JPH03227518A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03227518A
JPH03227518A JP2244890A JP2244890A JPH03227518A JP H03227518 A JPH03227518 A JP H03227518A JP 2244890 A JP2244890 A JP 2244890A JP 2244890 A JP2244890 A JP 2244890A JP H03227518 A JPH03227518 A JP H03227518A
Authority
JP
Japan
Prior art keywords
electrode
active layer
layer region
type active
insulator film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2244890A
Other languages
Japanese (ja)
Inventor
Hiroshi Takenaka
浩 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP2244890A priority Critical patent/JPH03227518A/en
Publication of JPH03227518A publication Critical patent/JPH03227518A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the element characteristic without widening a pattern on an n-type active layer region by forming an insulator film between an electrode at the crossings of the electrode and mesa isolation steps and a semiconductor substrate. CONSTITUTION:An insulator film 1 and an n-type active layer region 2 are formed into one plane so that an electrode 3 may not break between the insulator film 1 and the n-type active layer region 2. All the steps are made of the insulator film 1. Therefore, the pattern of the Schottky electrode 3 does not need widening on the n-type active layer region 2. Thereby the element performance, especially the low-noise performance, is improved. Even if the electrode 3 slips vertically from its correct position, the wider pattern sections overlap less the n-type active layer region 2, therefore, the range of the tolerance of the overlap error of the Schottky electrode 3 is increased depending on the width W of the insulator film 1 and the pattern yield and performance yield are improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、メサ分離を有する半導体装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to semiconductor devices with mesa isolation.

従来の技術 従来の技術の一例として、G a A s M E S
 F E Tで用いられてきた構造を第3図に示す。第
3図(a)は素子平面図である。第3図(b)は第3図
(a)の中心線Cに沿って切断した断面を示す。第3図
において、2はn型活性層領域である。3はショットキ
ー電極で、ゲート電極として機能する。4はオーミック
電極で、ソース、及び、ドレイン電極として機能する。
Conventional technology As an example of conventional technology, GaAsMES
The structure that has been used in FET is shown in FIG. FIG. 3(a) is a plan view of the element. FIG. 3(b) shows a cross section cut along the center line C of FIG. 3(a). In FIG. 3, 2 is an n-type active layer region. 3 is a Schottky electrode, which functions as a gate electrode. 4 is an ohmic electrode, which functions as a source and drain electrode.

Lは電極3のパターン幅で、FETのゲート長である。L is the pattern width of the electrode 3 and is the gate length of the FET.

Aは電極3かメサ段差と交差する部分を示す。ショット
キー電極3のn型活性層領域2の上に位置する部分のパ
ターン幅(ゲート長〉Lは、通常1μm以下である。そ
のためにショットキー電極3がメサ段差を横切る部分A
でショットキー電極が断線を起こし易い。それを防止す
るために第3図(a)に示すようにA付近のパターン幅
を広げる。
A indicates a portion where the electrode 3 intersects with the mesa step. The pattern width (gate length>L) of the portion of the Schottky electrode 3 located above the n-type active layer region 2 is usually 1 μm or less. Therefore, the portion A where the Schottky electrode 3 crosses the mesa step.
The Schottky electrode is prone to breakage. To prevent this, the pattern width near A is widened as shown in FIG. 3(a).

発明が解決しようとする課題 GaAsMESFETにおいて、素子機能を向上させ、
素子雑音を低減するためには、ゲート長りを短くする必
要がある。素子性能を向上させるという点では、メサ段
差部Aのゲートパターン幅を広げることは望ましくない
。第3図(a)のA付近で発生する雑音によって、雑音
指数が著しく増大するからである。
Problems to be Solved by the Invention In GaAs MESFET, improving the device function,
In order to reduce device noise, it is necessary to shorten the gate length. In terms of improving device performance, it is not desirable to widen the gate pattern width of the mesa step portion A. This is because the noise generated near A in FIG. 3(a) significantly increases the noise figure.

さらに実際には、ショットキー電極3のパターンを重ね
合わせする際の重ね合わせ誤差で、パターン幅の広い部
分がn型活性層領域2上に重なり素子性能をより劣化さ
せる。
Furthermore, in reality, due to an overlay error when overlapping the patterns of the Schottky electrode 3, the wide part of the pattern overlaps the n-type active layer region 2, further deteriorating the device performance.

A付近のショットキー電極3のパターン幅を広げない場
合は、断線によって歩留まりが低下する。特に高性能G
 a A s M E S F E Tでは、ゲート長
しは0.25〜0.35μm程度でパターン幅を拡張せ
ずに断線を防止するのは難しい。
If the pattern width of the Schottky electrode 3 near A is not widened, the yield will decrease due to disconnection. Especially high performance G
In aAsM ESFET, the gate length is approximately 0.25 to 0.35 μm, and it is difficult to prevent wire breakage without expanding the pattern width.

従来の技術には、以上に述べたような問題点がある。The conventional technology has the problems described above.

課題を解決するための手段 以上に述べた問題点を解決するために本発明では、メサ
分離の段差と電極が交差する箇所の、電極と半導体基板
の間に絶縁体膜を設ける。断線を防止するために、電極
は、この絶縁膜上でパターン幅を広げた構造にする。
Means for Solving the Problems In order to solve the problems described above, in the present invention, an insulating film is provided between the electrode and the semiconductor substrate at the location where the mesa separation step and the electrode intersect. In order to prevent disconnection, the electrode has a structure in which the pattern width is widened on this insulating film.

作用 このようにすれば、断線防止のためにパターン幅を拡張
する部分を絶縁体膜上に形成できる。これにより、n型
活性層領域の上ではパターン幅を広げる必要がな(なり
、素子特性が向上する。
By doing this, it is possible to form a portion on the insulating film in which the pattern width is expanded to prevent disconnection. This eliminates the need to widen the pattern width above the n-type active layer region, and improves device characteristics.

実施例 第1図に本発明の一実施例を示す。第1図はG a A
 s M E S F E Tに本発明を適用した一実
施例である。第1図(a)は素子平面図、第1図(b)
は、第1図(a)の中心線Cにおいて切断した断面であ
る。
Embodiment FIG. 1 shows an embodiment of the present invention. Figure 1 is G a A
This is an example in which the present invention is applied to SMESFET. Figure 1(a) is a plan view of the element, Figure 1(b)
is a cross section cut along the center line C in FIG. 1(a).

第1図において、■は絶縁体膜で化学的気相成長法で堆
積した酸化珪素膜である。2はn型活性層領域である。
In FIG. 1, ▪ is an insulating film, which is a silicon oxide film deposited by chemical vapor deposition. 2 is an n-type active layer region.

3はショットキー電極でMESFETのゲート電極とし
て機能する。4はオーミック電極で、一方がソース電極
、他方がドレイン電極として機能する。5はエツチング
によって露出させたGaAs基板の半絶縁性部分である
。Aはn型活性層領域2からなるメサパターンの段差と
電極3が交差する部分を示す。Lはゲート長である。
3 is a Schottky electrode which functions as a gate electrode of the MESFET. 4 is an ohmic electrode, one of which functions as a source electrode and the other as a drain electrode. 5 is a semi-insulating portion of the GaAs substrate exposed by etching. A indicates a portion where the step of the mesa pattern consisting of the n-type active layer region 2 and the electrode 3 intersect. L is the gate length.

Wは絶縁体パターン幅である。電極3が横切る段差部に
は絶縁体膜1が形成される。よって、電極3のパターン
は、第1図(a)に示すように絶縁体膜1上で拡張され
る。n型活性層領域2と絶縁体膜1の間で、電極3の断
線が生じないように、第1図(b)に示すように絶縁体
膜1はn型活性層領域2と同一平面になるように形成す
る。
W is the insulator pattern width. An insulator film 1 is formed at the step portion where the electrode 3 crosses. Therefore, the pattern of the electrode 3 is expanded on the insulating film 1 as shown in FIG. 1(a). In order to prevent disconnection of the electrode 3 between the n-type active layer region 2 and the insulator film 1, the insulator film 1 is placed on the same plane as the n-type active layer region 2, as shown in FIG. 1(b). Form it so that it becomes.

第2図に絶縁体膜形成方法を示す。第2図(a)。FIG. 2 shows a method for forming an insulator film. Figure 2(a).

(b> 、 (c)は平面図、第2図Cb) 、 (d
) 、 (f)は断面図である。第2図(a) 、 (
b)においてGaAs基板上にメサ分離パターンを形成
する。第2図(C) 、 (d)において、化学的気相
成長法で酸化珪素膜を全面に堆積する。この際、堆積条
件を変化させて酸化珪素膜の断面形状を変化させること
で、続くエツチング後の絶縁体パターン幅Wを変えるこ
とができる。
(b>, (c) is a plan view, Fig. 2Cb), (d
) and (f) are cross-sectional views. Figure 2 (a), (
In b), a mesa isolation pattern is formed on the GaAs substrate. In FIGS. 2C and 2D, a silicon oxide film is deposited over the entire surface by chemical vapor deposition. At this time, by changing the deposition conditions and changing the cross-sectional shape of the silicon oxide film, the width W of the insulator pattern after subsequent etching can be changed.

第2図(e) 、 (f)において反応性イオンエツチ
ング法により酸化珪素膜を、n型活性層領域2と同一平
面になるまでエツチングする。その後、電極を形成して
、第1図の構造を得る。
In FIGS. 2(e) and 2(f), the silicon oxide film is etched until it becomes flush with the n-type active layer region 2 by reactive ion etching. Thereafter, electrodes are formed to obtain the structure shown in FIG.

なお、絶縁体膜としては、スピンオンガラスを用いても
よい。この場合は、塗布時の回転数を変化することで絶
縁体膜の形状を変化できる。
Note that spin-on glass may be used as the insulator film. In this case, the shape of the insulator film can be changed by changing the rotation speed during coating.

このようにすれば、絶縁体膜1はn型活性層領域2と同
一平面に形成される。また、段差部分はすべて絶縁体膜
で形成されているので、ショットキー電極3のパターン
幅は、n型活性層領域2の上では広げる必要がない。こ
れにより、素子性能、特に、低雑音性能が向上する。
In this way, the insulator film 1 is formed on the same plane as the n-type active layer region 2. Further, since all the step portions are formed of an insulating film, the pattern width of the Schottky electrode 3 does not need to be widened above the n-type active layer region 2. This improves device performance, especially low noise performance.

また、第1図(a)において、電極3が上下方向に位置
ずれをした場合でも、Aで示すパターン幅拡張部分のn
型活性層領域2の上への重なりが少なくなるので、絶縁
体膜1の輻Wに応じて、許容されるショットキー電極3
の重ね合わせ誤差の許容範囲が広がる。更に、絶縁体膜
1上のパターン幅は、素子性能に影響を与えないので、
Aの部分の拡張幅を従来よりも太き(することができ、
断線を防止できる。これらによって、パターン歩留まり
、性能歩留まりが向上する。
In addition, in FIG. 1(a), even if the electrode 3 is misaligned in the vertical direction, n
Since the overlap on the type active layer region 2 is reduced, the permissible Schottky electrode 3 is
The permissible range of overlay errors is widened. Furthermore, since the pattern width on the insulator film 1 does not affect the device performance,
The expansion width of part A can be made thicker than before.
Can prevent wire breakage. These improve pattern yield and performance yield.

発明の効果 本発明によれば、以上に述べたように、n型活性層領域
の上ではパターン幅を広げる必要がなくなるから、素子
特性が向上するという効果が得られる。
Effects of the Invention According to the present invention, as described above, there is no need to widen the pattern width above the n-type active layer region, so that the device characteristics can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明をGaAsMESFETに適用し
た一実施例の平面図、第1図(b)は第1図(a)の中
心線Cで切断した断面図、第2図(a) 、 (c) 
、 (e)は上記実施例における絶縁体パターン形成方
法を示す平面図、第2図(b) 、 (d) 、 (T
)はその断面図、第3図(a)は従来のG a A s
 M E S F E Tにおイテ用いられてきた構造
の一例の平面図、第3図(b)は第3図(a)の中心線
Cで切断した断面図である。 1・・・・・・絶縁体膜、2・・・・・・n型活性層領
域、3・・・・・・ショットキー電極(ゲート)、4・
・・・・・オーミック電極(ソース、ドレイン)、5・
・・・・・半絶縁性基板、A・・・・・・パターン幅拡
張部分(メサ段差との交差部分)、C・・・・・・中心
線、L・・・・・・ゲート長、W・・・・・・絶縁体パ
ターン幅。
FIG. 1(a) is a plan view of an embodiment in which the present invention is applied to a GaAs MESFET, FIG. 1(b) is a sectional view taken along the center line C of FIG. 1(a), and FIG. 2(a) , (c)
, (e) is a plan view showing the insulator pattern forming method in the above embodiment, and FIGS. 2(b), (d), (T
) is its cross-sectional view, and Fig. 3(a) is the conventional GaAs
FIG. 3(b) is a plan view of an example of a structure that has been used in MESFET, and is a sectional view taken along the center line C in FIG. 3(a). DESCRIPTION OF SYMBOLS 1... Insulator film, 2... N-type active layer region, 3... Schottky electrode (gate), 4...
...Ohmic electrode (source, drain), 5.
... Semi-insulating substrate, A ... Pattern width expansion part (intersection with mesa step), C ... Center line, L ... Gate length, W...Insulator pattern width.

Claims (1)

【特許請求の範囲】[Claims] 電極とメサ分離の段差とが交差する箇所の前記電極と半
導体基板との間に絶縁体膜を設けたことを特徴とする半
導体装置。
A semiconductor device characterized in that an insulating film is provided between the electrode and the semiconductor substrate at a location where the electrode intersects with a mesa separation step.
JP2244890A 1990-02-01 1990-02-01 Semiconductor device Pending JPH03227518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2244890A JPH03227518A (en) 1990-02-01 1990-02-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2244890A JPH03227518A (en) 1990-02-01 1990-02-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03227518A true JPH03227518A (en) 1991-10-08

Family

ID=12083000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2244890A Pending JPH03227518A (en) 1990-02-01 1990-02-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03227518A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045839A (en) * 2015-08-26 2017-03-02 ルネサスエレクトロニクス株式会社 Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045839A (en) * 2015-08-26 2017-03-02 ルネサスエレクトロニクス株式会社 Semiconductor device

Similar Documents

Publication Publication Date Title
JPS5950567A (en) Manufacture of field effect transistor
EP0447840B1 (en) Compound semiconducteur device manufacturing process and a compound semiconducteur device manufactured by the same
KR0179116B1 (en) Method for manufacturing self-aligned t-type gate
JPH0472381B2 (en)
US5483089A (en) Electrically isolated MESFET
JPH03227518A (en) Semiconductor device
JPH02140942A (en) Manufacture of semiconductor device
US6383853B2 (en) Method of fabricating semiconductor device
JPH08274118A (en) Field-effect semiconductor device and its manufacture
JPS5838945B2 (en) Method for manufacturing a short-barrier field effect transistor
JP3144089B2 (en) Method for manufacturing field effect transistor
JP2591480B2 (en) Semiconductor device and manufacturing method thereof
JPS6323669B2 (en)
JPS61240684A (en) Schottky-type field effect transistor and manufacture thereof
JP2605647B2 (en) Method for manufacturing semiconductor device
JP2003059949A (en) Field effect transistor and production method therefor
JP2557432B2 (en) Field effect transistor
USRE28952E (en) Shaped riser on substrate step for promoting metal film continuity
JP2002009275A (en) Field effect compound semiconductor device
JPH05275457A (en) Semiconductor device and its manufacture
JPH05275455A (en) Semiconductor device and its manufacture
JPS63204742A (en) Manufacture of semiconductor device
JPH0855863A (en) Manufacture of field-effect semiconductor device
JPH03293733A (en) Manufacture of semiconductor device
JPS5923101B2 (en) Manufacturing method of semiconductor device