by comparing the absorbance of the solution and B solution.

また、細胞毒性の判断も同じく「医・歯科用バイオマテ
リアルの安全性評価法」のP139〜144に記載され
ている「コロニー形成法による細胞毒性試験」の方法に
基づき、以下のようにして行なった。チャイニーズ・ハ
ムスター由来の繊維芽様細胞■−79を培養液で希釈し
たものを、合成した円盤状のリン酸カルシウム化合物の
入った培養用プラスチックシャーレに分注して、37℃
、5%CO2のインキュベータで8日間培養したときに
形成されたコロニーの形成能を観察して判断した。
In addition, the determination of cytotoxicity was also carried out as follows based on the method of "Cytotoxicity test using colony formation method" described on pages 139 to 144 of "Methods for evaluating the safety of medical and dental biomaterials." Ta. Fibroblast-like cells ■-79 derived from Chinese hamsters were diluted with culture medium and dispensed into a plastic cultivation dish containing a synthesized disc-shaped calcium phosphate compound, and incubated at 37°C.
The determination was made by observing the ability to form colonies when cultured in a 5% CO2 incubator for 8 days.

この表−1に示されるように焼成時間が短く、温度が低
いほど、溶血性および細胞毒性を示し、長い時間または
、高い温度になるほど溶血性および細胞形態の変化かな
くなる。720°Cでは10時間、900℃では8時間
、1000℃では3峙間、1150°Cては1時間焼成
すると、全く溶血性および細胞毒性を生じないというこ
とかわかる。
As shown in Table 1, the shorter the firing time and the lower the temperature, the more hemolytic and cytotoxic properties are exhibited, and the longer the firing time and the higher the temperature, the less hemolytic and cell morphology changes. It can be seen that no hemolysis or cytotoxicity occurs when calcined for 10 hours at 720°C, 8 hours at 900°C, 3 hours at 1000°C, and 1 hour at 1150°C.

また、溶血性の無かったものについて抗原性を調べたと
ころいずれも抗原性は無かった。
In addition, when we investigated the antigenicity of those that did not have hemolytic properties, none of them were found to have antigenicity.

なお、抗原性は前述の「医・歯科用バイオマテリアルの
安全性評価法」のP93〜96に記載されている皮下埋
入方式により判断した。
The antigenicity was determined by the subcutaneous implantation method described in pages 93 to 96 of the above-mentioned "Method for evaluating the safety of medical and dental biomaterials."

この実験例から、720〜1150°Cて1〜10時間
以上(温度が低いほど長い時間で)焼成することにより
、溶血性および細胞毒性の生じない生物学的に安全なリ
ン酸カルシウム化合物を得られることがわかる。
This experimental example shows that a biologically safe calcium phosphate compound that does not cause hemolysis or cytotoxicity can be obtained by firing at 720 to 1150°C for 1 to 10 hours or more (the lower the temperature, the longer the time). I understand.

さらに、比較例として、乾式合成法により、βピロリン
酸カルシウムと炭酸カルシウムを1.2のモル比で混合
して1000°Cで2時間焼成して合成したβ−TCP
をさらに、プレス成形をしだ後1150℃で3時間焼結
して得られた焼結体を用いて同様の実験を行なった。こ
の乾式合成法により合成されたβ−TCPは溶血性およ
び細胞毒性を示し、生体祠ネ゛1としては使用できるも
ので(Jなかった。
Furthermore, as a comparative example, β-TCP was synthesized by dry synthesis method by mixing β-calcium pyrophosphate and calcium carbonate at a molar ratio of 1.2 and calcining the mixture at 1000°C for 2 hours.
Further, similar experiments were conducted using a sintered body obtained by press-molding and sintering at 1150° C. for 3 hours. β-TCP synthesized by this dry synthesis method showed hemolytic and cytotoxic properties, and could not be used as a biological ashes.

次に純水の温度を変化させた実験例について説明する。Next, an experimental example in which the temperature of pure water was varied will be explained.

表−2は、この実験による純水の温度さ溶血性の有無お
よび細胞毒性を示すものである。
Table 2 shows the temperature, presence or absence of hemolysis, and cytotoxicity of pure water in this experiment.

なお、リン酸カルシウム化合物の製造は、純水の温度の
み変化させた外は、上記実施例と同様にして合成し、焼
成時間、温度はいずれも、720℃で10時間に統一し
た。
The calcium phosphate compound was synthesized in the same manner as in the above example, except that only the temperature of pure water was changed, and the firing time and temperature were both 720° C. and 10 hours.

[表−2コ 表−2に示されるように、この実験の結果、純水の温度
が10℃のときは溶血性、抗原性、細胞毒性を示し、2
0℃および25℃のときはやや溶血性、抗原性、細胞毒
性を示したが、30℃以上のときは溶血性、抗原性、細
胞毒性は示さなかった。
[Table 2 As shown in Table 2, the results of this experiment showed that pure water exhibits hemolytic, antigenic, and cytotoxic properties when the temperature is 10°C;
It exhibited slight hemolyticity, antigenicity, and cytotoxicity at 0°C and 25°C, but did not exhibit hemolyticity, antigenicity, and cytotoxicity at 30°C or higher.

このことから、純水の温度を30℃以上にして合成すれ
ば、溶血性および細胞毒性のない生物学的に安全なリン
酸カルシウム化合物を得られることがことがわかる。
This shows that biologically safe calcium phosphate compounds without hemolysis and cytotoxicity can be obtained by synthesizing the pure water at a temperature of 30° C. or higher.

これは、純水の温度が高い方が水性スラリーの混合が均
一に行なわれるため製造されるリン酸カルシウム化合物
も組成的に均一な物が得られるためであると思われる。
This is thought to be because the higher the temperature of pure water, the more uniform the mixing of the aqueous slurry, and the more uniform the composition of the produced calcium phosphate compound.

つぎに、出発原料であるCaCO3と Ca HP O4・2H20の混合するモル比を変えて
、すなわち合成されるリン酸カルシウムのCa/P比を
変えた実験例について説明する。
Next, an experimental example will be described in which the mixing molar ratio of the starting materials CaCO3 and CaHPO4.2H20 is changed, that is, the Ca/P ratio of the calcium phosphate to be synthesized is changed.

表−3は、Ca / P比と、溶血性の有無および細胞
毒性の関係を示すものである。なお、製造は、CaCO
3とCaHPO4・2H20のモル比を変化させて、C
a / P比を変化させた以外は、上記実施例と同様に
して合成し、純水の温度は30℃とし、焼成時間、温度
はいずれも、720℃で10時間に統一した。
Table 3 shows the relationship between the Ca/P ratio, the presence or absence of hemolytic properties, and cytotoxicity. In addition, the production is CaCO
By changing the molar ratio of 3 and CaHPO4・2H20, C
The synthesis was carried out in the same manner as in the above example except that the a/P ratio was changed, the temperature of pure water was 30°C, and the firing time and temperature were all unified at 720°C for 10 hours.

2 1 この実験例によれば、いずれのリン酸カルシウム化合物
においても溶血性および細胞毒性を生じることはなかっ
た。すなわち、焼成時間を10時間以上とし、純水の温
度を30℃として合成すれば、リン酸カルシウム化合物
のCa / P比が変化しても、すなわち、HAP (
ハイドロキシアパタイト)、TCP ()リカルシウム
フォスフエイト)等どのようなリン酸カルシウム化合物
であっても、溶血性および細胞毒性の生じないリン酸カ
ルシウム化合物を得られることがわかる。
2 1 According to this experimental example, none of the calcium phosphate compounds caused hemolysis or cytotoxicity. In other words, if the synthesis is performed with a calcination time of 10 hours or more and a pure water temperature of 30°C, even if the Ca/P ratio of the calcium phosphate compound changes, that is, HAP (
It can be seen that any calcium phosphate compound, such as hydroxyapatite), TCP (recalcium phosphate), etc., can be used to obtain a calcium phosphate compound that does not cause hemolysis or cytotoxicity.

[発明の効果] 以上説明したようにこの発明によれば、温度を30°C
以上にした純水を用いてスラリーを作り、720〜11
00℃の温度で1〜10時間以上焼成してリン酸カルシ
ウムを製造したことにより、溶血性および細胞毒性を生
じることなく、生物学的な安全性に優れたリン酸カルシ
ウムを得ることができる。
[Effect of the invention] As explained above, according to the present invention, the temperature is reduced to 30°C.
Make a slurry using the above purified water and
By producing calcium phosphate by baking at a temperature of 00°C for 1 to 10 hours or more, calcium phosphate with excellent biological safety can be obtained without causing hemolysis or cytotoxicity.

Claims (4)

【特許請求の範囲】[Claims] (1) 炭酸カルシウムとリン酸水素カルシウムまたは
その二水和物の粉末とを、カルシウムとリンのモル比(
Ca/P比)が所定の値になるように秤量し、純水を加
えて濃度約10重量%の水性スラリーにしてボールミル
を用いて、メカノケミカル的に反応させ、スラリーを8
0℃にて完全に乾燥した後、粉砕して粉末とし、この粉
末を焼成することにより、多孔体や緻密体を製造するこ
とを特徴とするリン酸カルシウムの製造方法。
(1) Calcium carbonate and calcium hydrogen phosphate or its dihydrate powder are mixed at a molar ratio of calcium to phosphorus (
Ca/P ratio) was weighed to a predetermined value, and pure water was added to make an aqueous slurry with a concentration of about 10% by weight. Using a ball mill, the slurry was mechanochemically reacted, and the slurry was
A method for producing calcium phosphate, which comprises completely drying at 0° C., pulverizing the powder, and firing the powder to produce a porous body or a dense body.
(2)炭酸カルシウム粉末の粒子径が、0.5μm以下
であることを特徴とする請求項1記載のリン酸カルシウ
ムの製造方法。
(2) The method for producing calcium phosphate according to claim 1, wherein the particle size of the calcium carbonate powder is 0.5 μm or less.
(3)前記純水の温度が30℃以上であることを特徴と
する請求項1記載のリン酸カルシウムの製造方法。
(3) The method for producing calcium phosphate according to claim 1, wherein the temperature of the pure water is 30°C or higher.
(4)前記粉末を焼成するときの焼成温度が720〜1
150℃で、焼成時間が1〜10時間以上であることを
特徴とする請求項1記載のリン酸カルシウムの製造方法
(4) The firing temperature when firing the powder is 720 to 1
The method for producing calcium phosphate according to claim 1, characterized in that the firing time is 1 to 10 hours or more at 150°C.
JP30463390A 1989-11-29 1990-11-09 Method for producing calcium phosphate Expired - Lifetime JP3262233B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30463390A JP3262233B2 (en) 1989-11-29 1990-11-09 Method for producing calcium phosphate
US08/004,777 US5322675A (en) 1990-11-09 1993-01-14 Method of preparing calcium phosphate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP1-309968 1989-11-29
JP30996889 1989-11-29
JP30463390A JP3262233B2 (en) 1989-11-29 1990-11-09 Method for producing calcium phosphate
US08/004,777 US5322675A (en) 1990-11-09 1993-01-14 Method of preparing calcium phosphate

Publications (2)

Publication Number Publication Date
JPH03228811A true JPH03228811A (en) 1991-10-09
JP3262233B2 JP3262233B2 (en) 2002-03-04

Family

ID=27338696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30463390A Expired - Lifetime JP3262233B2 (en) 1989-11-29 1990-11-09 Method for producing calcium phosphate

Country Status (1)

Country Link
JP (1) JP3262233B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001137328A (en) * 1999-11-11 2001-05-22 Olympus Optical Co Ltd Bone prosthesis
JP2003507132A (en) * 1999-08-26 2003-02-25 グロントケア ゲーエムベーハー Resorbable bone substitutes and bone constituents
JP2010523232A (en) * 2007-04-13 2010-07-15 ドクトル.ハー.ツェー.ロベルト マシーズ スティフツング Method for producing pyrogen-free calcium phosphate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4392460B1 (en) 2008-11-13 2010-01-06 株式会社カタリメディック Calcium phosphate porous material with low residual amount of aromatic hydrocarbon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003507132A (en) * 1999-08-26 2003-02-25 グロントケア ゲーエムベーハー Resorbable bone substitutes and bone constituents
JP5014544B2 (en) * 1999-08-26 2012-08-29 グロントケア ゲーエムベーハー Resorbable bone substitute materials and bone constituent materials
JP2001137328A (en) * 1999-11-11 2001-05-22 Olympus Optical Co Ltd Bone prosthesis
JP2010523232A (en) * 2007-04-13 2010-07-15 ドクトル.ハー.ツェー.ロベルト マシーズ スティフツング Method for producing pyrogen-free calcium phosphate

Also Published As

Publication number Publication date
JP3262233B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
US5322675A (en) Method of preparing calcium phosphate
US7704529B2 (en) Magnesium-substituted hydroxyapatites
Suchanek et al. Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature
US5137534A (en) Method for producing dental and medical bone prosthesis and bone prosthesis produced thereby
US20050226939A1 (en) Production of nano-sized hydroxyapatite particles
JPS6287406A (en) Production of beta-tricalcium phosphate
Ganachari et al. Rapid synthesis, characterization, and studies of hydroxyapatite nanoparticles
JP2004026648A (en) Method for manufacture alpha- and beta-tricalcium phosphate powder
JPH03228811A (en) Production of calcium phosphate
Ghosh et al. Study on the development of machinable hydroxyapatite-yttrium phosphate composite for biomedical applications
JP3668530B2 (en) Method for producing tetracalcium phosphate
JPH0665635B2 (en) Molding material
JPH05310410A (en) Production of strontium hydroxyapatite powder
Rattanachan et al. Synthesis of chitosan/brushite powders for bone cement composites
JPH06122510A (en) Method for producing hexacalcium phosphate
Dalas et al. The growth of calcium phosphate on ceramic surfaces
JPH0627025B2 (en) Hydroxyapatite filter cake dried product
PL210026B1 (en) Method of manufacturing the high-porous, bioactive calcium phosphate implant material
RU2714188C1 (en) Method of producing colored single-phase calcium pyrophosphate
WO2000068144A1 (en) Method for the preparation of carbonated hydroxyapatite compositions
Slimen et al. Mechanical Characterization of Potassium and Hydroxyl Bearing Fluorapatite Bioceramics: A Brief Overview
HA Preparation of dense polycrystalline hydroxyapatite ceramics for the application of tooth implants
JPH0477684B2 (en)
JPH0196006A (en) Production of tetracalcium phosphate
JPH03210271A (en) Production of biomaterial of calcium phosphate system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

EXPY Cancellation because of completion of term