JPH0322602A - Dielectric oscillator - Google Patents

Dielectric oscillator

Info

Publication number
JPH0322602A
JPH0322602A JP15642789A JP15642789A JPH0322602A JP H0322602 A JPH0322602 A JP H0322602A JP 15642789 A JP15642789 A JP 15642789A JP 15642789 A JP15642789 A JP 15642789A JP H0322602 A JPH0322602 A JP H0322602A
Authority
JP
Japan
Prior art keywords
adjustment plate
frequency adjustment
dielectric
dielectric resonator
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15642789A
Other languages
Japanese (ja)
Inventor
Yasuhiro Takahashi
靖浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP15642789A priority Critical patent/JPH0322602A/en
Publication of JPH0322602A publication Critical patent/JPH0322602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Non-Reversible Transmitting Devices (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PURPOSE:To suppress the fluctuation of an oscillated frequency with respect to a change in ambient temperature by using a bimetal made of two kinds of different kinds of metallic plates having a different thermal expansion rate for a frequency adjustment plate and changing a mean value of distances between a dielectric resonator and its frequency adjustment plate in response to a change in the ambient temperature. CONSTITUTION:A frequency adjustment plate 15 to adjust the oscillating frequency of a dielectric oscillator is a bimetal formed by joining two kinds of different metal plates 15a, 15b having different expansion coefficients alpha1, alpha2 and the coefficients alpha1, alpha2 have a relation of alpha1<alpha2. When the ambient temperature rises, since the frequency adjustment plate 15 is projected with respect to the dielectric resonator 8, the means value of the gap between the frequency adjustment plate 15 and the dielectric resonator 8 is increased as Ha. When the ambient temperature decreased, since the frequency adjustment plate 15 is recessed with respect to the dielectric resonator 8, the means value of the gap is decreased as Hb. Moreover, the coefficients alpha1, beta2 are selected such that the mean value of the gap between the dielectric resonator 8 and the frequency adjustment plate 15 corresponds to the fluctuation of the oscillated frequency in response to the change in the ambient temperature.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、衛星放送受信機等に用いられるマイクロ波
発振器としての誘電体発振器に係り、更に詳しくは周囲
の温度変化に対して発振周波数の変動を抑え、その発振
周波数を安定化するようにした誘電体発振器に関するも
のである.[従 来 例] 従来、この種の誘電体発振器には、例えば第4図に示す
発振回路が用いられる. この図において、電界効果トランジスタ(F’E1゛)
1のゲートGにはマイクロストリップ線路2の一端が接
続され、そのドレインDにはドレイン接地用のλ/4オ
ープンスタブ3の一端およびバイアス用のλl4線路4
の一端が接続され、そのソースSには直流バイアス用の
λl4ショートスタブ5の一端および整合回路6の入力
端子に接続されている.上記マイクロストリップ線路2
の他端には終端抵抗7が接続されており,そのマイクロ
ストリップ線路2の近傍には円柱形の誘電体共振子8が
設けられている.上記線路2の他端にはパイアス用のλ
74線路9の一端およびバイアス抵抗IOの一端が接続
され,このバイアス抵抗10を介して発振回路に電源が
供給される.上記整合回路6を介してその発振回路にお
ける発振周波数の信号が出力される. また、第5図に示されるように、上記発振回路が基板(
誘電体)11に実装され、この基板がシールド・ケース
(導体)12内に封入されている.このシールド・ケー
スl2内には誘電体共振子8の近傍で移動of能な周波
数調整板13が設けられる.そのため、周波数調整板l
3には雄ネジ14が取付けられ、一方シールドケース1
1にはその雄ネジ14と嵌合する雌ネジが切られており
、その雄ネジ14を回転することにより周波数調整板1
3と誘電体共振子8との間隔Hが変えられるようになっ
ている.上記構成の誘電体発振器においては、電源がそ
の発振回路に印加されると、出力整合回路からは上記誘
電体共振子8の形状に応じた固有の周波数の発振出力が
得られる.発振周波数は誘電体共振子8の形状を変える
ことにより,例えば削ることにより所定値に変えること
ができる。また、そのM電体共振子8と上記周波数調整
板13との間隔Hを変えることにより発振周波数の微調
整ができるようになっている.このような、誘電体発振
器はマイクロ波・ミリ波でのQが高い値で得られるため
、衛星放送受信機等の高周波機器に用いられている. [発明が解決しようするW題] ところで,上記誘電体発振器においては、誘電体共振子
8と上記周波数調整板l3との間隔Hの変化により、発
振周波数が変化することが知られている.すなわち,第
6図の曲線に示されるように,その間隔Hが大きくなる
と、発振周波数は降下し、逆に間隔Hが小さくなると,
発振周波数が上昇する.そのため,周囲温度が変化する
と、熱膨張率により誘電体基板1lが彎曲し、シールド
・ケース12,周波数調整板13および雄ネジl4が膨
張し、誘電体共振子8と周波数調整板13との間隔が変
わり,また温度係数により誘電体共振子8が変形し、も
しくは誘電率が変化することにより,発振周波数が変動
するという問題点があった. この発明は上記課題に鑑みなされたものであり,その目
的は温度変化に対して,発振周波数の変動を抑え、発振
周波数の安定化を図ることができるようにした誘電体発
振器を提供することにある.[課題を解決するための手
段] 上記目的を達或するために、この発明は、誘電体共振子
およびマイクロストリップ線路等を基板に実装した発振
回路,その誘電体共振子の近傍に移動可能な金属の周波
数調整板がシールド・ケースに封入され、その周波数調
整板の移動により上記誘電体共振子の周波数を調整する
誘電体発振器において、上記周波数調整板を熱膨張率の
異なる2種類の金属板で接合したバイメタルとし、この
バイメタルと上記誘電体共振子の間隔の平均値を周囲の
温度変化に応じて変えるようにしたことを要旨とする. [作  用] 上記構成としたので、周囲温度が変化すると,上記バイ
メタルの周波数調整板は上記誘電体共振子に対して白状
あるいは凹状に変形する.すると、その誘電体共振子と
周波数調整板との間隔の平均値はその間隔より小さくあ
るいは大きくなる。このとき、上記温度が上昇した場合
、シールド・ケース、周波数調整板を指示する雄ネジが
膨張し、また誘電体共振子が僅かでも変形することによ
り,誘電体発振器の発振周波数は上がることになるが、
上記周波数調整板が誘電体共振子に対して凸状になり、
上記間隔の平均値が大きくなるため、その発振周波数の
上昇が抑えられる.また、逆に上記温度が下降した場合
には,上記周波数調整板が逆に作用し、上記間隔の平均
値が小さくなるため、上記誘電体発振器の発振周波数の
下降が抑えられる. [実 施 例] 以下,この発明の実施例を図面に基づいて説明する.な
お、第1図乃至第3図中,第5図と同一部分には同一符
号を付し重複説明を省略する.第1図において,誘電体
発振器の発振周波数をiil1整するための周波数調整
板l5は,異なる膨張係数を有する2種類の異種金属板
15a.15bを接合したバイメタルであり、例えば金
属板15aの膨張係数はαい金属板15bの膨張係数は
α2ある.なお、それら膨張係数α1,α3はα1〈α
3の関係になっている.すなわち、第2図および第3図
に示されるように、周囲温度が上昇したときには、周波
数調整板l5が誘電体共振子8に対して凸状態となるた
め,その周波数調整板l5と誘電体共振子8との間隔の
平均値がHaと太きくる.また、周囲温度が下降したと
きには、周波数調整板15が誘電体共振子8に対して凹
状態となるため,その間隔の平均値がHbと小さくなる
.また、上記膨張係数α、,α2は,周囲温度の変化に
応じて誘電体共振子8と周辣数調整板l5との間隔の平
均値が発振周波数の変動分に対応するように変形する値
になっている. 更に詳しく説明すると、上記誘電体発振器の発振周波数
が所定値に設定され、しかも既に調整が済んでいるもの
とする.すると,周囲温度の変化、例えば上昇により,
誘電体発振器の発振周波数が上昇する.しかし、第2図
に示されるように、この発明では,その温度変化に応じ
て誘電体共振子8と周波数調整板15との間隔の平均値
がHa(>H)と大きい値になるように作用し,その周
波数調整板l5が上方向(紙面上で)に反ることになる
.しかも、間隔Hと平均値Haとの差が上記発振周波数
の変動分に対応しているため、その変動分だけ上記発振
周波数を下げる形になる.したがって、第6図に示され
るように、周囲温度の変化により発振周波数aが81に
上昇するようなとき、その温度の変化に応じて誘電体共
振子8と周波数調整板15との間隔の平均値がHaと大
きくなるからである.すなわち,誘電体共振子8と周波
数調整板l5との平均値がHaとなることにより、発振
周波数の上昇が抑えられることになる. また,周囲温度が下降すると、第3図に示されるように
、上記同様に、その温度変化に応じて誘電体共振千8と
周波数調整板15との間隔の平均値がHb(<H)と小
さい値になるように作用し、その周波数調整板15が下
方向(紙面上で)に反ることになる.しかも、間隔Hと
平均値Haとの差が上記発振周波数の変動分に対応して
いるため、その変動分だけ上記発振周波数を上げる形に
なる.すなわち、周囲温度の変化に応じて誘電体共振子
8と周波数調整板15との間隔の平均値がHbと小さく
なるため、発振周波数の下降が抑えられることになる. このように,周囲温度が変化するに際し、熱膨張率によ
り誘電体基板1lが彎曲し、シールド・ケース12、周
波数調整板13および雄ネジl4が膨張し、誘電体共振
子8と周波数調整板13との間隔が変わり、また温度係
数により誘電体共振子8が僅かに変形し、もしくは誘電
率が変化しても、誘電体共振子8と周波数調整板l5と
の間隔が変わり、誘電体共振子8と周波数調整板15と
の間隔の平均値がその温度変化に対応する周波数の変動
分だけ変えられるため,誘電体発振器の発振周波数の変
動が抑えられる. なお,上記実施例では、誘電体発振器の発振周波数は温
度の上昇により上がり,その下降により下がっているが
、逆作用の誘電体発振器の場合には、2種類の金属板1
5a,15bの熱膨張率の値を逆にすればよい.また、
その周波数調整板15の形状は誘電体共振子8の断面形
と同形に限らず、例えば長方形の板状であってもよい、 [発明の効果] 以上説明したように,この発明の誘電体発振器によれば
,発振周波数を調整する周波数調整板に異なる熱膨張率
を有する2種類の異種金属板からなるバイメタルを用い
、かつ、周囲温度の変化に応じて誘電体共振素子とその
周波数調整板との間隔の平均値が変化するようにしたの
で、周囲温度の変化に際し,発振周波数の変動を抑える
ことができ、その発振周波数の安定化を図ることができ
る.
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a dielectric oscillator as a microwave oscillator used in satellite broadcasting receivers, etc. This relates to a dielectric oscillator that suppresses fluctuations and stabilizes its oscillation frequency. [Conventional Example] Conventionally, this type of dielectric oscillator uses, for example, the oscillation circuit shown in Fig. 4. In this figure, a field effect transistor (F'E1゛)
One end of a microstrip line 2 is connected to the gate G of 1, and one end of a λ/4 open stub 3 for drain grounding and a λl4 line 4 for bias are connected to the drain D of the microstrip line 2.
Its source S is connected to one end of a λl4 short stub 5 for DC bias and to the input terminal of a matching circuit 6. The above microstrip line 2
A terminating resistor 7 is connected to the other end, and a cylindrical dielectric resonator 8 is provided near the microstrip line 2. The other end of the above line 2 has a λ for bias.
One end of the 74 line 9 and one end of the bias resistor IO are connected, and power is supplied to the oscillation circuit via the bias resistor 10. A signal of the oscillation frequency in the oscillation circuit is outputted via the matching circuit 6. Further, as shown in FIG. 5, the oscillation circuit is connected to the substrate (
The board is mounted on a dielectric (conductor) 11, and this board is enclosed within a shield case (conductor) 12. A movable frequency adjustment plate 13 is provided in the shield case l2 near the dielectric resonator 8. Therefore, the frequency adjustment plate l
3 has a male screw 14 attached to it, while the shield case 1
1 is provided with a female thread that fits with the male thread 14, and by rotating the male thread 14, the frequency adjustment plate 1
3 and the dielectric resonator 8 can be changed. In the dielectric oscillator having the above configuration, when power is applied to the oscillation circuit, an oscillation output with a specific frequency corresponding to the shape of the dielectric resonator 8 is obtained from the output matching circuit. The oscillation frequency can be changed to a predetermined value by changing the shape of the dielectric resonator 8, for example by cutting it. Further, by changing the distance H between the M electric resonator 8 and the frequency adjustment plate 13, the oscillation frequency can be finely adjusted. Such dielectric oscillators are used in high-frequency equipment such as satellite broadcasting receivers because they can obtain high Q values for microwaves and millimeter waves. [Problem W to be Solved by the Invention] Incidentally, in the dielectric oscillator described above, it is known that the oscillation frequency changes due to a change in the distance H between the dielectric resonator 8 and the frequency adjustment plate l3. That is, as shown in the curve in Figure 6, as the interval H increases, the oscillation frequency decreases, and conversely, as the interval H decreases, the oscillation frequency decreases.
The oscillation frequency increases. Therefore, when the ambient temperature changes, the dielectric substrate 1l bends due to the coefficient of thermal expansion, the shield case 12, the frequency adjustment plate 13, and the male screw l4 expand, and the distance between the dielectric resonator 8 and the frequency adjustment plate 13 increases. There is also a problem in that the oscillation frequency fluctuates due to the dielectric resonator 8 being deformed or the dielectric constant changing due to the temperature coefficient. This invention was made in view of the above problems, and its purpose is to provide a dielectric oscillator that can suppress fluctuations in oscillation frequency and stabilize the oscillation frequency in response to temperature changes. be. [Means for Solving the Problems] In order to achieve the above object, the present invention provides an oscillation circuit in which a dielectric resonator, a microstrip line, etc. are mounted on a substrate, and an oscillation circuit that is movable near the dielectric resonator. In a dielectric oscillator in which a metal frequency adjustment plate is enclosed in a shield case and the frequency of the dielectric resonator is adjusted by moving the frequency adjustment plate, the frequency adjustment plate is made of two types of metal plates with different coefficients of thermal expansion. The main idea is that the average distance between this bimetal and the dielectric resonator is changed according to changes in the ambient temperature. [Function] With the above configuration, when the ambient temperature changes, the bimetallic frequency adjustment plate deforms into a white or concave shape relative to the dielectric resonator. Then, the average value of the distance between the dielectric resonator and the frequency adjustment plate becomes smaller or larger than that distance. At this time, if the above temperature rises, the male screws that direct the shield case and frequency adjustment plate will expand, and the dielectric resonator will deform even slightly, causing the oscillation frequency of the dielectric oscillator to increase. but,
The frequency adjustment plate has a convex shape with respect to the dielectric resonator,
Since the average value of the above intervals becomes larger, the increase in the oscillation frequency is suppressed. On the other hand, when the temperature decreases, the frequency adjustment plate acts in the opposite direction, and the average value of the intervals becomes smaller, thereby suppressing the drop in the oscillation frequency of the dielectric oscillator. [Examples] Examples of the present invention will be explained below based on the drawings. In addition, in FIGS. 1 to 3, the same parts as in FIG. 5 are given the same reference numerals, and redundant explanation will be omitted. In FIG. 1, the frequency adjustment plate 15 for adjusting the oscillation frequency of the dielectric oscillator is made of two different metal plates 15a. For example, the expansion coefficient of the metal plate 15a is α, and the expansion coefficient of the metal plate 15b is α2. Note that these expansion coefficients α1 and α3 are α1〈α
There is a relationship of 3. That is, as shown in FIGS. 2 and 3, when the ambient temperature rises, the frequency adjustment plate 15 becomes convex with respect to the dielectric resonator 8, so that the frequency adjustment plate 15 and the dielectric resonance The average value of the distance from child 8 becomes thick as Ha. Furthermore, when the ambient temperature drops, the frequency adjustment plate 15 becomes concave with respect to the dielectric resonator 8, so that the average value of the interval becomes small to Hb. In addition, the expansion coefficients α, α2 are values at which the average value of the distance between the dielectric resonator 8 and the frequency adjustment plate l5 changes according to the change in the oscillation frequency according to changes in the ambient temperature. It has become. To explain in more detail, it is assumed that the oscillation frequency of the dielectric oscillator is set to a predetermined value and has already been adjusted. Then, due to a change in the ambient temperature, for example an increase,
The oscillation frequency of the dielectric oscillator increases. However, as shown in FIG. 2, in the present invention, the average value of the distance between the dielectric resonator 8 and the frequency adjustment plate 15 becomes a large value Ha (>H) according to the temperature change. This causes the frequency adjustment plate l5 to warp upward (on the paper). Moreover, since the difference between the interval H and the average value Ha corresponds to the variation in the oscillation frequency, the oscillation frequency is lowered by the variation. Therefore, as shown in FIG. 6, when the oscillation frequency a increases to 81 due to a change in the ambient temperature, the average distance between the dielectric resonator 8 and the frequency adjustment plate 15 increases depending on the change in temperature. This is because the value becomes as large as Ha. That is, the average value of the dielectric resonator 8 and the frequency adjustment plate l5 becomes Ha, thereby suppressing an increase in the oscillation frequency. Furthermore, as the ambient temperature decreases, as shown in FIG. 3, the average value of the distance between the dielectric resonance 18 and the frequency adjustment plate 15 changes to Hb (<H) in accordance with the temperature change. This causes the frequency adjustment plate 15 to warp downward (on the plane of the paper). Furthermore, since the difference between the interval H and the average value Ha corresponds to the variation in the oscillation frequency, the oscillation frequency is increased by the variation. That is, the average value of the distance between the dielectric resonator 8 and the frequency adjustment plate 15 decreases to Hb as the ambient temperature changes, so that a drop in the oscillation frequency is suppressed. As described above, when the ambient temperature changes, the dielectric substrate 1l bends due to the coefficient of thermal expansion, the shield case 12, the frequency adjustment plate 13, and the male screw l4 expand, and the dielectric resonator 8 and the frequency adjustment plate 13 expand. Even if the distance between the dielectric resonator 8 and the frequency adjustment plate l5 changes, and even if the dielectric resonator 8 is slightly deformed due to the temperature coefficient or the dielectric constant changes, the distance between the dielectric resonator 8 and the frequency adjustment plate l5 changes, and the dielectric resonator Since the average value of the distance between the frequency adjustment plate 15 and the frequency adjusting plate 15 is changed by the amount of frequency variation corresponding to the temperature change, variation in the oscillation frequency of the dielectric oscillator is suppressed. In the above embodiment, the oscillation frequency of the dielectric oscillator increases as the temperature increases and decreases as the temperature decreases, but in the case of a dielectric oscillator with a reverse action, two types of metal plates 1
The values of the thermal expansion coefficients of 5a and 15b can be reversed. Also,
The shape of the frequency adjustment plate 15 is not limited to the same cross-sectional shape as the dielectric resonator 8, and may be, for example, a rectangular plate. [Effects of the Invention] As explained above, the dielectric oscillator of the present invention According to the above, a bimetal consisting of two types of dissimilar metal plates with different coefficients of thermal expansion is used for the frequency adjustment plate that adjusts the oscillation frequency, and a dielectric resonant element and its frequency adjustment plate are adjusted according to changes in ambient temperature. Since the average value of the intervals is changed, fluctuations in the oscillation frequency can be suppressed when the ambient temperature changes, and the oscillation frequency can be stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す誘電体発振器の概略
的側断面図、第2図および第3図は上記誘電体発振器の
動作を説明するための動作図、第4図は誘電体発振器の
概略的ブロック図、第5図は従来の誘電体発掘器の概略
的側断面図、第6図は誘電体発振器の誘電体共振子と周
波数調整板との間隔に対する発振周波数の変化を示す特
性図である. 図中、8は誘電体共振子,11は基板(誘電体)、12
はシールド・ケース(導体)、14は雄ネジ、15は周
波数調整板(バイメタル)、15aは金属板(膨張係数
αt),tsbは金属板(膨張係数α2;〉α1)であ
る.
FIG. 1 is a schematic side sectional view of a dielectric oscillator showing an embodiment of the present invention, FIGS. 2 and 3 are operation diagrams for explaining the operation of the dielectric oscillator, and FIG. 4 is a dielectric oscillator. A schematic block diagram of the oscillator, FIG. 5 is a schematic side sectional view of a conventional dielectric excavator, and FIG. 6 shows the change in oscillation frequency with respect to the distance between the dielectric resonator and the frequency adjustment plate of the dielectric oscillator. This is a characteristic diagram. In the figure, 8 is a dielectric resonator, 11 is a substrate (dielectric), and 12 is a dielectric resonator.
is a shield case (conductor), 14 is a male screw, 15 is a frequency adjustment plate (bimetal), 15a is a metal plate (expansion coefficient αt), and tsb is a metal plate (expansion coefficient α2; 〉α1).

Claims (2)

【特許請求の範囲】[Claims] (1)誘電体共振子およびマイクロストリップ線路等を
基板に実装した発振回路、その誘電体共振子の近傍に移
動可能な金属の周波数調整板がシールド・ケースに封入
され、その周波数調整板の移動により前記誘電体共振子
の周波数を調整する誘電体発振器において、 前記周波数調整板を熱膨張率の異なる2種類の金属板で
接合したバイメタルとし、このバイメタルと前記誘電体
共振子の間隔の平均値を周囲の温度変化に応じて変える
ようにしたことを特徴とする誘電体発振器。
(1) An oscillation circuit in which a dielectric resonator, a microstrip line, etc. are mounted on a substrate, a movable metal frequency adjustment plate is enclosed in a shield case near the dielectric resonator, and the frequency adjustment plate is moved. In a dielectric oscillator that adjusts the frequency of the dielectric resonator by, the frequency adjustment plate is a bimetal made by joining two types of metal plates with different coefficients of thermal expansion, and the average distance between the bimetal and the dielectric resonator is A dielectric oscillator characterized in that the oscillator changes according to changes in ambient temperature.
(2)前記2種類の金属板のうち前記誘電体共振子に近
い方の金属板の熱膨張率は他方の金属板の膨張率より大
きくした請求項(1)記載の誘電体発振器。
(2) The dielectric oscillator according to claim 1, wherein the coefficient of thermal expansion of the metal plate closer to the dielectric resonator is greater than the coefficient of expansion of the other metal plate among the two types of metal plates.
JP15642789A 1989-06-19 1989-06-19 Dielectric oscillator Pending JPH0322602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15642789A JPH0322602A (en) 1989-06-19 1989-06-19 Dielectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15642789A JPH0322602A (en) 1989-06-19 1989-06-19 Dielectric oscillator

Publications (1)

Publication Number Publication Date
JPH0322602A true JPH0322602A (en) 1991-01-31

Family

ID=15627512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15642789A Pending JPH0322602A (en) 1989-06-19 1989-06-19 Dielectric oscillator

Country Status (1)

Country Link
JP (1) JPH0322602A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076019A1 (en) * 1999-06-04 2000-12-14 Allgon Ab Temperature-compensated rod resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000076019A1 (en) * 1999-06-04 2000-12-14 Allgon Ab Temperature-compensated rod resonator

Similar Documents

Publication Publication Date Title
US4307352A (en) Micro-strip oscillator with dielectric resonator
US4580108A (en) Tunable waveguide oscillator
US5311160A (en) Mechanism for adjusting resonance frequency of dielectric resonator
US4321560A (en) Oscillator using dielectric resonator
EP0053945B1 (en) Frequency-stabilized solid state oscillating circuit
JPH0322602A (en) Dielectric oscillator
US4455502A (en) Rectangular piezoelectric resonator with offset slot
JPS6141441B2 (en)
US4766398A (en) Broadband temperature compensated microwave cavity oscillator
JPH04294616A (en) Voltage controlled oscillator
JPS5836002A (en) Resonant circuit device
JP3753883B2 (en) Microwave circuit
US6369662B1 (en) Oscillator, dielectric waveguide device, and transmitter
JP2593546B2 (en) Dielectric resonator
WO2002084785A1 (en) Nrd guide fm transmitter with fm modulator in rear of gunn oscillator
SU1709493A1 (en) Shf oscillator stabilized by dielectric resonator
KR100587901B1 (en) NRD Guide Gunn Oscillator and Frequency Locking Method using Ceramic Resonator
JPH06318819A (en) Method for adjusting feedback quantity for high frequency generating circuit and high frequency generator
JPS6120165B2 (en)
JP2001203514A (en) Dielectric oscillator
JPS6025308A (en) Mic oscillator
JP4117142B2 (en) High frequency oscillator
JP2587140Y2 (en) Dielectric oscillator
JPS6024001Y2 (en) microwave integrated circuit
JP2558672B2 (en) Microwave oscillator